Harmonic Components and Dispersion of Mobile Network Signals due to Fiber-Optical Transmission

Attila HILT, Eszter UDVARY, Gábor JÁRÓ, Tibor BERCELI

Abstract – Several system applications require optical transmission of very high bit-rate digital as well as microwave and millimeter-wave carrier signals. Without completeness, a few recent applications are mentioned such as: 5G and Radio-over-Fiber (RoF) systems, Gigabit Passive Optical Networks (GPON), optical interconnection within Cloud for telecommunication Network Elements (NE), upgrade of mobile access, backhaul and core networks (NW) or phased array and antenna beamforming applications. Both chromatic dispersion and harmonic distortion result in unwanted limitations in the maximum distance and bandwidth. Dispersion penalty has been widely investigated in fiber-optical links transmitting microwave or millimeter-wave signals. However, less attention is addressed to the effect of the harmonics of the modulating fundamental electrical signal. This paper presents some theoretical and experimental results estimating the level of harmonics during the optical transmission.

Index Terms – microwaves, Radio-over-Fiber, 5G, optical transmission, single-mode fiber, harmonics

I. INTRODUCTION

Transmission of radio-frequency (RF) signals over optical fiber gained significant interest in the last decades [1-9]. Several new perspective applications like 5G and Radio-over-Fiber networks or Cloud for telecommunications ("telco-cloud") require wideband optical links applying either laser diodes (LD) or external modulators (Fig.1).

When using standard single-mode optical fiber (SMF) at $\lambda=1550$ nm wavelength for such wideband transmission systems (Fig.1), chromatic dispersion (CD) of the optical fiber becomes one major limiting factor. At the output of the optical system, undesired harmonics appear beside the wanted signal, in case of both $\lambda=1300$ nm and $\lambda=1550$ nm.

Fig.1. Optical modulation with μW frequency
a.) direct by LD and b.) external by MZM.

Several factors contribute to the undesired harmonics. The nonlinearities of the electrical-to-optical (E/O) and the optical-to-electrical (O/E) conversions, signal impurity at the fiber input, dispersion in the optical transmission and coherent beating in the photodetection at the fiber end.

In our paper the fiber length-bandwidth product is investigated for optical transmission over SMF. In the next part, mobile application examples are shown. In the third part transmission and harmonic measurement setups are shown. In the fourth part, we present a numerical model. It is shown that the second harmonic of the modulating electrical signal is always generated in intensity modulated - direct detection links (IM-DD). In the fifth part of the paper the different electrode variants of the optical modulator and the effect of the modulator bias settings are discussed. It is shown that modulator chirp can reduce the undesired effect of fiber dispersion. The presence of harmonic signals is verified up to the near-mmW range experimentally in the last part of the paper.

II. MOBILE APPLICATIONS: 5G, RADIO AND CORE CLOUD, RADIO REMOTE HEAD

Fiber-optic techniques have been widely used in the legacy transmission and transport systems of mobile networks e.g. in backbone. Recently more and more new areas demand extra wide bandwidth what optical fibers can ensure. These applications are 5G, carrier distribution in next generation mobile systems, radio and core networks cloudification and interconnections in the converged core (Fig.2).

Fig.2. 5G access and radio cloudification

5G targets 10 Gbit/s peak user rates, 2 GHz bandwidth and latencies of less than 1 ms. The recommended carrier frequencies for future 5G systems are falling into the microwave (μW) and millimeter-wave (mmW) ranges of...
3-5 GHz, 26-39 GHz. But 5G carrier frequencies even up to 86 GHz are considered.

Another example of the efficient use of fiber-optics is due to the increased capacity demand in mobile backhaul for Single Radio Access Network (SRAN). SRAN allows mobile NW operators to support multiple communications standards for wireless services (2G, EDGE, 3G, HSPA, LTE, WiFi etc.) over a common network infrastructure in a flexible way. Single RAN technology is designed to support a multitude of sharing options like baseband, RF, mobile backhaul, transport, RF spectrum and common embedded O&M. The consolidated hardware (HW) and software (SW) incorporate e.g. software-radio, multiband and Multiple-Input Multiple-Output (MIMO) antenna solutions. In the mobile backhaul part legacy access microwave links cannot fulfill any more the significantly increased capacity demands of cell sites. The high frequency fees for the wider RF bandwidth allocations makes fiber installation or lease costs in longer term competitive. In dense urban areas, several other factors also limit the installation of new µW/mm² links: parabolic antennas cannot be installed on rooftop of historical buildings, there are latency and interference limits. As shown in Fig.3 fiber-optical chaining of remote radio heads (RRH) may provide solution for such scenarios.

III. TRANSMISSION OF WIDEBAND SIGNALS OVER SINGLE-MODE OPTICAL FIBER

The optical transmission of high-speed (Gigabit/s) digital signals as well as µW or millimeter-wave analogue signals (e.g. for 5G carrier distribution) is significantly limited. The main limiting factors are fiber dispersion and harmonic distortion. Chromatic dispersion can be measured with an electrical network analyzer that is extended into the optical domain, as shown in Fig.4. Usually, a very short reference optical cable is used for calibration. Fig.5 shows measured transmission curve as a function of the intensity modulation (IM) frequency. As seen, the penalty in the optically transmitted analogue RF signal is crucial due to CD. The plot belongs to an optical SMF length of \(L = 60 \) km. Sharp transmission zeros are visible around 7.68, 13.46 and 17.58 GHz frequencies. As seen in Fig.5, the rejections of the optically transmitted signal are more frequent at higher frequencies. The frequencies of the transmission zeros are depending on the fiber length \(L \) that makes system design even more difficult. To our best knowledge, the effect of chromatic dispersion has been published and experimentally demonstrated first in [8, 10-11]. Several different methods have been proposed to overcome the mentioned drawback of dispersion [12-21, 25-27].
and 390-990 MHz ranges, as it was detected by the
wideband photoreceiver and spectrum analyzer.

Fig.7. Detected 2nd and 3rd harmonics (260…990 MHz) of an
optically transmitted RF signal (swept in 130-330 MHz).

IV. NUMERICAL MODEL OF HARMONICS AND
DISPERSION IN OPTICAL TRANSMISSION

The output optical spectra of both direct modulated laser
diodes and external optical intensity modulators contain
sideband peaks around the optical carrier [10, 15, 19-28].
At very high IM frequencies falling into the µW/mmW range,
these sideband peaks have a frequency separation in
the order of 10 GHz or even beyond. These spectral
components propagate with different speed in the optical
fiber due to chromatic dispersion [10, 24, 27]. The typical
dispersion value of standard SMF is about \(D = 17 \text{ ps/nm/km} \)
around \(\lambda = 1550 \text{ nm} \) wavelength. As a result, depending
on the fiber length \(L \) and the IM frequency \(f_{RF} \), a complete
rejection of the modulation content can happen. The power
\(P_{RF} \) of the electrical signal detected at the PD is given as
\[P_{RF} = 20 \log \left(\cos \left[D \pi L \left(f_{RF} / f_{opt} \right)^2 \right] \right) \]
Eq.1.

In the simple analysis, only three spectral lines are
considered in the optical field of \(E(\omega) \) at the SMF input.
This approximation significantly reduces the calculation
difficulty, so it is possible to derive the result of Eq.1
analytically. In the general case, however the optical field
is composed of several spectral at the fiber input (Fig.8).

At the detection side the amplitude and phase of the optical
field spectral components are determined by the optical
transmitter (LD or external modulator) as well as by the
parameters of propagation in the dispersive fiber [27]. In
this part, based on the coherent model of the µW optical
link, we simulate the effect of chromatic dispersion in the
general case of several spectral lines. Fig.8 shows the
amplitude of the optical field, calculated at the output of
the Mach-Zehnder Modulator (MZM) that is biased for
linear operation (also called as quadrature bias, see Fig.9).
In the coherent model the calculation is based on the optical
field \(E_{opt} \) and not on the optical intensity \(I_{opt} \). Coherent
models can properly explain the presence of different
harmonics of the µW modulation signal.

Fig.9. Transmittance and bias of the Mach-Zehnder Modulator.

Fig.10 presents simulation results of harmonic evolution in
the dispersive optical transmission based on the optical
field of Fig.8, which is launched into the fiber. As seen in
Fig.10, also second harmonic and higher order harmonics
are generated due to propagation in the dispersive fiber.
(Fiber, modulator and photodetection losses are neglected
by normalization.) According to the measurements of
Fig.4 - Fig.7, the transmission is distorted by harmonics
and rejections at specific modulation frequencies.

When the MZM is biased for linear operation (quadrature
point in Fig.9), there are only odd components present in
the optical intensity [20]. However, in the optical field both
even and odd spectral components are present (Fig.8).
When this optical field is launched into a SMF, due to
chromatic dispersion even intensity components will
appear after propagation. Calculated levels of harmonic signals are shown in Fig. 10. Since the phase of the harmonics are rotated faster in the fiber than phase of the fundamental signal, the second harmonic has two times, the third harmonic has three times more rejections between two rejections of the fundamental. As mentioned, this phenomenon cannot be explained by the incoherent models of the μW optical link [8, 10-27].

When the MZM is biased for minimum transmission (V_z in Fig.9), the second harmonic of the modulation signal will not be rejected, even after propagation in a several km long dispersive fiber (Fig.11). The reason of this phenomenon is the coherent beating at the photodetector, as explained in [21-24]. In this case the phase differences cannot create complete rejection, since the optical carrier is suppressed as shown in Fig.12.

As an advantage of the suppressed carrier optical modulation (SCOM), only the subharmonic of the desired μW/mmW signal is required to drive the optical modulator. This method can be used for RF frequency doubling [11]. Based on the idea presented in Fig. 8-12 different optical methods are investigated to overcome the chromatic dispersion effect. Dual mode laser diode [16], self-heterodyning technique [17], and optical single sideband (OSSB) modulation are proposed. These solutions are described in the literature in details [11-27].

V. EFFECTS OF OPTICAL MODULATOR TYPES AND BIAS SETTINGS

The model discussed above is quite general: the simulation method is suitable for calculating the simultaneous effects of fiber dispersion, modulator bias [29, 30] in external modulation or chirp (also known as Henry-factor) of direct modulated laser diodes [19-26]. The push-pull MZM [31-33] and its possible cross sections are shown in Fig.13.

![Fig.13. Push-pull MZM. Possible cross sections of push-pull MZ modulators having symmetric CPW electrodes.](image)

Surface plot of Fig.14 presents the calculated level of the detected signal at fundamental frequency, as a function of fiber length L and modulation frequency f_{RF}.

![Fig.14. Detected power level of μW signal transmitted optically in dispersive fiber. Linear modulator bias of $\gamma=0.5$, $\alpha=0.25$, $D=17$ps/km/nm, photodiode responsivity: $R_{PD}=0.35$ A/W.](image)

The voltage on the MZM can be written as:

$$V_{mod}(t) = V_{DC} + V_{RF}(t)$$ \hspace{1cm} Eq.2.

where V_{DC} is the bias voltage and $V_{RF}(t)$ is the modulation signal. As seen in Fig.9, the V_{DC} bias voltage drives the modulator to its linear (called as quadrature) or to its minimum transmission (so called half wave voltage: V_z) bias. The voltage at its terminals is then calculated as:

$$V_{in} = 2V_{DC} + (1 + \alpha) V_{RF}(t)$$
\(V_{\text{DC}} = V_0 \) point. The normalized modulator bias voltages are denoted as:

\[
\gamma = \frac{V_{\text{DC}}}{V_\pi}, \quad \text{Eq.3.}
\]

\[
\alpha = \frac{V_{\text{RF}}}{V_\pi}. \quad \text{Eq.4.}
\]

and they are introduced for calculation simplicity in the simulation program [24]. Compared to the fiber penalty plot of Fig.10 now the losses due to optical modulation as well as detection have been introduced in the model. For better visibility, the linear fiber loss is neglected in Fig.14.

In Fig.15 asymmetric co-planar electrode configuration is shown. As seen in the left cross section, unbalanced operation is possible in this case too. The difference compared to the previous push-pull MZM electrode configuration results in a higher level of modulator chirp. The “single-arm” MZM gives different output optical field than that of the push-pull MZM (presented in Fig.13).

VI. EXPERIMENTAL RESULTS

Fig.17 shows the photograph of the experimental setup. The electrical and the lightwave sources, as well as the optical modulator were HP laboratory instruments: HP83422A Lightwave Modulator, HP83424A Lightwave CW Source, HP11982A Lightwave Converter. All the HP instruments were connected to the controlling computer over Hewlett-Packard Interface Bus (HP-IB). The optical CW source was set to launch \(\lambda = 1550 \text{ nm wavelength.} \)

The frequency of the electrical signal source \(f_{\text{RF}} \), which modulated the optical transmitter, and the center frequency of the spectrum analyzer have been set simultaneously by the measurement control and data acquisition software (HP VEE). First the spectrum analyzer measured the level of the detected fundamental signal, then its 2\text{nd} and 3\text{rd} harmonics. The spectrum analyzer used the ‘peak search’ function to find the signal peak of the measured harmonic near the center frequency, that was programmed by the controlling computer via HP-IP.

First the optical transmission was calibrated by inserting a short optical fiber between the optical modulator and the photodetector. Fig.18 refers to the calibration with a short patch cord. Then the detected levels of the fundamental, second and third harmonic signals have been measured by the computer controlled spectrum analyzer.

![Photograph of the experimental setup for the fundamental RF level measurements](image)

Fig.17. Photograph of the experimental setup for the fundamental RF level measurements

Fig.16. Dispersion compensation by the chirp of the unbalanced (one arm modulated) MZM.

Fig.18 Calibration with a short optical fiber.
Different single-mode fiber lengths of \(L = 30, 40, 50 \) and 60 km have been measured. The measured results are normalized to the calibration. This way the frequency dependent E/O and O/E conversion losses have been removed from the results plotted. Fig. 19 shows the measured transmission for the fundamental signal \(f_{RF} \). The frequency was swept in the range of \(f_{RF} = 2-9 \) GHz.

Fig. 19. Measured transmission for the fundamental signal: \(f_{RF} \).

Fig. 20 shows the 2\(^{nd} \) harmonic in the range of \(2 \cdot f_{RF} = 4-18 \) GHz. Finally, Fig. 21 plots the 3\(^{rd} \) harmonic in the frequency range of \(3 \cdot f_{RF} = 6\ldots 26.5 \) GHz (the upper band edge was limited by the frequency range of the spectrum analyzer). As the fundamental signal, the harmonics also exhibit minima and maxima. The exact frequencies of the measured minima and maxima are depending on the fiber length \(L \), as it is expected from the numerical model. The transmission zeros are more frequent at higher frequencies.

![Transmission plots](https://example.com/plot19.png)

![Transmission plots](https://example.com/plot20.png)

CONCLUSIONS

The demand for transmitting broadband data and high frequency carrier signals is continuously increasing due to several new applications such as 5G, RoF, SRAN, GPON, telco-cloud or antenna beamforming. In this paper the fiber-optical transmission of \(\mu \)W and mmW signals have been discussed. The undesired effects of harmonic distortion and chromatic dispersion have been investigated. The generation of second and higher order harmonics of the modulation signal in the optical path has been verified both theoretically and experimentally. We presented a general model to calculate harmonic levels and the effect of chromatic dispersion numerically. Levels of detected harmonics are estimated by the developed coherent model. Experimental examples have shown clearly the presence and evolution of harmonics in the \(\mu \)W photonic link. It was shown, that similarly to the fundamental signal, the harmonics also exhibit minima and maxima due to propagation in dispersive fiber. It was shown that they considerably influence the maximum available bandwidth and fiber length.

ACKNOWLEDGMENTS

The authors wish to thank Prof. Dr. István Frigyes, Dr. Tamás Maroószá and Dr. Ghislaine Maury for the fruitful discussions. Support of the French-Hungarian co-operation ‘Balaton’ as well as FiWiN5G, Fiber-Wireless Integrated Networks for 5\(^{th} \) Generation delivery, a Marie Sklodowska-Curie Innovative Training Network is acknowledged.

REFERENCES

![Transmission plots](https://example.com/plot21.png)