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Abstract. Power analysis on smart cards is widely used to obtain infor-
mation about implemented cryptographic algorithms. We propose sim-
ilar methodology for Java Card applets reverse engineering. Because
power analysis alone does not provide enough information, we refine
our methodology by involving additional information sources. Issues like
distinguishing between bytecodes performing similar tasks and reverse
engineering of conditional branches and nested loops are also addressed.
The proposed methodology is applied to a commercially available Java
Card smart card and the results are reported. We conclude that our aug-
mented power analysis can be successfully used to acquire information
about the bytecodes executed on a Java Card smart card.

1 Introduction

Currently Java Card is the most commonly used platform for commercial smart
cards. According to Sun Microsystems, Java Card technology grew from 750 mil-
lion deployments in November 2004 to over 1.25 billion deployments in November
2005 [1,2]. Because smart cards are typically used in applications that require a
high degree of security, it is needless to say that security of Java Card applica-
tions is very important.

Power analysis is a side channel analysis technique to acquire information
about running processes on a device (such as smart cards) by monitoring the
dynamic current usage. Power analysis on smart cards is commonly used to
obtain information about running cryptographic algorithms [3—6].

In this paper, we introduce Java Card reverse engineering methodology by
means of augmented power analysis. When a Java Card applet source code could
be reverse engineered, possible vulnerabilities can be exploited. We performed
our experiments on several commercially available Java Card smart cards. In
this paper we will focus on only one specific smart card?. Experimental results
for different smart cards can be found in [7]. Nevertheless, the majority of the
proposed techniques are applicable in the general case.

3 The specific brand and type of the smart card can not be disclosed.
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The main contributions of this paper are:

— A methodology to analyse power consumption of Java Card applets;

— Techniques to determine a unique power profile template for each Java Card
bytecode. In addition, we describe how templates can be recognised in an
arbitrary power trace, in order to determine the execution trace;

— Additional information sources that can be used to reduce the number of
errors in the generated trace;

— Techniques to convert the execution trace into structured Java Card bytecode
source.

Due to the space limitation, readers are assumed to have some basic knowl-
edge of Java Card technology (a good introduction can be found in [8,9]).

The rest of this paper is organised as follows. Section 2 discusses the method-
ology that we used. Section 3 presents the experimental results and the method-
ology refinements. Finally, we conclude in Section 4.

2 Methodology

In order to gain information and reverse engineer arbitrary Java Card applets,
we selected a programmable Java Card smart card. A Java Card applet is com-
piled to bytecode using the Java compiler. For example, each addition operation
as depicted in Figure 1 is compiled to the following bytecode sequence

sload, sload, sadd, s2b, sstore

The multiplication sequence looks similar (i.e. the sadd bytecode is replaced
by the smul bytecode). Therefore, the power trace representing the power con-
sumption variations of the applet execution is expected to show repetitions,
making this applet interesting for power analysis.

public class TestApplet extends javacard.framework.Applet {
public void process(javacard.framework.APDU apdu) {
byte a = (byte) 0x04, d, p;
byte buffer[] = apdu.getBuffer ();
short len = apdu.setIncomingAndReceive ();
d buffer [(short) (javacard.framework.IS07816.0FFSET_CDATA)];
(byte) (a+d);
(byte) (axd);
(byte) (axd);
(byte) (a+d);
(byte) (a*xd);
(byte) (a+d);
(byte) (a+d);
(byte) (axd);
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Fig. 1. Example Java Card applet



We can execute the above process method by sending an arbitrary com-
mand to the smart card when the applet is active. Our acquisition framework,
which is described in Appendix A, is used to obtain a power trace from the
execution of this test applet. The resulting power trace is depicted in Figure 2.
This measurement was performed without any trigger delay, at low speed and
the at maximal number of samples possible for the used equipment to gain a
complete overview of the smart card power consumption.

S = Start bit
P = Parity bit
G = Guard time

S00001001PG| S00000000PG

Fig. 2. Single power trace

The last part of the power trace (i.e. from 3 to 6 ms) represents the smart card
response. In this case the response was 0x9000, because the Java Card applet
executed successfully. The 0x9000 response code is returned after approximately
3 ms. Therefore, the execution of the actual Java Card applet takes place in
the first part of the power trace (i.e. from 1 to 3ms). Note that the power
consumption increases and looks noisier during the applet execution. Possibly the
investigated smart card activates some countermeasure against power analysis
when the Java Card Virtual Machine (JCVM) is running. After we determined
the approximate start time and duration of the Java Card applet, a larger number
of power traces could be collected. By delaying the trigger signal and decreasing
the number of samples, we limited the acquisition to only the interesting region
of the power trace (i.e. from 1 to 3ms).

Resampling Performing power analysis often requires the collection of a signifi-
cant number of traces. When capturing 10000 traces at 200 MHz each containing
1000000 8-bit samples, the total file size becomes = 9.5 GB. Resampling is a tech-
nique to reduce the total file size, at cost of losing some information. When the
trace set is resampled at 4 MHz (the operating frequency of the smart card), the
number of samples will be reduced by a factor 50. Each trace will then contain
only 20000 samples 4 and require only 760 MB. Therefore it is advantageous to
resample the traces before storing them. Some measurements that require high
precision must of course not be resampled as will be shown later.

4 All samples represent the average value of 50 samples in the original trace



Correlation Correlation gives a measure of association between variables [10].
It returns a value between -1 and 1, where 1 means “identical in shape” and
-1 means a “inverted in shape”. Correlation 0 means that the values are uncor-
related. We use correlation to recognise specific templates in a power trace. In
addition, it allows us to determine if a specific input value is used by a bytecode
or not. In contrast to correlation with input values, the negative correlation is
not relevant when using it to recognise templates. In this paper, a correlation of
1 is represented as 100% and 0 is represented as 0%. Detailed information about
the correlation function is given in Appendix B.

Averaging As depicted in Figure 2, a single power trace is noisy. Taking the
arithmetic mean of a set of traces is a simple but effective technique to remove
noise. Figure 3 depicts the average of 10000 power traces of the same Java Card
applet using the same input data. Note that, in contrast to Figure 2, a repeated
pattern is clearly visible. The techniques described in the rest of this section
assume averaged trace sets, as single traces are too noisy.
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Fig. 3. Average of 10000 power traces. Note that only the interesting region (1 ms to
3 ms in Figure 2) is acquired.

Template determination In order to recognise bytecodes in a power trace,
each bytecode needs to be represented by a unique template. To determine a
template for a specific bytecode, a test applet that contains this bytecode is
used. For example, the source code fragment depicted in Figure 1 can be used to
determine templates of 10 different bytecodes (i.e. aload, baload, return, s2b,
sadd, sconst_5, sload, sload_2, smul and sstore). Storing frequently occurring
bytecode sequences as a single template is also considered. These templates are
referred to as combined templates.

The execution of the fetch, decode and execute sequence of the JCVM also
corresponds to a specific template (referred to as JCVM template). This is ad-
vantageous, because this template can be utilised to split the power trace into
separate parts representing the individual bytecodes. By comparing them with
the bytecode of the known Java Card applet, it is possible to store them as the
template for that specific bytecode. The same technique can also be used to de-
termine templates of native methods, e.g. a DES operation [7]. It is important



to note that the templates considered here are valid only for the specific smart
card type used.

Template recognition The templates determined in the previous section can
be used to process an unknown applet. We developed a program that auto-
matically matches n templates against an average power trace by using the
correlation technique described earlier. The result of this program is a set of
n traces containing the correlation of the power trace with each template. One
example is depicted in Figure 4 where the power trace (shown in red on the first
row) and its correlation with templates for sload, baload, sadd+s2b+sstore
and smul+s2b+sstore respectively are shown. From Figure 4 can be concluded
that the bytecode sequence smul+s2b+sstore is probably executed three times
during the applet execution.
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Fig. 4. Result of the template matching process

3 Experimental results

As our first experiment, we developed a Java Card applet that performs only
two addition statements. Table 1 shows the results of the template recognition
process as described in Section 2. The first column contains the actual bytecodes
that were executed. The second column contains the bytecode with the best
correlation, while the third column contains alternative bytecode candidates that
have a correlation greater than a predefined threshold (i.e. 50%). The JCVM
template is used to cluster the execution trace. Note that the results contain
uncertainties and even one error (i.e. on the sixth row, the aload bytecode has
a better correlation than the actual sload bytecode).



Table 1. Example execution trace obtained from the power analysis.

Expected Recognised Alternatives
sload sload (93%) aload (89%)
JCVM
sload sload (92%) aload (91%), sconst & sstore (57%)
JCVM
sadd sadd (91%) sload (55%), aload (51%)
JCVM
s2b & sstore s2b & sstore (91%) sload (51%)
JCVM
sload sload (92%) aload (78%), sconst & sstore (54%)
JCVM
sload aleoad{92%) sload (91%)
JCVM
sadd sadd (90%) sload (54%), aload (53%)
JCVM

s2b & sstore s2b & sstore (90%) sload (53%)

Our second experiment was to attempt distinguishing bytecodes that perform
similar operations. Some bytecodes that are available in the JCVM are used to
optimise common operations. For example, loading a short value from local
variable 2 or 3 can be performed using sload_2 or sload_3 respectively. We
performed this measurement at 200 MHz, because distinguishing between similar
bytecodes, such as sload_2 and sload_3, is difficult using resampled traces.

We performed 12500 measurements of the power consumption during the ex-
ecution of an sload_2 bytecode and another 12500 measurements during the ex-
ecution of an sload_3 bytecode. Figure 5 depicts the difference between sload 2
and sload_3. There is some difference only during a small period of time (i.e.
approximately 400ns). Although our experiment indicated the possibility to de-
termine the exact type of sload operation, a lot of traces must be collected
making this process very time consuming.

sload 2 ——
sload_ 3 ——

0 0.2 04 0.6 0.8 1 1.2 14
us

Fig. 5. Difference between sload_2 and sload_3



3.1 Methodology refinements

Our first experiments indicated that power analysis only, sometimes can not
provide enough information to recognise the correct bytecode template. We re-
fined our methodology by identifying additional information sources as will be
described in this section.

Impossible bytecode sequences Not all bytecode can follow each other. Dur-
ing the reverse engineering process it is advantageous to keep an operand type
stack. Although storing the operands themselves is difficult, storing their types
is much easier. Based on the elements on top of the operand type stack, some
bytecodes can be excluded from the set of possible follow-up bytecodes. Note
that this approach will greatly reduce the search space.

When this technique is applied to the example of Table 1, the impossible
bytecode sequence in this example: sload, aload, sadd can be recognised. Be-
cause an sadd bytecode expects a short on top of the operand stack, while an
aload bytecode pushes an objectref, the aload must be replaced by an alterna-
tive bytecode (i.e. the sload bytecode that matches for 91%). This results in:
sload, sload (first alternative), sadd. In this case, it is assumed that the sload
bytecode on line 5 and the sadd bytecode on line 7 are correctly recognised.

Unlikely bytecode sequences Besides impossible bytecode sequences, as de-
scribed above, there are also bytecode sequences that are unlikely to occur even
they are allowed by the JCVM. For example, sconst_0 , sdiv (divide by constant
0) is obviously not likely to occur in a normal trace.

Bytecode statistics Statistical information about already processed Java Card
applets can also be used. Because the bytecode of Java Card applets on a smart
card is usually generated by the Java compiler, certain patterns will occur more
often than others. For example, experiments reveal that a for loop, will always
be generated as depicted in Figure 6. Other examples are i=0 and i++ which
are depicted on lines 1-2 and 5-9 respectively. Saving a template for each of
these frequently occurring patterns is advantageous. Experiments showed that
templates which contain more samples usually have a less noisy correlation, as
depicted in the last trace of Figure 4.

Input data Besides correlating a power trace with templates, correlation with
input data contained in the command can also be used to determine which
bytecode uses input data. The example in Figure 7 depicts the average power
trace of the smul bytecode. In addition, it also depicts the correlation with the
first operand of the smul bytecode and the correlation with a random byte,
which is not used by the smul bytecode. From Figure 7 one can conclude that
it is possible to determine if a specific input value is used by a bytecode.
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sconst_0O
sstore_2
goto L2

Li: // Loop body is inserted here
sload_2
sconst_1
sadd
s2b
sstore_2

L2: sload_2
bspush 3
if_scmplt L1

Fig. 6. A for loop as generated by the Java compiler
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Fig. 7. Correlation between input data and the power trace

Bytecode duration In some situations the duration of a bytecode execution
gives useful information. We found that the duration of a conditional branch
bytecode indicates if a branch is taken or not. For example, the duration of the
non-taken if_scmplt bytecode is approximately 5.75ps. In case the branch is
taken the duration increases by 4.5us to 10.25ps.

Loop rerolling Using the techniques described earlier, it is possible to obtain
an applet execution trace. In order to reverse engineer a Java Card applet com-
pletely, the execution trace should be transformed into structured bytecode. This
step is certainly not trivial, because an execution trace is very likely to contain
loops.

In the ideal case, the reverse engineering process would generate an execution
trace as depicted in Figure 8. This figure shows the execution of a loop which is
iterated 3 times.The execution trace can be divided into several parts. First of all,
lines 3-6 indicate the presence of a loop. The goto statement is used to branch
to the conditional part of the loop which loads a short value (sload), pushes a
constant (bspush) and branches if the short comparison succeeds (if_scmplt).
Second, the lines following the goto statement (i.e. lines 4-6) can be used to
split the execution trace of the loop into repetitive parts. The end of the loop is
reached when the conditional branch bytecode is not followed by the loop body.
In addition, the duration of the conditional branch bytecode may also indicate
the end of the loop, as explained earlier.
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sconst_0 10 sadd 19 sadd 28 sadd

sstore_2 11 s2b 20 s2b 29 s2b

goto 12 sstore_2 21 sstore_2 30 sstore_2
sload_2 13 sload_2 22 sload_2 31 sload_2
bspush 3 14 bspush 3 23 bspush 3 32  bspush 3
if _scmplt 15 if_scmplt 24 if_scmplt 33 if_scmplt
// Loop body 16 // Loop body 25 // Loop body

sload_2 17 sload_2 26 sload_2

sconst_1 18 sconst_1 27 sconst_1

Fig. 8. Execution trace of the program depicted in Figure 6

Besides reconstructing the loop, rerolling the loop has other advantages. First
of all it is possible to derive the labels originally used on lines 3, 6, 15, 24 and 33.
Second, it is very common that the same loop variable is used in the initialisation,
condition and increment part of the loop. Therefore it is likely that the bytecodes
on lines 2, 4, 8, 12, 13, 17, 21, 22, 26, 30 and 31 share the same local variable
index.

Although this technique works fine for this relatively simple example, it is
rather difficult to automate this process. Detecting a nested loop as such is not
very difficult, because the nested loop will cause an additional goto statement.
However, reconstruction of a nested loop is difficult because the conditional part
may contain similar statements and the execution traces may contain errors.
Moreover the loop may contain conditional statements.

Conditional branches Conditional branch bytecodes, such as if_scmplt, make
the reverse engineering process more difficult. By varying the input data, it is
possible that another part of the source code is executed. Without knowledge
of the source code it can be difficult to determine on what input data a con-
ditional branch bytecode is dependent. There are two ways to determine such
dependency:

— Use correlation between random input data and the power profile of the
conditional branch bytecode;

— Inspect the reverse engineered applet first and try to derive what input data
is used in the condition.

It is however possible that a varying input data does not affect the conditional
branch, for example when it is based on an internal state or data from a random
generator. In this case the condition has to be determined from the partially
reverse engineered source code.

3.2 Execution trace decompilation

When the structured bytecode is available, it is relatively easy to reconstruct
source-level expressions. In [11], a technique to automatically decompile Java
bytecodes into Java source code is presented. Although the referred paper focuses
on decompiling standard Java bytecode, we successfully implemented a Java



Card version. Implementation details of this process are outside the scope of
this paper.

4 Conclusion and future work

In this paper we showed that power analysis can be used to acquire information
about executed bytecodes on a Java Card smart card. Using the right equipment
and a methodology to determine and recognise bytecode templates, we were able
to generate an execution trace of a Java Card applet. Although the tested smart
card activates a countermeasure against power analysis when the JCVM is active,
we found that this countermeasure is not very effective. Next, we showed that
besides power analysis, additional information sources can be used to reduce the
number of errors and uncertainties in the execution trace based on the fact that:

— some bytecode sequences cannot occur in a valid Java Card applet;

— some bytecode sequences are very unlikely to occur, although they are valid;

— statistics of other Java Card applets can identify frequently occurring byte-
code sequences.

— correlation with input data can be used to determine which variables depend
on input data;

— the duration of some bytecodes can provide information. The duration of a
conditional branch bytecode indicates if a branch is taken or not.

In addition, we presented techniques to generate structured bytecode from
the execution trace using loop rerolling. Most of the time however, this step
will be difficult, as the execution trace may also contain nested loops and other
conditional statements. On the other hand it may still be possible though, to
reverse engineer those parts manually.

Finally we showed that structured bytecode, once it is available, can be de-
compiled relatively easy to Java source code using algorithms which are also
used to decompile regular Java applications.

4.1 Directions for future work

There are a couple of topics that will be addressed in the future. First of all,
it would be interesting to see if the techniques described in this paper can also
be applied to RFIDs (contactless smart cards). Second, we intend to investigate
different countermeasures aimed to prevent Java Card applets from being reverse
engineered using power analysis. Finally, a program that performs the template
determination for all bytecodes automatically would be interesting.
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A Acquisition framework

In order to collect power traces, we developed an acquisition system. As depicted
in Figure 9, the system consists of a smart card reader, a Digital Storage Oscillo-
scope (DSO) and a PC. Both the smart card reader and the DSO are connected
to the PC using separate USB channels.

Our initial system triggered the oscilloscope using software. Unfortunately
this caused the oscilloscope to be triggered at different positions in the applet
execution. The time required to execute a Java Card applet, is typically longer
than an oscilloscope can store in its memory. Therefore we developed a new
smart card reader that automatically triggers the oscilloscope after sending the
last byte of a command APDU. The trigger signal can eventually be delayed
with ps precision to inspect different parts of applet under test.

The experiments performed in this paper are performed using a 200 MHz
DSO that can store approximately one million samples.
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Fig. 9. The acquisition system

B Correlation formulas

In order to understand how the correlation between two variables can be com-
puted, some other functions must be defined first. The variance of x is defined
as:
(@i —7)
var(r) = ——— 1

() = =2 (1)
where x; represents the i-th element of x, T is the algebraic mean of z, and n is
the size of x. The covariance of x and y provides a measure of how much x and
y are related and is defined as:

2 (@i = 7)Yy —Y)

n—1

(2)

The covariance is difficult to interpret though, because it depends on the
scale of the input values. A better measure, independent on the absolute values
of the input is given by the correlation function which is defined as:

cov(a, y) =

cov(x,y)

3)

corr(z,y) = var(z) - var(y)



