
Distributed Certified Information Access for
Mobile Devices?

Aniello Del Sorbo1, Clemente Galdi2, and Giuseppe Persiano1

1 Dipartimento di Informatica ed Applicazioni “R.M. Capocelli”
Università degli Studi di Salerno

Via Ponte Don Melillo - 84084 Fisciano (SA) - Italy
{anidel,giuper}@dia.unisa.it
2 Dipartimento di Scienze Fisiche

Università degli Studi di Napoli “Federico II”
Complesso Univ. Monte S. Angelo - Via Cinthia

80126 Napoli - Italy
galdi@na.infn.it

Abstract. In this paper we describe a primitive, which we call, Certified
Information Access, in which a database answers to a query by provid-
ing the information matching the query along with a proof that such
information are consistent with the actual content of the database. We
show that such a primitive can be securely implemented in a distributed
fashion. Furthermore, we describe the design principles for a distributed
architecture that would allow the use of this primitive on mobile devices.

Key words: Secure protocols; Secure services for mobile devices.

1 Introduction

The growing need of mobility in the current society and the increasing availabil-
ity of low-cost wireless devices have fostered an impressive growth in the number
of services available for such devices. Currently available technologies allow the
possibility of performing tasks on wireless devices that were impossible only few
years ago. Theoretically, it is now possible to run any Java program on last gen-
eration mobile devices. On one hand, this allows the possibility of interaction
between any Java-enabled mobile device with any possible application that sup-
ports web-based access. It is possible to download programs from the Internet
and execute them in order to interact with a specific service.

This flexibility poses a number of security issues that need to be addressed.
Just to mention a few, authentication, anonymity, accountability of users/services
need be to thought for a environment in which the device has very low computa-
tional abilities, the communication medium can be easily eavesdropped or sub-
ject to malicious attacks of various kind, etc. In particular, because of the small
? This work was partially supported by the European Union under IST FET Integrated

Project AEOLUS (IST-015964).

computational power of such devices, one issue to address is the performance of
the applications.

In a such global scenario it is often the case that one entity has to access
information owned by a different entity. This poses a number of security issues
both from the database side and the user side. For example, the owner of the
database may require that only authorized users have access to the information or
part of it. This is an instance of the well-known access control problem. Another
example could be that each user cannot infer additional knowledge by analyzing
the answers to the issued queries. In other words, authorized users can obtain the
information they required, but they cannot infer any other information from the
received answers [5, 9]. On the other hand, a user may require that the database
does not gain any information about specific content she requested [6, 4, 10, 11,
1]. This means that the database should “blindly” answer all the queries from
authorized users in a way that all the requested information can be correctly
reconstructed from the answers.

The above problems mainly address the confidentiality of the information.
The primitive we consider in this prototype, introduced in [8], deals with the
problem of guaranteeing the consistency of the answer, sent by the database to
the user, with the information actually contained in the database. We assume
the possibility that a database would be willing to give wrong answer to queries
issued by a user. In this setting, since the user does not know in advance which
is the actual information he will receive from the database, there would be no
way to distinguish between a correct answer from a maliciously modified one.

Certified Information Access (CIA for short) primitives force the database
to publish a snapshot of its current contents, which we refer to as the Public
Information, on a trusted entity. After such information is available, the user may
issue queries to the database. The answers to each query have to be consistent
with the public information.

One trivial way of implementing such primitives is to publish the whole con-
tent of the database on a trusted server. In this case, a user may compare the
received query with the one contained in the public copy of the database. This
solution is, of course, neither secure nor efficient. Since the database has to pub-
lish its whole contents, the confidentiality of the information therein contained
is compromised. Furthermore, since all the elements in the database need to
be transmitted and stored, the communication and space complexities of such
solution is linear in the size of the database

For this reasons the public information should satisfy the following properties:

– Compactness: The size of the public information should be smaller than the
size of the database.

– Confidentiality: The public information should not reveal anything about
the actual content of the database.

– Correctness: A correct answer to a query should be consistent with the public
information with probability one.

– Soundness: Any wrong answer to a query will be detected with high proba-
bility.

Currently, a way of implementing CIA primitives is by means of a new crypto-
graphic primitive, namely mercurial commitments introduced and studied in [8,
3, 2, 7]. Unfortunately, the implementation of such primitive are computation-
ally intensive. On one hand, the generation of the public information is time
consuming also on current servers. On the other hand, although the verification
procedure can be easily executed on a PC in few seconds, it still requires much
more time on mobile devices.

Our Contribution. In this paper we present a distributed architecture for a CIA
service. We first describe in details the Certified Information Access service. We
briefly review the basic primitives that can be used for implementing such a
service. However, such primitives require a certain amount of computation that
would make any solution for CIA unfeasible on mobile devices or, more generally,
on devices with low computational power. We show that such primitives can
be computed securely in a distributed fashion. In other words, any device can
distribute its load securely among untrusted peers and locally combine the results
of such computations. We finally show an architectural design for the distributed
implementation of a secure CIA service.

We describe a solution for static databases, i.e., databases in which the con-
tent does not change. To the best of our knowledge, the only secure solution
to the problem of dynamic databases is the one described in [7]. Unfortunately
this solution is not efficient. Indeed, updating a single element in the database
results in the need of storing some information whose size is linear in the size of
the key.

We assume that there exists a trusted entity that does not collude with
the entity holding the database. Furthermore, the system comprises a sufficient
number of peers whose only role is to compute modular exponentiations. We
assume that such peers are honest, that is, they properly execute the protocols,
but a small fraction of them may be curious, in the sense that they may collude
in order to infer additional information from the messages they have exchanged.

This document is organized as follows: In Section 2 we describe the CIA prim-
itive. In Section 3 we describe a basic tool that is used in the prototype, namely
Mercurial Commitment schemes, and techniques for distributing the computa-
tion of such primitive among the peers. In Section 4 we describe how to construct
a certified information access primitives using mercurial commitments. In Sec-
tion 5 we report the design principles for a distributed architecture implementing
a CIA service.

2 Certified information access

In this section we describe the CIA functionality that we will be at the base of
our prototype.

In the context of secure databases, an implementation of a certified informa-
tion access has to provide the users with a database service in which each answer
to a query consists of the actual query results and a proof that such information

is indeed the actual content of the database. The verification of the proof can
be accomplished by using some public information that the database provided
before the query was issued. Such public information should not reveal anything
about the actual content of the database. In a CIA system we identify three
parties, the CertifiedDBOwner the User and the PubInfoStorage.

In a setup phase, the PubInfoStorage generates the public parameters
that will be used for the CIA service. The PubInfoStorage is assumed not to
collude with the CertifiedDBOwner.

The CertifiedDBOwner, based on public parameters and the content of
the database, produces the public information that is then sent to the PubIn-
foStorage. Whenever a User makes a query to the CertifiedDBOwner, he
obtains an object that contains the answer to the query and some information
that can be used, along with the information held by the PubInfoStorage, to
prove that the answer is indeed correct and that the CertifiedDBOwner has
not cheated.

Cryptographic background. A very simple type of Certified Information Access,
is the one in which the database consists of only one string, one-string CIA (or
1-CIA). The one-string CIA functionality has been studied in Cryptography
under the name of commitment and several implementations of this primitive
have been presented. Instead, the concept of a M1-CIA corresponds to a special
type of commitments called mercurial commitments introduced by [3] and later
studied by [2, 7].

1-CIA can be seen as a safe. The CertifiedDBOwner writes the string m
on a piece of paper, puts it in a safe and locks the safe. The safe can be sent
to a User that cannot open it (thus guaranteeing the hiding property). On the
other hand the User is guaranteed that the message in the safe cannot change
while it is in the safe (thus guaranteeing the binding property). Whenever the
CertifiedDBOwner chooses to, he can open the safe by sending the string m
and the key to open the safe. The User can then verify that the value he sees
is the same as the original message stored in the safe.

Using a commitment scheme, we can implement a 1-CIA as follows: the
CertifiedDBOwner, based on the actual value m of the string, produces
a commitment and a decommitment key. The commitment is sent to the Pu-
bInfoStorage. Whenever the CertifiedDBOwner chooses to, he opens the
commitment by releasing the the value of m and the decommitment key. The
User can verify that the opening has been correctly performed by checking the
open against the information held by the PubInfoStorage.

The M1-CIA functionality is an extension of the 1-CIA functionality with
an important extra property. In addition to the usual operation of opening a
commitment, M1-CIA also supports a partial open operation called tease. A
commitment com can be computed in two ways: it can be a hard commitment,
that is a commitment that can be opened and teased in only one way; or a soft
commitment that cannot be opened at all, but can be teased to any value.

The binding and hiding properties also hold for a M1-CIA. In addition, hard
commitments are indistinguishable from soft ones. In particular, this means that

it is computationally infeasible to distinguish whether a commitment com is a
soft or a hard one.

The mechanism is the same as the ones of the 1-CIA. The only difference is
that the CertifiedDBOwner can also produce soft commitment that can be
teased to any string m.

A M1-CIA scheme provides the following functions.

CertifiedDBOwner.

– Commit: computes, on input the string m and the public parameters, the
commitment com to be sent to PubInfoStorage and the decommitment
key dec to be used in the opening.

– SoftCommit: computes, on input the public parameters, a soft commitment
Scom along with a teasing key Sdec to be used for teasing Scom.
Notice that SoftCommit does not need a string m as Scom can be teased
to any value m.

– Tease: computes, on input the public parameters, a string m, a commitment
com (com could be a hard or a soft commitment) and a teasing key Sdec, the
teasing τ of Scom to string m.

User.

– VerifyOpen: Given the public parameters, verifies that message m and a
decommitment key dec, are consistent with a commitment com.

– VerifyTease: verifies, on input the public parameters, that a teasing τ of
a commitment com (it could be a soft commitment or a hard one) to a string
m has been correctly computed.

3 Primitives

In this section we show how we implement the M1-CIA functionality. Our im-
plementation is based on the hardness of the discrete logarithm in cyclic groups
and is based on [3].

3.1 Implementing M1-CIA via Mercurial Commitments

The Setup procedure (executed by the PubInfoStorage) consists in randomly
picking a random prime p and two generators g, h of the cyclic group Z?

p . All
operations are to be considered in the group Z?

p unless otherwise specified.
The Commit procedure (executed by the CertifiedDBOwner) takes as

input the string m and public parameters (p, g, h) and computes com and dec
as follows: randomly pick r0, r1 ∈ Z?

p−1 and set com = (gm · (hr1)r0 , hr1) and
dec = (r0, r1).

The VerifyOpen procedure (executed by the User) takes as input the
public parameters (p, g, h), a message m, a commitment com = (C0, C1) and

decommitment key dec = (r0, r1) and consists in checking that C0 = gm · Cr0
1

and C1 = hr1 .
The SoftCommit procedure (executed by the CertifiedDBOwner) takes

as input the public parameters (p, g, h) and computes Scom and Sdec as follows:
randomly pick r0, r1 ∈ Z?

p−1 and set Scom = (gr0 , gr1) and Sdec = (r0, r1).
The teasing τ of a hard commitment com = (gm · (hr1)r0 , hr1) of string m

with the decommitment key dec = (r0, r1) consists simply of τ = r0.
Instead the teasing τ of a soft commitment Scom = (gr0 , gr1) with teasing key

Sdec = (r0, r1) to string m is computed by setting τ = (r0−m)/r1 (mod p−1).
The VerifyTease procedure (executed by the User) takes as input public

parameters (p, g, h) and teasing τ of commitment (C0, C1) to string m consists
in checking that C0 = gm · Cτ

1 .
Correctness and security of this scheme have been shown in [3].

3.2 Distributing M1-CIA Computation

This paragraph describes a way of distributing the computations needed to create
and verify mercurial commitments while preserving the security of the M1-CIA
scheme.

Since the most time-consuming operation is the modular exponentiation,
we show a way of distributing such operation securely. The idea behind the
load distribution is to use the computational power of peers to execute modular
exponentiations. In this way the CertifiedDBOwner and the User are only
required to execute additions and multiplications.

Secure computation of exponentiations Crucial operations to be distributed
are modular exponentiations in which either the exponent or both the base and
the exponent are sensitive information. We assume that a service Mod Exp is
run a set of peers that the User and the CertifiedDBOwner may use for such
operations. Peers are assumed to be honest, i.e., compute correctly the modular
exponentiations they are required to, but curious, in the sense that they may
collect the information received in order to obtain information on the values
queried by the user or on the elements of the database.

Mod Exp: We assume that the peers can be identified by an ID in the set
{1, . . . , t}, for some integer t. This service is inkoved with input a base b, an
exponent r, the modulus p and the ID of the peer that will execute the task.
The peer with identity ID computes br mod p and sends back the result to the
player who required it. We assume secure point-to-point communication between
peers and the player who invokes their services.

Computation with secure exponent. We first analyze the case in which the expo-
nent is a secret information. Let k be an integer such that k−1 � t. We assume
that the maximum number of colluding peers is at most k−1. In this case, given
b and e, it is possible to compute be mod p keeping the exponent e private as
follows:

Procedure Secure Exp(b, e, p, k)

- randomly select k out of the t peers and let {ID1, . . . , IDk} be their identi-
ties.

- pick e1, . . . , ek−1 ∈R Zp−1

- ek = e− (e1 + . . . + ek−1) mod (p− 1).
- ri = Mod Exp(b, ei, p, IDi), for i = 1, . . . , k.
- r =

∏k
i=1 ri mod p

- output r

The correctness of the above procedure follows immediately from the fact
that ri = bei mod p and, thus, r = be1+...+ek = be mod p. Security follows from
the observation that the exponent e is shared among the k peers using a (k, k)-
threshold secret sharing scheme. Thus, the only way to reconstruct e is to collect
all the k shares.

Computation with secure base and exponent. Using a similar idea, it is possible
to compute be while keeping both the base b and the exponent e private. The
main difference is that, in this case, we need to properly share both the base and
the exponent and recombine the partial results.

Procedure Secure Base Exp(b, e, p, k2)

- randomly select k2 peers out of the t and let {ID1, . . . , IDk2} be their iden-
tifiers

- pick e1, . . . , ek−1 ∈R Zp−1

- pick b1, . . . , bk−1 ∈R Z?
p

- ek = e− (e1 + . . . + ek−1) mod (p− 1).
- bk = b/

∏k
i=1 bi mod p.

- ri,j = Mod Exp(bi, ej , p, IDi(j−1)+j−1), for i = 1, . . . , k and j = 1, . . . , k
- ri =

∏k
j=1 ri,j mod p

- r =
∏k

i=1 ri mod p
- output r

The correctness of the above procedure can be derived by observing that
ri = be

i mod p since Secure Base Exp implicitly contains an invocation of the
procedure Secure Exp with parameters bi and e. Furthermore, r = be

1 · . . . ·be
k =

(
∏k

i=1 bi)e = be mod p. The security of the procedure derives from the fact that
we use two independent (k, k)-threshold secret sharing schemes for sharing b and
e. Since each pair (bi, ej), for i, j ∈ {1, . . . , k}, is assigned to a different peer, the
only way to reconstruct the value of b (resp., the value of e) is to collect all the
values bi (resp., ei).

Distributing the commitment operations. Given the above procedures, we
can distribute the computation of commitments as follows:
Recall that, given the public parameters (p, g, h), a soft commitment consists of a
pair Scom = (gr0 , gr1) and Sdec = (r0, r1), where r0 and r1 are randomly chosen.

In this case, the values r0 and r1 need to be kept private since they are used for
the teasing of Scom. Thus, the SoftCommit procedure can be distributed as
follows:

Procedure SoftCommit(p, g, h, k)

- r0, r1 ∈R Zp

- y0 = Secure Exp(g, r0, p, k)
- y1 = Secure Exp(g, r1, p, k)
- output Scom = (y0, y1), and Sdec = (r0, r1).

The correctness of the above procedure follows immediately by inspection,
while its security follows from the fact that y0 and y1 are computed by indepen-
dent executions of the Secure Exp algorithm.
Let us now consider hard commitments. A hard commitment, given the public
parameters (p, g, h) and a message m, consists of a pair com = (gm · (hr1)r0 , hr1)
and dec = (r0, r1) where r0 and r1 are randomly chosen. In this case, clearly
the value m need to be private for guaranteeing the hiding property of the com-
mitment. The exponents r0 and r1 need to be private since they constitute the
decommitment key dec. Finally the value hr1 needs to be kept private since it
constitutes the second component of com. Indeed, if such value becomes public,
an attacker that eavesdrops a pair (x, hr1) knows, w.h.p. that such pair defines
a hard commitment, contradicting the indistinguishably of hard and soft com-
mitments. Thus, the Commit procedure can be distributed as follows:

Procedure Commit(p, g, h,m, k2)

- r0, r1 ∈R Zp.
- w = Secure Exp(g,m, p, k)
- y1 = Secure Exp(h, r1, p, k)
- y0 = Secure Base Exp(y1, r0, p, k2)
- set com = (wy0, y1) and dec = (r0, r1)

The correctness of the above algorithm can be verified by inspection while, as
before, its security follows from the independence of the computations for w, y1

and y0.

Distributing the verification. We can now show the distribution of load
on the User side. Notice that, the same observations above also apply to the
verification procedures described below.

Procedure VerifyOpen(p, g, h, (C0, C1), (r0, r1),m, k2)

- c1 = Secure Exp(h, r1, p, k)
- g = Secure Exp(g,m, p, k)
- c2 = Secure Base Exp(c1, r0, p, k2)
- if C1 = c1 and C0 = g · c2 output “Verified” else output “Failure”.

Procedure VerifyTease(p, g, h, (C0, C1), τ, m, k2)

- c1 = Secure Base Exp(C1, τ, p, k2)
- g = Secure Exp(g,m, p, k)
- if C0 = g · c1 output “Verified” else output “Failure”.

4 Certified Information Access via M1-CIA

In this section we describe how to implement the CIA functionality based on M1-
CIA. This description resembles the one in [3]. We consider a simple database
D associating to a key x a value D(x) = v. Let us assume that all keys have
the same length `. A reasonable choice is ` = 128 since on one hand it allows
to have a large key space and, at the same time, it is possible to use hash
functions for reducing the key size to this small value while preserving collision
freeness. The database D can thus be represented by a height-` binary tree where
leaf numbered x contains the value v = D(x). If no value is associated by the
database to key x, the leaf numbered x contains the special value ⊥.

The CertifiedDBOwner constructs a binary tree that can be described as
follows: Leaves of the tree contain the commitment of elements of the database.
Each internal node of the tree contains the commitment to the contents of its
two children. The commitment to the root of such a tree constitutes the public
information that is sent to the PubInfoStorage.

To respond to a query about x, the CertifiedDBOwner simply decommits
the corresponding leaf and provides the authenticating path (along with all the
decommitments) to the root. The problem with this approach is that it requires
time exponential in the height of the tree: if we choose ` = 128, then 2128

commitments need to be computed.
This is where M1-CIA helps. Observe that the exponential-size tree has large

empty subtrees (that is, subtrees where each leaf is a commitment to ⊥). Instead
of actually computing such a subtree ahead of time, the CertifiedDBOwner
forms the root of this subtree as a soft commitment and does not do anything for
the rest of the tree. Thus the size of the tree is reduced to at most 2`|D|, where
|D| represents the number of element in the database. Responding to a query
about x such that D(x) 6=⊥ is still done in the same way. If instead D(x) =⊥,
the CertifiedDBOwner teases the path from the root to x. More precisely, the
path from the root to x will consists of hard commitments until the root R of the
empty subtree containing x is encountered. All hard commitments from the root
of the tree to R are teased to their real values (recall that hard commitments can
be teased only to their real value). Then, the CertifiedDBOwner generates
a path of soft commitments from R to (the leaf with number) x ending with
the commitment of ⊥. Each soft commitment corresponding to a node along the
path is teased to the soft commitments corresponding to its two children. The
User simply needs to verify that each teasing has been correctly computed. We
stress that for positive queries (that is, queries for x such that D(x) 6=⊥) the
User expects to see opening of hard commitments whereas for negative queries
(that is, queries for x such that D(x) =⊥) the User expects to see teasing
of commitments; some of them will be hard commitments and some will be

soft commitments but the user cannot say which ones are which. Due to space
limitations, we describe the above procedures in details in Appendix A.

5 The Architectural Design Principles.

In this section we briefly describe the architectural design for a system im-
plementing the primitives described above. We identify four different entities,
CertifiedDBOwner, User and PubInfoStorage and Peer.

The applications cooperate as follow. At startup, the PubInfoStorage gen-
erates the public parameters that will be used for the M1-CIA implementations.
Since public parameters are used both for generating the public information and
verifying all the answers to queries, such generation is carried out once, and the
parameters are stored in a file.

At this point the CertifiedDBOwner generates the public information
with the help of the Peer applications that is run on a set of peers. The pub-
lic information is sent and stored by the PubInfoStorage. When the User
queries the CertifiedDBOwner, he obtains a reply that is verified against the
public information held by the PubInfoStorage. We assume point-to-point se-
cure communication among CertifiedDBOwner, User and PubInfoStor-
age. Furthermore, the communication between any peer and an entity invoking
its service is also secured.

In our experience, the most time-consuming operation is the creation of the
public information executed by the CertifiedDBOwner. Notice that the dis-
tribution of load clearly helps in reducing the time required for such operation
if the number t of available peers is bigger than k2, where k is the security
threshold.

A possible way of further reducing the computation time by using pre-
computation. We observe that a soft commitment is composed by a pair (gr0 , gr1)
where both r0 and r1 are random values. Furthermore, a hard commitment is a
pair whose second component is hr where, again, r is a random value. Clearly it is
immaterial whether or not the value r is chosen by the peer. What it does matter
is that the CertifiedDBOwner, given the information obtained by the peers,
is able to compute some pair (r′, gr′

) (resp., (r′, hr′
)) where both components

are private.
We can thus introduce a new service, the Batch Mod Exp that, given the

public parameter held by the PubInfoStorage, computes and stores two lists
of pairs, (r, gr) and (r′, hr′

). Whenever the CertifiedDBOwner needs to com-
pute a soft (resp., hard) commitment, it may simply invoke the Batch Mod Exp
service that will return the first pair (r, gr) (resp., (r, hr)) and remove it from
the list.

The pre-computation technique just described can be extremely useful in
the case in which the public information associated to the database need to
be recomputed frequently. As stated in the introduction, there are no currently
available efficient solution for implementing a CIA service in case the database
is dynamic. Consider, for example, the case in which the database needs to

be modified, say, once per day. The only way of guaranteeing the security of
the service is to recompute the public information each time. In this case the
company where the CertifiedDBOwner is running, may set up peers on its
computers so that they pre-compute the information when they are not used,
e.g., at night.

6 Conclusions

In this paper we have presented a distributed architecture for a Certified Informa-
tion Access system. We have shown that it is possible to securely distribute the
load of the most time-consuming operations among a set of untrusted peers. Fur-
thermore, we have presented a solution that allows the usage of pre-computation
in order to reduce the time needed by the CertifiedDBOwner for generating
the public information.

References

1. Dan Boneh, Giovanni Di Crescenzo, Rafail Ostrovsky, and Giuseppe Persiano. Pub-
lic key encryption with keyword search. In Christian Cachin and Jan Camenisch,
editors, International Conference on the Theory and Applications of Cryptographic
Techniques (EUROCRYPT 2004), volume 3027 of Lecture Notes in Computer Sci-
ence, pages 506–522. Springer, 2004.

2. Dario Catalano, Yevgeniy Dodis, and Ivan Visconti. Mercurial commitments: Mini-
mal assumptions and efficient constructions. In Shai Halevi and Tal Rabin, editors,
Third Theory of Cryptography Conference (TCC 2006), volume 3876 of Lecture
Notes in Computer Science, pages 120–144. Springer, 2006.

3. Melissa Chase, Alexander Healy, Anna Lysyanskaya, Tal Malkin, and Leonid
Reyzin. Mercurial commitments with applications to Zero-Knowledge sets. In
Ronald Cramer, editor, 24th Annual International Conference on the Theory and
Applications of Cryptographic Techniques (EUROCRYPT 2005), volume 3494 of
Lecture Notes in Computer Science, pages 422–439. Springer, 2005.

4. Benny Chor, Niv Gilboa, and Moni Naor. Private information retrieval by key-
words. In TR-CS0917, Department of Computer Science, Technion,, 1997.

5. Yael Gertner, Yuval Ishai, Eyal Kushilevitz, and Tal Malkin. Protecting data
privacy in private information retrieval schemes. J. Comput. Syst. Sci., 60(3):592–
629, 2000.

6. Eyal Kushilevitz and Rafail Ostrovsky. Replication is not needed: Single database,
computationally-private information retrieval. In 38th Symposium on Foundations
of Computer Science (FOCS 1997), pages 364–373. IEEE Computer Society, 1997.

7. Moses Liskov. Updatable zero-knowledge databases. In Bimal K. Roy, editor, 11th
International Conference on the Theory and Application of Cryptology and Infor-
mation Security (ASIACRYPT 2005), volume 3788 of Lecture Notes in Computer
Science, pages 174–198. Springer, 2005.

8. Silvio Micali, Michael O. Rabin, and Joe Kilian. Zero-knowledge sets. In 44th
Symposium on Foundations of Computer Science (FOCS 2003), pages 80–91. IEEE
Computer Society, 2003.

9. Sanjeev Kumar Mishra and Palash Sarkar. Symmetrically private information re-
trieval. In Bimal K. Roy and Eiji Okamoto, editors, First International Conference
in Cryptology in India (Indocrypt 2000), volume 1977 of Lecture Notes in Computer
Science, pages 225–236. Springer, 2000.

10. Wakaha Ogata and Kaoru Kurosawa. Oblivious keyword search. Journal of Com-
plexity, 20(2-3):356–371, 2004.

11. Dawn Xiaodong Song, David Wagner, and Adrian Perrig. Practical techniques for
searches on encrypted data. In IEEE Symposium on Security and Privacy, pages
44–55, 2000.

A Certified Information Access via M1-CIA

In this appendix we describe in more details the generation of the tree of com-
mitments, the construction of a answer by the CertifiedDBOwner and the
verification procedure executed by the User.

Generation of Public Information. To generate the public information represent-
ing the database D, the CertifiedDBOwner proceeds as follows. We stress,
that even though not explicitly specified, all calls to Commit and SoftCommit
take as input also the public parameter generated by the PubInfoStorage
during the SETUP.

The construction of the tree of commitments starts from its leaves. More
precisely, for each x such that D(x) 6=⊥, the CertifiedDBOwner produces
(Cx, Dx) = Commit(D(x)). Then for each x such that D(x) =⊥ but D(x′) 6=⊥
(where x′ is x with the last bit flipped), the CertifiedDBOwner produces
(Cx, Dx) = SoftCommit. For all the others x, Cx = ∅. Now the tree is con-
structed in a bottom-up fashion as follows: for each level i = `− 1, · · · , 0 and for
each string s of length i, define Cs as follows:

1. If Cs0 6= ∅ and Cs1 6= ∅, the let (Cs, Ds) = Commit((Cs0, Cs1)).
2. For all s such that Cs′ has been defined in the previous step (s′ is s with the

last bit flipped) but Cs has not, define (Cs, Ds) = SoftCommit.
3. For all other s, define Cs = ∅.

The value at the root Cε is the public information. If we have Cε = ∅ we set
(Cε, Dε) = SoftCommit.

Answer to a query. This method constructs an object that contains the answer
to the query and a proof of validity composed by the decommitments of the
corresponding leaf along with the authenticating path (together with all the
decommitments) to the root.

More specifically, we distinguish between the case in which the query x is
such that D(x) 6=⊥ and D(x) =⊥. For a string x we denote by x|i the first i bits
of x and by (x|i)′ the first i− 1 bits of x followed by the i-th bit of x flipped.

If D(x) 6=⊥, the authenticating path is computed by sending D(x), the cor-
responding decommitment key Dx and, for 0 ≤ i ≤ `−1, the values (Cx|i0, Cx|i1)
along with the decommitment key Dx|i .

Suppose instead that D(x) =⊥ and let h be largest value such that Cx|h 6=
∅, set (Cx, Dx) = Commit(⊥), and build a path from x to Cx|h as follows:
set (Cx′ , Dx′) = SoftCommit; for each level i from ` − 1 to h + 1, define
(Cx|i , Dx|i) = Commit(Cx|i0, Cx|i1), and (C(x|i)′ , D(x|i)′) = SoftCommit. Note
that the only values inside the tree redefined by the above procedure are those
that were not defined before.

Let τx = Tease(D(x), Cx, Dx) and τx|i = Tease((Cx|i0, Cx|i1), Cx|i , Dx|i)
for 0 ≤ i < `. The response to the query consists of ⊥ along with its validation
path: (Cx|i , C(x|i)′) for 1 ≤ i ≤ ` and τx|i for 0 ≤ i ≤ `.

Verification of an Answer. To verify the certified answer, for a query to a key x
such that D(x) 6=⊥, User executes the VerifyOpen method on all the decom-
mitments received, from the bottom up to the root. The last verification is made
against the database commitment that he has previously retrieved from the Pu-
bInfoStorage. In case the key that has been queried is not in the database,
then the User has to execute VerifyTease instead of VerifyOpen.

Hashing the values. In the discussion above, we have in several points con-
structed a hard commitment of two hard commitments. This will make the size
of the commitment roughly double at each level. Instead we assume that instead
of committing to a string (or to a pair of strings) we commit to its hash value
computed using a collision-resistant hash function H which hashes down a string
to a fixed length `. Notice, again, that ` = 128 is a good choice. Similarly, we
can have a database with keys of different length if, instead of storing the pair
(x, v) we store the pair (H(x), v).

