An Access Control Implementation Targeting Resource-constrained Environments

Fan Zhang, Bernard Butler, Brendan Jennings
Telecommunications Software & Systems Group, Waterford Institute of Technology, Ireland

Abstract— As more and more services are deployed on devices near the network edge, security operations (such as authentication and authorization) need to move with them. Typically, edge devices have fewer resources than data center servers and so the security operations need to make more efficient use of what is available while offering adequate performance. Authorization adds latency and requires system resources, but the need for security management with strong authorization at the network edge is growing. We have released the first open source, high-performance, resource-efficient, XACML3 standard-compatible Policy Decision Point (PDP) called Luas (means “speed” in the Irish language) based on an event-driven architecture and a non-blocking computational model, using a Bloom Filter for better performance. We compared its performance, resource usage and reliability against existing open source PDPs. Like those we tested, it provides accurate decisions, but Luas offers much faster security policy evaluation while using fewer system resources, and provides responses in a reasonable timeframe even when resources are scarce.

I. INTRODUCTION

Managing network and computational resources for security operations is a difficult task because their needs are not always well understood, compared to other operations that draw upon the same finite resources. With growing regulation and awareness of the risks of poor security hygiene, security operations are now more important than ever. They address requirements such as security and privacy. Authentication is usually a one-off concern per session, but authorization is ongoing and hence arguably requires more management attention.

Data security concerns are growing. They present a series of access control challenges that include data privacy breaches, unintended and/or malicious updates/deletion of data and other threats to data availability, such as those posed by ransomware. Increasingly, the network edge is seen as the new security frontier and needs to be managed as such. This management task is challenging because of high complexity (e.g., composing and processing many data flows) and low resource availability (most edge devices are small, battery-powered and dedicated to other tasks). We address the issue of limited resources for security operations in this paper.

To ensure access controls are applied consistently, all requests to use resources must be checked against the relevant access rules. However, this check adds latency to the primary operations of the system, and so might cause unacceptable performance bottlenecks. Thus, high-performance, resource-efficient security operations are essential to ensure adequate overall system performance and to use as few resources (CPU, memory, network bandwidth) as possible, so that they are available for other operations. XACML is one of the most widely used languages for expressing complex access control policies [1]. A performance bottleneck might occur when access requests are sent to a Policy Decision Point (PDP) at very high rates, particularly where state changes occur and the decision depends on dynamically changing context. Meanwhile, the security operations collectively provided by the PDP, PEP, etc., can require significant resources. Therefore, there is a need for high performance, scalable and reliable PDP and supporting server infrastructure, regardless of where the hardware and software components are placed in the network.

This paper makes two key contributions. First, a standard-compliant high-performance event-driven XACML PDP implementation is developed and released as open-source. This implementation is packaged as a JavaScript module and available in Node Package Manager (NPM). NPM is the package manager for JavaScript and the world’s largest software registry. Integrating into the Node.js ecosystem is trivial using ’npm install luas’ so it can be a dependency of another Node.js application or web applications. Our PDP is not only able to provide an attractive option for those building systems that need to meet strong security and privacy guarantees but also maintains high reliability and accuracy. Second, we proposed an approach that applies Bloom filters to policy evaluation, enabling the PDP to match, with low memory usage and minimal delay, the request against a policy and rule.

Section II describes previous work on PDP performance improvement. Section III motivates the technological choices (primarily the paradigm, platform and language) made when developing Luas. Section IV describes experiments where Luas was compared against its peers; how these were chosen, the test framework and scenarios. Section V presents our results, which indicate that Luas meets its objectives. Finally, Section VI presents our conclusions and possible future work.

II. RELATED WORK

In order to generate an access decision for a request, the policy decision point (PDP) needs to parse the corresponding policy sets and to evaluate the relevant rules that are defined in the policy set for that request. In previous work [2] we warned that the PDP could become a performance bottleneck and built a comprehensive testbed that can be used to carry out performance experiments while controlling resource usage.

Various approaches were proposed to improve authorization performance. Jahid et al. [3] convert high-level attribute-based policies into Access Control Lists for resources in a
and so are measurably less performant than those full enu-
XACML, Balana and AT&T XACML) all employ
clicly announced full-XACML PDPs (SunXACML, Enterprise
compatibility with the XACML 3 standard. The only pub-
models with reduced semantics, so all fall short of full
similar data structure. However, they support simpler policy
improved the performance by adopting a tree, a graph or
policy evaluation. Their approaches are similar because they
PDP, but also has very good performance.
Each of these papers optimised the performance of XACML
policy evaluation. Their approaches are similar because they
improved the performance by adopting a tree, a graph or
similar data structure. However, they support simpler policy
models with reduced semantics, so all fall short of full
compatibility with the XACML 3 standard. The only pub-
licly announced full-XACML PDPs (SunXACML, Enterprise
XACML, Balana and AT&T XACML) all employ full enu-
eration and so are measurably less performant than those
PDPs that sacrifice full XACML semantics for performance.
Earlier performance evaluation efforts such as Butler and
Jennings [8] and Turkmen and Crispo [9] focused on per
request performance: how long does it take each PDP im-
plementation to evaluate a given access request. Furthermore,
[8] provided recommendations relating to design and deploy-
ment strategy, to improve evaluation performance, so that the
resulting security operation is less likely to be CPU-bound.
However, access control evaluation forms part of a larger
system. The arrival pattern is typically bursty, so that even
PDPs with good computational performance can become I/O-
bound; this was not considered directly before. Also, previous
papers comparing PDP performance largely ignored the system
resource requirements for each PDP under test.

III. DESIGN AND IMPLEMENTATION OF LUAS

The current best practice for web server development
favours the use of an Event-Driven programming paradigm
with a non-blocking I/O model, where the execution flow
is determined by the events. We decided to investigate this
approach.

McCune [10] compared three simple file processing pro-
grams in JavaScript, Ruby, and Java. Each was hosted on its
corresponding web server (Node.js, EventMachine, Apache).
A client sent requests to those web servers and the programs
processed files in response. The results showed that the
Node.js server performed better (more requests processed per
second; number of files opened simultaneously) than either of
the other two servers.

A. Platform & Language Selection

We reviewed the existing PDP implementations and iden-
tified the following criteria as being desirable when choosing
a programming language to develop an efficient PDP imple-
mentation
- Able to process high-volume workloads, e.g., when the
 system becomes I/O-bound
- High system resource efficiency
- Friction-less, enabling one runtime to serve the PDP and
 other applications
- Support for modern development practices
- Large community support

Based on these criteria, we compared C++, Java, Rust and
JavaScript in terms of their development platforms, runtime
environments and libraries. C++ has a steep learning curve
and lacks built-in memory management. Although Java has
been widely used to implement PDPs and Java NIO enables
non-blocking I/O, Java is not asynchronous in spirit and
implementing non-blocking applications with NIO is quite
complex. The Rust version we reviewed did not have non-
blocking I/O, nor a strong ecosystem to support development.
We concluded that the best candidate currently is JavaScript
with the Node.js platform for server-side operation.

B. Policy Evaluation Approach

The PEP constructs a request from its Subject, Resource,
Action and Environment attributes and sends it to the PDP. The
PDP needs to find the rule(s) that best match the attributes
in the request, so it extracts the request attributes and finds one
or more applicable policies based on matching those attributes
to the corresponding elements in the policy Targets (policy or
rule matching). When an applicable Target is found, the PDP
applies the associated rule, which can also include a filtering
Condition expressed as a complex Boolean expression. If the
condition is fulfilled, the Effect (either deny or permit) will
be returned. In cases where more than one policy or rule is
matched, the final access decision depends on the relevant
Combining Algorithm to resolve conflicts among matched
policies or rules.

We found that existing standard-compliant PDP imple-
mentations spend most of their time matching attributes, given
large policies. We believe their use of brute-force search is one
of the reasons: existing PDPs iterate through all the attribute
categories in a Target, so they undertake more work than
is strictly needed. We propose a rapid and memory-efficient
policy and rule searching technique that uses Bloom Filters.

The Bloom filter [11] is a probabilistic query data structure,
which is designed to test the existence of an element in a
data set rapidly and space-efficiently. Its data structure is a
Bit Vector B with m elements, with an initial value of zero
for each element. The Bloom Filter requires k independent
hashing functions, $\{h_j\}; j = 1, \ldots, k$, each hash function
having the range $\{1, \ldots, m\}$.

As an example, suppose we have a set $X = \{x_i\}$ with n elements, and a possible element of that set y, and we wish
to test whether $y \in X$. To compute the bit vector $B(X)$, we
generate $\{h_j(x_i)\}$ for $i \in \{1,\ldots,m\}$ and $j \in \{1,\ldots,k\}$, then the bits in B at positions $h_j(x_i)$ in B are set to 1 for
every $x_i \in X$ and $j \in \{1,\ldots,k\}$. Note that a bit b_i can be set to
1 multiple times, if more than one of those hash functions
evaluates to b_i. Similarly, we can compute $B(y)$. If $B(X)$ has
1 in every position where $B(y)$ has 1, which is equivalent to
asking whether $B(X) \cap B(y) = B(y)$, then return True (there
is probably a match), otherwise return False (there is certainly
no match).

Because hash functions are used, collisions can occur, so
the Bloom Filter is approximate: we can be certain if no
match occurs, but there is a small probability (approximately
$(1 - e^{-kn/m})^k$ of a false positive (i.e., of deciding $y \in X$
when it is not). The false positive rate increases with n (the
size of X) and decreases as both k (the number of hash
functions) and m (the length of the bit vector B) increase.
For better performance, we used the non-cryptographic FNV
hash functions. To get better accuracy, $k = 16$ hash functions
are used. Therefore, with $n = 256$, $m = 32n = 8192$ and
$k = 16$, the false positive error rate is much less than 0.01.

The Bloom filter has been widely adopted for applications in
other domains such as name lookup, spam detection and web
 caching. Wang et al. [12] implemented an approach for name
look up in Named Data Networking called NameFilter which
is a two-stage Bloom filter based scheme. Their experiments
show that when the Bloom Filter is enabled, the memory
consumption of their search scheme is reduced by 80% and
the speed of name searching is 18 times faster than the
traditional approach. Another benefit of using Bloom filters is
reduced power usage. [11] proposed a low power Bloom filter
architecture for network applications and the results showed
that the architecture reduced the power consumption by 30%.

Therefore, we sought to improve the matching procedure
by using a high speed and low computational resource con-
sumption matching algorithm. Instead of matching each rule
in a policy, or policy in a policy set, a highly efficient filtering
mechanism can be added to filter out the policy fragments that
do not satisfy the request, so that attention can focus on the
remainder. Algorithm 1 shows how and where we integrate
Bloom Filtering into the policy evaluation process. Note that
applying the filter does not change the decision, because if
the Bloom filter does not find a match, we are certain that no
match exists. If it finds a possible match, we check anyway
using the existing search algorithm.

IV. EXPERIMENTAL EVALUATION

A. Comparative PDP Selection

For our experimental evaluation, two PDP implementations
were selected for the XACML 3.0 PDP comparative resource
usage evaluation against Luas. The ATT-XACML and the
Balana PDP implementations were selected as each complies
with the XACML 3.0 standard and passed all conformance
tests.

Algorithm 1 EvaluatePolicyTarget(X, S)

Input: Index X of the Policy in a PolicySet. A set of At-
tributes(S) in the Request. The set of Bloom Filters (B) for
the PolicySet, each B covers all Attributes in a given Target.
Output: A Boolean value to indicate if the policy is applica-
tible to the request

$p \leftarrow B[K] \{ \text{assign the Bloom Filter for policy } X \text{ to } p \}$

for $a \in S$ do
 positions $\leftarrow hashk(a,k)\{hashk function computes the
attribute a with number k of hash functions and returns
a set of integers of positions at the Bloom Filter p\}$
for $i = 0 \rightarrow k - 1$ do
 if $p[\text{positions}[i]] = 0$ then
 return false
end if
end for

Continue on the standard target evaluation procedure

We also considered other PDP implementations that claimed
high efficiency. XEngine has not been updated to support
XACML 3.0 and supports only a very restricted subset of
XACML 2.0, particularly “attribute = value” Target clauses
and Rule Conditions only [6]. XACML 3.0 has been standard-
ised since January 2013 and is widely deployed, so our perfor-
ance experiment focuses only on implementations that are
XACML 3.0 compliant. We considered SBA-XACML [5], but
it does not provide the correct decisions for all valid XACML
3.0 policies and requests; we discounted sne-xacml [7] for
the same reason. Therefore, we compared the only (open
source) XACML 3.0 PDPs we could find that offer a complete
implementation of the XACML 3.0 standard: ATT-XACML,
Balana and Luas.

B. Evaluation Testbed

In order to learn the performance of PDP implementations in
different circumstances, the experiment is designed to evaluate
different high traffic workloads. Our testbed emulates real-
world scenarios to evaluate PDP implementations. Each PDP
is deployed in a Docker container. Each container is self-
contained so the environment it presents to the user is specific
to the deployment, but it uses the operating system level
functions of the host and therefore is much lighter than a
Virtual Machine that includes its own guest operating system.
Docker provides a convenient platform for starting, stopping
and for configuring containers and the applications therein.

System resources such as number of CPUs and the amount
of memory allocated to each container can be easily controlled
using the docker daemon. Since each container is segregated
from the others, and dockerd starts each running instance
with specific resources, it is easy to control the experimental
conditions. The host is a commodity server with the following
specifications: CPU has 4 cores, 16GB memory, Operating
System is Ubuntu 18.04.1 LTS (64-bit) and Docker Version is
18.09.6. However, in order to emulate a resource-constrained
device, we scale down the resources allocated to each container, so that it has 1 core with 512MB memory. The docker images built for the experiment are available on Docker Hub.

Figure 1 shows there are three major components in the testbed. The Access Control evaluation server runs the comparative PDP containers, each of which is pre-loaded with access requests. A docker resource usage monitor runs on the host and collects the real-time resource usage data for each running PDP container. The access control evaluation client reads the test scenario scripts for each run and tells the load testing toolkit to trigger a burst of requests in each container based on the pre-defined conditions. The triggered requests depend on evaluation parameters such as the number of active users and the number of requests that each user will send. The load testing toolkit we used for this evaluation is an open source application called artillery.io, which is able to simulate users or devices to send requests at high rates. This toolkit generates an evaluation report at the end of each test, which includes measurements such as request completion rates (relative to a given timeout limit), request processing time and failure rates. The resource usage data collected for each PDP container is exported to the resource usage dashboard where the data can be visualised. Each usage graph can be exported as an image or PDF, as desired.

C. Implementation and Validation

To increase its ability to process large numbers of requests, Luas follows the Event-Driven paradigm, so all the high I/O consumption features are designed to be asynchronous, otherwise the benefits of the underlying (asynchronous) event-driven approach are lost. For instance, the mechanism for reading policies uses an asynchronous readable stream. Comparing to the standard method to read a file, the asynchronous readable stream approach is more memory efficient and fast, because it reads the policy file one chunk at a time [13]. Luas also benefits from the modularization provided by JavaScript which improves its scalability and easy of use. Luas is packaged and released to NPM, which facilitates integration for developers.

To ensure Luas makes correct decisions, per the published XACML standard [14], we used the XACML 3.0 Conformance Test suite [15] and ensured that Luas gave the right answers. However, we did not use this set of policies and requests for performance and resource testing. Instead, we used the well-known Continue set [16] and, to ensure that the responses are “correct”, we checked that the access decisions of all 3 PDPs matched for all access requests, which they did.

D. Experiment Design

In order to understand the efficiency of each selected PDP, we designed four different scenarios to evaluate the PDP implementations to simulate real-world heavy load. Each PDP starts with the continue set policy, translated to XACML 3.0. This policy was chosen because it is widely used in PDP evaluation, e.g. Liu et al. [4] used this set to test XEngine, Griffin et al. [17] also used the continue set for the same purpose. More recently, Morrise et al. [18] used continue as one of their test sets. The total number of rules in the continue set policy is 298. The load testing toolkit follows the scenario scripts we designed to simulate users sending access requests. In each scenario, 100 virtual users are simulated. In the first scenario, the load testing toolkit simulates 100 users issuing 5 requests per user; in the second scenario, 10 requests are sent from each user. Subsequent scenarios send 15 and 20 requests per user, respectively.

V. EXPERIMENTAL RESULTS

A. Reliability and Worst Scenario Analysis

The reliability metric is the ratio of the number of responses received by the client within a given time period after the time that request was issued by the client, relative to the number of requests sent by the client. For the experiment summarised in Table I, the requests are batched in bursts that are sent every second for $T_{send} = 5$ seconds. This is done by creating $u = 20$ users per second, each of which sends $n/(uT_{send})$ requests per second, where n is the total number of requests sent and T_{send} is the duration, in seconds, of the period when those requests are sent. Therefore, for this experiment, the number of requests per user per second is $n/100$.

We also note that reliability depends on a response timeout, which is set to $T_{response} = 120$ seconds in all cases except AT&T with $n = \{1500, 2000\}$, when $T_{response}$ is increased to 400 seconds, otherwise its reliability would be extremely low.

<table>
<thead>
<tr>
<th>Sent Requests</th>
<th>AT&T</th>
<th>Balana</th>
<th>Luas</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td>500(100%)</td>
<td>500(100%)</td>
<td>500(100%)</td>
</tr>
<tr>
<td>1000</td>
<td>610(61%)</td>
<td>1000(100%)</td>
<td>1000(100%)</td>
</tr>
<tr>
<td>1500</td>
<td>795(53%)</td>
<td>1500(100%)</td>
<td>1500(100%)</td>
</tr>
<tr>
<td>2000</td>
<td>1020(51%)</td>
<td>2000(100%)</td>
<td>2000(100%)</td>
</tr>
</tbody>
</table>

Fig. 1. System Diagram for XACML Evaluation Testbed. (a) is the access control client for sending access requests based based pre-defined test scenarios, (b) is the access control server which serves each PDP access control server via Docker, (c) is the aggregated report of reliability and latency, which is generated from (a), (d) is the dashboard to visualise matrices collected from (b).
Table II

(95%, 99%) Evaluation Latencies (in milliseconds since arrival) per PDP type for IoT

<table>
<thead>
<tr>
<th>Sent Requests</th>
<th>AT&T (ms)</th>
<th>Balana (ms)</th>
<th>Luas (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td>(59201.7, 81051.1)</td>
<td>(8.2, 15.1)</td>
<td>(4.9, 8.6)</td>
</tr>
<tr>
<td>1000</td>
<td>(63351.2, 88927.3)</td>
<td>(10.1, 19.4)</td>
<td>(4.8, 7.9)</td>
</tr>
<tr>
<td>1500</td>
<td>(66105.9, 330922.3)</td>
<td>(69.7, 88.1)</td>
<td>(5.5, 9.1)</td>
</tr>
<tr>
<td>2000</td>
<td>(90780.7, 368400.5)</td>
<td>(133.1, 229.9)</td>
<td>(6.4, 10.6)</td>
</tr>
</tbody>
</table>

It is an open question whether $T_{\text{response}} = 400$ is acceptable in terms of quality of experience; even $T_{\text{response}} = 120$ is probably unacceptable for interactive applications.

Table I shows that the AT&T PDP implementation has the worst reliability compared to the other two PDPs. For example, even with a longer response timeout than its peers, it can process only 51% of the 2000 requests it received, because it spends so long on each evaluation that its extended response timeout of $T_{\text{response}} = 400$ seconds is exceeded. As seen by the client, 49% of the requests appear to have failed (in the sense that no response has arrived before the timeout). Therefore, we say that the AT&T PDP has a reliability score of 51% for this particular use case. The table also suggests that Balana and Luas are equally reliable because both succeed in providing responses to all arriving requests within the $T_{\text{response}} = 120$ seconds response timeout period.

Table II shows the request latency for each scenario in percentiles instead of the average. This is because users that are experiencing long access delays and those for whom access decisions are made quickly do not have the average experience. Anjum et al. [19] stated that using average as a performance indicator can be misleading since it is influenced by outliers, but performance percentiles provide a better sense for quality of experience (QoE).

Table II helps to explain the reliability scores. Even with 500 requests, the AT&T PDP has 95- and 99- percentiles of PDP service times that are approximately 60 and 80 seconds, respectively. Thus its worst case latencies are nearly 4 orders of magnitude greater than the equivalents for Balana and Luas. Hence it is not surprising that the AT&T reliability scores are not as good as those of Balana and Luas. However, it is also clear that Luas has more “performance headroom” than Balana, because its 95- and 99-percentiles are almost constant with respect to number of requests. By contrast, the percentiles for Balana grow super-linearly with the number of requests, indicating scalability problems ahead for Balana but not for Luas.

B. Resource Usage Analysis

In order to generate more accurate and precise results, docker is used to segregate each PDP run-time environment from its host. Each container includes a bare-minimum environment to serve the PDP via a web service. The docker image size of each PDP is: AT&T (668MB), Balana (660MB) and Luas (194MB). The bundle size of each PDP is: AT&T (329KB) Balana (485KB) and Luas (101KB). When deploying to resource-constrained devices at the network edge, Luas is more attractive than the other options because it requires less than a third of their (docker image) disk space.

Figure 2 and Figure 3 were generated using data from the evaluation dashboard from the fourth experimental run, in which 2000 access requests were sent to each access control server. The independent axis represents time since the start of that run, so Luas and Balana finish their runs at approximately 180 seconds (3 minutes), which is why their profiles appear to be truncated relative to that of AT&T which is still processing requests more than 10 minutes after the experiment started.

Figure 2 indicates that Luas uses about 30% less memory than Balana and 50% less than AT&T when evaluating access requests against the same policy.

Figure 3 shows that the CPU consumption for Luas is
This paper evaluates the resource usage and performance of a new event-driven XACML implementation by comparing it against more traditional (blocking) implementations. From the above results it is clear that **Luas** achieves higher resource efficiency, better performance and greater reliability in a resource-constrained environment. Notably, **Luas** with its Bloom filter performs and scales better when it processes relatively high frequency requests sent from a large number of active users in contrast to other implementations using plain brute-force search, so it can help to solve the bottleneck in existing access control systems. Indeed, it manages to achieve greater performance and scalability while using fewer resources. Therefore, as a server component, it can be used as a drop-in replacement (offering the same API and responses) for Balana, say, while using fewer resources and offering higher performance.

The contributions identified in Section I were shown in Section III. **Luas** is open sourced and available via the Node Package Manager registry. **Luas** also has the advantage, relative to Balana, of using more modern web engineering and so has greater development potential.

These improvements are significant in practice, so it is now feasible to introduce robust security operations near the network edge, greatly enhancing the ability to manage security threats in domains where this was not considered possible before. There is no longer an excuse, in terms of additional latency, for not adding strong access controls to devices and operations in the Internet of Things.

We note that Bloom filters introduce trade-offs so we plan to investigate how best to configure them, balancing the Bloom filter’s complexity against its accuracy to see how it affects performance and resource usage. We also wish to investigate how to integrate **Luas** into an actual device such as the MXE-100i Series IoT Gateway, since such devices offer a natural deployment target for **Luas**.

REFERENCES

ACKNOWLEDGMENT

This work has emanated from research conducted with the financial support of Science Foundation Ireland (SFI) and is co-funded under the European Regional Development Fund under Grant Number 13/RC/2077.