KLM Form Analyzer: Automated Evaluation of Web Form Filling Tasks Using Human Performance Models - Human-Computer Interaction – INTERACT 2013
Conference Papers Year : 2013

KLM Form Analyzer: Automated Evaluation of Web Form Filling Tasks Using Human Performance Models

Christos Katsanos
  • Function : Author
  • PersonId : 1005533
Nikos Karousos
  • Function : Author
  • PersonId : 1005534
Nikolaos Tselios
  • Function : Author
  • PersonId : 924157
Michalis Xenos
  • Function : Author
  • PersonId : 1005535
Nikolaos Avouris
  • Function : Author
  • PersonId : 1004940

Abstract

Filling forms is a common and frequent task in web interaction. Therefore, designing web forms that enhance users’ efficiency is an important task. This paper presents a tool entitled KLM Form Analyzer (KLM-FA) that enables effortless predictions of execution times of web form filling tasks. To this end, the tool employs established models of human performance, namely the Keystroke Level Model and optionally the Fitts’ law. KLM-FA can support various evaluation scenarios, both in a formative and summative context, and according to different interaction strategies or modeled users’ characteristics. A study investigated the accuracy of KLM-FA predictions by comparing them to participants’ execution times for six form filling tasks in popular social networking websites. The tool produced highly accurate predictions (89.1% agreement with user data) in an efficient manner.
Fichier principal
Vignette du fichier
978-3-642-40480-1_36_Chapter.pdf (285.64 Ko) Télécharger le fichier
Origin Files produced by the author(s)
Loading...

Dates and versions

hal-01501769 , version 1 (04-04-2017)

Licence

Identifiers

Cite

Christos Katsanos, Nikos Karousos, Nikolaos Tselios, Michalis Xenos, Nikolaos Avouris. KLM Form Analyzer: Automated Evaluation of Web Form Filling Tasks Using Human Performance Models. 14th International Conference on Human-Computer Interaction (INTERACT), Sep 2013, Cape Town, South Africa. pp.530-537, ⟨10.1007/978-3-642-40480-1_36⟩. ⟨hal-01501769⟩
209 View
207 Download

Altmetric

Share

More