
Securing the Distribution and Storage of Secrets
with Trusted Platform Modules?

Paul E. Sevinç1, Mario Strasser2, and David Basin1

1 Department of Computer Science, ETH Zurich, 8092 Zurich, Switzerland
{paul.sevinc, basin}@inf.ethz.ch

2 Department of Information Technology and Electrical Engineering, ETH Zurich,
8092 Zurich, Switzerland
strasser@tik.ee.ethz.ch

Abstract. We present a protocol that allows servers to securely dis-
tribute secrets to trusted platforms. The protocol maintains the confi-
dentiality of secrets in the face of eavesdroppers and careless users. Given
an ideal (tamper-proof) trusted platform, the protocol can even with-
stand attacks by dishonest users. As an example of its use, we present
an application to secure document processing.

1 Introduction

Trusted computing is about embedding a trusted computing base (TCB) [1]
in a computing platform that allows a third party to determine the trust-
worthiness of the platform, i.e., whether or not the platform is a trusted
platform from the point of view of a third party. The Trusted Computing
Group (TCG), an industry standards organization, has specified a TCB
for trusted computing in the form of three so-called roots of trust [2]:
the root of trust for storage (RTS), the root of trust for reporting (RTR),
and the root of trust for measurement (RTM). In particular, the TCG has
specified a Trusted Platform Module (TPM) [3] that can act as both roots
of trust for storage and measurement.3 These specifications are clearly
gaining momentum as witnessed by large-scale R&D projects such as
EMSCB and OpenTC 4, open-source projects such as TPM Emulator [6]
and TrouSerS 5, the inclusion of TPM services in Windows Vista [7], and

? This work was partially supported by the Zurich Information Security Center. It
represents the views of the authors.

3 There seems to be consensus in the information-security community that TCBs for
trusted computing must be hardware-based, but tamper-proof hardware remains an
open challenge [4, 5].

4 http://www.emscb.de/ and http://www.opentc.net/.
5 http://tpm-emulator.berlios.de/ and http://trousers.sourceforge.net/.



the increasing number of personal computers with a TPM and a basic in-
put/output system (BIOS) that can act as the RTM [8]. In the remainder
of this paper, we understand “trusted computing” to mean trusted com-
puting as specified by the TCG and focus on personal computers without
limiting the paper’s generality.

Contribution. Our contribution in this paper is a protocol for securely
distributing and storing secrets with TPMs. We specify the protocol in
detail at the level of TPM commands and we informally analyze its se-
curity. The protocol is general in the sense that it is independent of a
specific usage-control application. To illustrate how the protocol can be
directly applied to nontrivial problems in usage control, we describe an
application from the domain of secure document processing. In our spec-
ification, we treat the TPM as a trusted third party that can serve as an
oracle for making platform measurements; this not only results in a clear
specification, but this analogy for ideal roots of trust could also serve as
the basis for a formal model of trusted computing in the future.

Organization. In Section 2, we provide a summary of those aspects of
trusted computing that are of relevance to this paper. In Section 3, we
discuss related work. In Section 4, we describe the problem that we solve
with our protocol. We define the protocol and analyze its security in Sec-
tions 5 and 6, respectively. In Section 7, we draw conclusions. A concrete,
realistic application scenario is presented in Appendix A.

2 Background

In this section, we summarize the TCG’s definitions for root of trust for
measurement, reporting, and storage. For a comprehensive description,
the reader is referred to the TCG architecture overview [2] and to text-
books on trusted computing [9–11].

2.1 Root of Trust for Measurement

When a computer is booted, control passes between different subsystems.
First the BIOS is given control of the computer, followed by the boot
loader, the operating system loader, and finally the operating system. In
an authenticated boot, the BIOS measures (i.e., cryptographically hashes)
the boot loader prior to handing over control. The boot loader measures
the operating system loader, and the operating system loader measures
the operating system. These measurements reflect what software stack



is in control of the computer at the end of the boot sequence; in other
words, they reflect the platform configuration. Hence the name platform
configuration register (PCR) for the TPM registers where such measure-
ments are stored and which are initialized at startup and extended at
every step of the boot sequence.

An attacker who wants to change the platform configuration without
being detected has to corrupt the root of trust for measurement (in the
BIOS), which we assume to be infeasible without physical access to the
computer. Ideally, a tamper-proof piece of hardware will eventually act as
the root of trust for measurement and measure the BIOS at the beginning
of the boot sequence.

2.2 Root of Trust for Reporting

Each TPM has an endorsement key (EK) which is a signing key whose
public key is certified by a trusted third party, such as the TPM manufac-
turer. For privacy reasons, the EK is only used to obtain a key certificate
from a certificate authority (CA) for an attestation identity key (AIK),
which the TPM generates itself. In order to alleviate even the strongest
privacy concerns, direct anonymous attestation (DAA) [12, 13] is the pro-
tocol of choice for certifying AIKs. AIKs are signing keys whose private
key is only used for signing data that has originated in the TPM. For
example, a remote party interested in learning what software stack is in
control of the computer can query the TPM for PCR values. The query
contains the set of PCRs to look up and a nonce (in order for the remote
party to check for replay attacks). The TPM answers with the respective
PCR values and the signature generated by signing the values as well as
the nonce with one of its AIKs. Put differently, the TPM attests to, or
reports on, the platform configuration.

2.3 Root of Trust for Storage

The protected storage feature of a TPM allows for the secure storage of
sensitive objects such as TPM keys and confidential data. However, stor-
age and cost constraints require that only the necessary (i.e., currently
used) objects can reside inside a TPM; the remaining objects must be
stored outside in unprotected memory and are revealed to the user or
loaded into the TPM on demand. To this end, externally stored objects
are encrypted (or wrapped in TCG terminology) with an asymmetric stor-
age key, which is referred to as the parent key of the object. A parent
key can again be stored outside the TPM and (possibly along with other



keys) protected by another storage key. The thereby induced storage tree
is rooted at the so called storage root key (SRK), which is created upon
initialization of the TPM and cannot be unloaded. Consequently, a par-
ent key has to be loaded into the TPM before the data it protects can
be revealed or a key decrypted (or unwrapped in TCG terminology) and
loaded into the TPM. Note that protected keys are only used inside the
TPM and thus (in contrast to arbitrary data) are never disclosed to the
user. Furthermore, each key is either marked as being migrateable or non-
migrateable. In the former case, the key might be replicated and moved
to other platforms whereas in the latter case the key is bound to an indi-
vidual TPM and is never duplicated. Regarding the actual protection of
objects, one differentiates between binding and sealing.

Binding is the operation of encrypting an object with the public key of
a binding key. Binding keys are encryption keys. If the binding key is
non-migratable, only the TPM that created the key can use its private
key; hence, the encrypted object is effectively bound to a particular
TPM.

Sealing takes binding one step further: the object is not only bound
to a particular TPM, but in addition can only be decrypted if the
current platform configuration matches the values associated with the
protected object at the time of encryption.

It must be assumed that an attacker with physical access to the com-
puter can get access to the private keys stored in the TPM. Current
TPMs are designed to protect against software attacks, but not against
hardware attacks (they are tamper-resistant at best) [10, 11].

3 Related Work

Conceptually, properly measuring the software stack of a computer when
the computer is booted (1), remotely attesting to a measurement and
securely distributing secrets (2), and performing usage control on a com-
puter once it has been deemed trustworthy and entrusted with the neces-
sary secrets (3) are three straightforward tasks. As is often the case, the
real complexity lies in the details.

Unlike the first task (e.g., [14–16]) and the third task (e.g., [17–20]),
the second task has, until now, not been addressed in detail. Although
protocols have been developed, those published are in the form of pro-
gramming language-dependent and TPM library-dependent source code,
without any security analysis. This may be the case because it is a decep-
tively simple task, which bears similarity with SSL/TLS. However, while



the basic principles of SSL/TLS are fairly easy to understand, its details
are quite intricate and the situation is similar here.

So far, the protocols for achieving the second task have been sketched
at a very high level (similar to our summary in Figure 5 in Appendix A);
for example in the form of the integrity-reporting protocol given in the
TCG architecture overview [2, p. 9] and in the form of the two approaches
for enhancing the protection of data on remote computers given by Pear-
son et al. [9, pp. 47-48]. This specification gap is filled in this paper.

4 Requirements

Consider the setting depicted in Figure 1: A server has secret data ds

that it is willing to share with certain clients over an open channel (i.e.,
one that is not encrypted in any way) upon request, but not with the
clients’ users. In practice (cf. the example given in Appendix A), the
secret ds may be a symmetric key KD or the private key K−1

D of an
asymmetric key pair (KD,K−1

D ). The owner of the secret ds does not trust
the users because they may not understand or respect the owner’s security
requirements or because they may have an untrustworthy platform, such
as one compromised by a Trojan horse. In any case, the server is willing
to share the secret ds with clients who are known to meet the owner’s
security requirements. Because the main security goal of our protocol is
confidentiality of the secret ds, this entails that the client uses the secret
ds without disclosing it to the user or to any other entity. Furthermore,
the client must either hinder the user from launching another process
or at least force a change in the PCRs. Otherwise, the other (potentially
malicious) process could simply request the TPM to disclose the secret ds.
It is in the server’s interest to ensure that this security goal is met. Thus,
the protocol needs to be resilient against man-in-the-middle attacks and,
given an ideal (tamper-proof) trusted platform, against dishonest users
as well (cf. Figure 2).

5 Protocol

In this section, we present a protocol that ensures that the server only
distributes given secret data ds to trusted clients (i.e., clients that meet
the data owner’s security requirements, as explained in the last section).
The protocol involves three parties: the server, a client, and the client’s
TPM. Considering the TPM to be a participant in its own right may
come as a surprise, but the following model should clarify this point.



open

open

client G

client B

server S

user G

user B

owner S

Fig. 1. Setting

open

open

man in the 
middle

dishonest 
user

Fig. 2. Attackers

Ideal roots of trust can be modeled as trusted third parties (cf. Fig-
ure 3) with certain oracle properties related to measurement. In particu-
lar, for each client there is a third party whom both the server and the
client trust. Furthermore, the channel between the client and the trusted
third party is secure (i.e., confidential and authentic). Not even the user
can intercept or insert messages on this channel. There is no (direct)
channel between the server and the trusted third party, though. Never-
theless, the server can encrypt data with the trusted third party’s public
encryption key along with information about a platform configuration.
The trusted third party has the ability to determine the platform config-
uration of the client and decrypts data for the client only if the client’s
platform configuration is the one given when the data was encrypted.

In this model, our protocol basically proceeds as follows:

1. The client requests the secret ds from the server.

2. The server encrypts ds with the trusted third party’s public key along
with information about the platform configuration it trusts and sends
the encrypted data to the client.

3. The client sends the encrypted data to the trusted third party and
requests the trusted third party to decrypt the data for it.



authentic
confidential

authentic
confidential

open

open

TTP G

TTP B

client G

client B

user G

user B

Fig. 3. Trusted Third Parties (TTPs) as a Model for Ideal Roots of Trust

4. The trusted third party determines the client’s current platform con-
figuration and reveals the decrypted data to the client only if the
client’s platform configuration is the one given when the data was
encrypted.

Note that the first two steps only have to be taken once whereas the last
two steps may be taken repeatedly.

The real protocol is more complex. In particular, it involves the gen-
eration of a platform configuration-dependent binding key and the use of
an AIK. Even though privacy is not an issue for the kinds of application
we originally had in mind, employing an AIK has the pleasant side effect
of extending our protocol’s usefulness to settings where privacy matters.
For example, the secret data ds could be the license key for a media player
that manages digital rights. By using different AIKs when requesting li-
cense keys, the requests cannot be linked to the same client.

5.1 TPM Commands

We briefly introduce the TPM commands required in our protocol. For the
sake of simplicity, we omit input values such as command-authorization
data and key parameters as well as output values such as error codes. For
a comprehensive description of the commands, the reader is referred to
the TPM main specification [3] and to Pearson et al. [9].

TPM CreateWrapKey generates an asymmetric key and returns the public key in
plain text and the private key encrypted with the key pair’s parent key. The input
values of interest to us are a key handle that points to the generated key’s parent
key, the flag which declares the key as a binding or signing key, the flag which



declares the key as migratable or non-migratable, and the (potentially empty)
set of PCRs to whose values the key is sealed. Note that for the key to be non-
migratable, the parent key must be non-migratable as well.

In our protocol, we use this command on the client to generate a non-migratable
binding key that is sealed to a (non-empty) set of PCRs.

TPM LoadKey2 loads an asymmetric key onto the TPM and returns the key handle
that points to the loaded key, thus making the key available for use in subsequent
TPM commands. The input values of interest to us are the public key, the encrypted
private key, and a key handle that points to the loaded key’s parent key. A non-
migratable key will only be loaded onto the TPM if it was generated by the TPM.

In our protocol, we use this command on the client to load the binding key gener-
ated with TPM CreateWrapKey onto the client TPM.

TPM CertifyKey returns a key certificate. The input values of interest to us are a
key handle that points to the key to certify and a key handle that points to the
certifying signing key.

In our protocol, we use this command on the client to certify with an AIK that
the binding key generated with TPM CreateWrapKey and loaded with TPM -
LoadKey2 is a non-migratable binding key that is sealed to a set of PCRs.

TSS Bind encrypts data and returns it in cipher text. The input values of interest
to us are the data to encrypt and the public key used for encryption. Note that
it is the responsibility of the caller to ensure that the encryption key is a non-
migratable binding key. Note further that the TSS Bind command is not a TPM
command, but fully implemented in software.

In our protocol, we use this command on the server to encrypt a secret with the
public key of the binding key generated with TPM CreateWrapKey and certified
with TPM CertifyKey.

TPM UnBind decrypts data and returns it in plain text. The input values of interest
to us are the data to decrypt and a key handle that points to the binding key (whose
private key is used for decryption). A sealed binding key will only be used by the
TPM if the values in the PCRs match those specified during sealing.

In our protocol, we use this command on the client to decrypt the secret encrypted
with TSS Bind with the private key of the binding key generated with TPM -
CreateWrapKey and loaded with TPM LoadKey2.

5.2 Notation

We employ so-called “Alice & Bob” notation, which leaves implicit many
of the checks carried out by principals when executing the protocol and
the associated control flow when these checks fail, e.g., aborting when
the verification of a digital signature fails [21]. Nevertheless, we have
annotated our protocol specification, making explicit the checks of TPM-
specific key properties and platform configuration information, using an
assert statement. The semantics of assert is standard: it aborts the pro-
tocol execution when the asserted predicate does not hold. Furthermore,
we employ the following notation:



– REQ is a constant, requesting the secret data ds.

– PCR INFO is a set of PCR indices and their respective values.

– KX is a key pair with public key KX and private key K−1
X .

– HX is the handle to the key KX .

– aik, binding, and non-migratable are flags that denote properties of a
key, namely that the key is an AIK, a binding key, and non-migratable,
respectively.

– EncP (binding,non-migratable, PCR INFO, K−1
C ) is the private key

K−1
C of the non-migratable binding key KC sealed to PCR INFO,

encrypted with the (non-migratable) parent key KP .

– SigAIK(binding,non-migratable, PCR INFO, N, KC) is the certificate
of the public key KC of the non-migratable binding key KC sealed to
PCR INFO, signed with the private key K−1

AIK of the signing key
KAIK .

– SigCA(aik, KAIK) is the certificate of the public key KAIK of the
attestation identity key KAIK , signed with the private key K−1

CA of
the signing key KCA.

5.3 Initial Possessions of Parties

The server knows

– the secret data ds,
– the public key KCA of the certificate authority’s signing key, and
– the PCRs and their values for the trusted stack.

The client knows

– the handle HP to (and authorization data for) a non-migratable stor-
age key KP ,

– the handle HAI to (and authorization data for) an AIK, and
– the certificate SigCA(aik, KAIK) for verification of the AIK by a third

party, in our case the server.

In a protocol run, the AIK allows the client to prove to the server that
the latter is indirectly interacting with a TPM.
The TPM knows (i.e., has loaded)

– the private key K−1
P of the non-migratable storage key KP and

– the private key K−1
AI of the AIK.



Table 1. Key Distribution Protocol

1 C −→ S REQ

2 C ←− S PCR INFO, N

3 TPM ←− C TPM CreateWrapKey(HP , binding,non-migratable, PCR INFO)

4 TPM assert KP is non-migratable

generate non-migratable binding key (KC , K−1
C )

5 TPM −→ C KC , EncP (binding,non-migratable, PCR INFO, K−1
C )

6 TPM ←− C TPM LoadKey2(KC ,

EncP (binding,non-migratable, PCR INFO, K−1
C ), HP )

7 TPM −→ C HC

8 TPM ←− C TPM CertifyKey(HC , HAIK , N)

9 TPM −→ C SigAIK(binding,non-migratable, PCR INFO, N, KC)

10 C −→ S SigAIK(binding,non-migratable, PCR INFO, N, KC),

SigCA(aik, KAIK)

11 S assert KAIK is aik

assert KC is binding

assert KC is sealed to PCR INFO

12 C ←− S EncC(ds)

13 TPM ←− C TPM UnBind(EncC(ds), HC)

14 TPM assert C is in state PCR INFO

15 TPM −→ C ds

Protocol Run The protocol is specified in Table 1. The client initiates
a protocol run by requesting the secret data ds from the server (1). The
server replies with the set of PCRs that have to be used to represent the
(trusted) state of the client and a nonce N which identifies the protocol
run (2). Note that the nonce does not provide additional security since
replay attacks are not an issue.6 The client invokes the TPM CreateWrap-
Key command (3) to have the TPM create a non-migratable asymmetric
encryption key KC := (KC ,K−1

C ) (4) that is sealed to the PCRs specified
in step 2 (5). The client loads the key into the TPM by invoking TPM -
LoadKey2 (6), receives the key handle from the TPM (7), and has the
TPM certify the loaded key with the AIK (8). The TPM returns the

6 The reason is that it is not important when the binding key has been generated and
certified, but what its properties are. Because the binding key is non-migratable,
these properties (in particular, which TPM it is associated with) never change. So
even though the TPM CertifyKey command is specified to take a nonce as argu-
ment, the nonce could be replaced with something predictable (and more efficiently
implemented) like a counter in our protocol.



certificate (9), which the client forwards to the server together with the
certificate of the AIK (10). The server checks that the certificates are valid
(11), in particular that KC is a non-migratable binding key sealed to the
required PCRs. If the key KC has the required properties, the secret ds

is bound to it and the resulting protected object returned to the client
(12). Upon receipt of the protected object, the client invokes TPM UnBind
to have the TPM decrypt the secret ds (13). The TPM checks that the
client is in the trusted state (14) before using KC and returning the secret
ds (14).

Note that there is no need for (and no additional security in) explicitly
sealing the secret ds since the private key K−1

C of the binding key KC is
sealed to the required PCRs itself. From now on, whenever the client is
in the trusted state (i.e., the PCR values match the required ones) it can
have the TPM unbind the secret ds for its intended use.

6 Security Analysis

6.1 Security against Man-in-the-Middle Attacks

Since the communication channel between the client and the server is
open, a man in the middle sees the following four messages exchanged in
steps 1, 2, 10, and 12:

1. REQ,
2. PCR INFO, N ,
3. SigAIK(binding,non-migratable, PCR INFO, N, KC),

SigCA(aik, KAIK), and
4. EncC(ds)

Obviously, the first three messages are independent of the secret data
ds, and hence they provide no information about it, even in a strict
information-theoretic sense. The fourth message is encrypted with the
public key KC , where the corresponding private key K−1

C is unknown to
the man in the middle. Hence, the man in the middle can only decrypt
the fourth message by breaking the cryptographic system, which we as-
sume to be infeasible, or by deriving the private key K−1

C from the first
three messages. However, the first two messages are also completely in-
dependent of the encryption key KC and deriving a private key from the
corresponding public key in the third message amounts to breaking the
cryptographic system. Thus, the protocol is also secure against a passive
man-in-the-middle attack.



An active man in the middle could try to replace the third message
he sees by SigMS [enc, nm, PCR INFO, N ](KME), SigCA[sig](KMS)—
KMS is his signing key and KME is his encryption key—in order to fool
the server into binding the secret ds to KME (EncME(ds)). However, this
requires forging the CA’s signature, which again amounts to breaking the
cryptographic system. Thus, the protocol is also secure against an active
man-in-the-middle attack.

6.2 Ideal Trusted Platform: Security against Dishonest Users

Because the server verifies the two certificates exchanged in a protocol
run, in particular that KC is non-migratable and sealed to the PCRs
specified by PCR INFO, and because it binds the secret data ds to KC ,
the client must execute step 13 of the protocol as the honest client (i.e.,
using a trusted software stack). Afterwards, a dishonest user could put
the client into a dishonest state (by launching another process if at all per-
mitted or rebooting another stack) which results in different PCR values
and in the TPM not unbinding the secret ds. Alternatively, a dishonest
user could mount a hardware attack in order to read the secret ds out
of the TPM, which we assume to be infeasible given an ideal (tamper-
proof) trusted platform. Thus, an ideal (tamper-proof) trusted platform
not only provides security against man-in-the-middle attacks but also
against attacks by dishonest clients.

7 Conclusion

We have presented in detail a protocol at the level of TPM commands
that allows servers to securely distribute secrets to trusted platforms. The
protocol maintains the confidentiality of secrets in the face of eavesdrop-
pers and careless users. Given an ideal (tamper-proof) trusted platform,
the protocol maintains the confidentiality of secrets even in the face of
dishonest users.

We have provided an informal analysis of the security of the protocol.
A formal analysis of our protocol and other TPM-based protocols would
require developing formal models for TPM-specific concepts such as bind-
ing and sealing. This is an interesting topic for future work that could be
based on groundwork laid by Lin [22].



Acknowledgments

We would like to thank Michael Näf for his feedback on this paper and
Thomas Zweifel for his previous collaboration on this topic. We also thank
the artists who contribute to the Open Clip Art Library.

A Application: Document Security

We apply our protocol in situations where access to documents of an
enterprise must be controlled on computers that are not owned and ad-
ministrated by the enterprise. For example, members of the enterprise’s
board of directors may be more inclined to read documents on a com-
puter they already have, such as their home computer, than to be issued
a computer from every enterprise on whose board of directors they sit.7

Such a situation is depicted in Figure 4. The main entities are a user,
the user’s computer (which the user owns and administrates), and a doc-
ument whose content is confidential. Access to the document is governed
by its access policy. The document content and the document policy are
paired. The document’s content is encrypted and the document as a whole
signed such that the user can neither directly access the content compo-
nent (because he does not know the decryption key) nor alter the policy
in his favor (because he does not know the signing key). Instead, the
user has to access the document via a document processor on an operat-
ing system that the document owner trusts to enforce the policy and to
maintain confidentiality.

Within the document processor, the policy enforcement point (PEP) is
responsible for enforcing the policy based on access decisions made by the
policy decision point (PDP). Upon opening a document, the document
processor has to verify the document’s authenticity (which implies its
integrity) and decrypt the content. The decryption key is sealed to the
trusted software stack (document processor and operating system) such
that it can be used off-line but not accessed with another software stack
in control. Note that the user cannot replace the verification key without
changing (the hash of) the stack.

We achieve this situation in three main steps (cf. Figure 5):
7 Recall the case of former CIA Director John Deutch who accessed classified material

on his unsecured home computer. The problem was not that he was not trusted (as
the CIA director, he certainly was), but his software might have been untrustworthy.
Had the classified material been encrypted with a key known not even to him, he
could have been forced to boot his home computer into a trusted state, and the
story would never have made the news.



Hardware

decryption key
TPM

OS

signature that cryptographically 
ties the content to the policy

verification key

Content component
encrypted

Policy component

Document 
Processor

PEP

PDP

reads/writes

accesses

reads

Document (pair)

reads/writes

Fig. 4. Key Use

1. authenticate TPM & stack

Hardware

TPM

OS
verification key

2. bind decryption key to TPM

Document 
Processor

PEP

PDP

3.
 s

ea
l d

ec
ry

pt
io

n 
ke

y 
to

st
ac

k 
fo

r o
ff-

lin
e 

us
e

Fig. 5. Key Distribution



1. The document owner’s server checks whether the trusted stack is in
control of the user’s computer (steps 1–11 of the key distribution
protocol).

2. It binds the decryption key to the user’s TPM (step 12).
3. The trusted stack seals the decryption key in the user’s TPM (steps

13–15).

In previous work [23–25], we developed an access-control system for
documents. Standard operating system security mechanisms can be used
to ensure that the system is not tampered with within an enterprise.
This work is the missing link to ensuring that the system cannot be
circumvented outside of the enterprise.

References

1. Bishop, M.: Computer Security: Art and Science. Addison Wesley Professional
(2003)

2. Trusted Computing Group: TCG architecture overview. (TCG Specification)
3. Trusted Computing Group: TCG TPM specification version 1.2. (TCG Specifica-

tion)
4. Anderson, R., Bond, M., Clulow, J., Skorobogatov, S.: Cryptographic processors

– a survey. Technical Report 641, University of Cambridge (2005)
5. Smith, S.W.: Trusted Computing Platforms: Design and Applications. Springer-

Verlag (2005)
6. Strasser, M.: A software-based TPM emulator for Linux. Semesterarbeit, ETH

Zurich (2004)
7. Microsoft: Windows Vista beta 2 trusted platform module services step by step

guide. (Published on the WWW)
8. Kay, R.L.: This ain’t your father’s internet: How hardware security will become

nearly ubiquitous as a rock solid solution to safeguarding connected computing.
(Published on the WWW)

9. Pearson, S., ed.: Trusted Computing Platforms: TCPA Technology in Context.
Prentice Hall (2003)

10. Grawrock, D.: The Intel Safer Computing Initiative. Intel Press (2006)
11. Mitchell, C., ed.: Trusted Computing. Volume 6 of IEE Professional Applications

of Computing. The Institution of Electrical Engineers (2005)
12. Brickell, E., Camenisch, J., Chen, L.: Direct anonymous attestation. In Pfitzmann,

B., Liu, P., eds.: Proceedings of the 11th ACM Conference on Computer and
Communications Security (CCS 2004), ACM Press (2004) 132–145

13. Camenisch, J.: Better privacy for trusted computing platforms. In Samarati,
P., Ryan, P., Gollmann, D., Molva, R., eds.: Proceedings of the 9th European
Symposium on Research in Computer Security (ESORICS 2004). Volume 3193 of
Lecture Notes in Computer Science., Springer-Verlag (2004) 73–88

14. Marchesini, J., Smith, S.W., Wild, O., MacDonald, R.: Experimenting with
TCPA/TCG hardware, or: How I learned to stop worrying and love the bear.
Technical Report Dartmouth TR2003-476, Dartmouth College (2003)



15. Marchesini, J., Smith, S.W., Wild, O., Barsamian, A., Stabiner, J.: Open-source
applications of TCPA hardware. In: Proceedings of the 20th Annual Computer
Security Applications Conference (ACSAC 2004), IEEE Computer Society (2004)
294–303

16. Sailer, R., Zhang, X., Jaeger, T., van Doorn, L.: Design and implementation of a
TCG-based integrity measurement architecture. In: Proceedings of the 13th Usenix
Security Symposium. (2004) 223–238

17. Sailer, R., Jaeger, T., Zhang, X., van Doorn, L.: Attestation-based policy enforce-
ment for remote access. In: Proceedings of the 11th ACM Conference on Computer
and Communications Security (CCS 2004). (2004) 308–307

18. Sandhu, R., Zhang, X.: Peer-to-peer access control architecture using trusted
computing technology. In: Proceedings of the 10th ACM Symposium on Access
Control Models and Technologies (SACMAT 2005). (2005) 147–158

19. Zhang, X., Chen, S., Sandhu, R.: Enhancing data authenticity and integrity in
p2p systems. IEEE Internet Computing 9(6) (2005) 42 –49

20. Sandhu, R., Ranganathan, K., Zhang, X.: Secure information sharing enabled by
trusted computing and pei models. In: Proceedings of the 2006 ACM Conference
on Computer and Communications Security (ASIACCS 2006), ACM Press (2006)
2–12

21. Caleiro, C., Viganò, L., Basin, D.: Deconstructing Alice and Bob. In: Proceedings
of the Workshop on Automated Reasoning for Security Protocol Analysis (ARSPA
2005). Volume 135 of Electronic Notes in Theoretical Computer Science. (2005)
3–22

22. Lin, A.H.: Automated analysis of security APIs. Master’s thesis, Massachusetts
Institute of Technology (2005)

23. Sevinç, P.E., Basin, D., Olderog, E.R.: Controlling access to documents: A for-
mal access control model. In Müller, G., ed.: Proceedings of the 1st International
Conference on Emerging Trends in Information and Communication Security (ET-
RICS 2006). Volume 3995 of Lecture Notes in Computer Science., Springer-Verlag
(2006) 352–367

24. Sevinç, P.E., Basin, D.: Controlling access to documents: A formal access control
model. Technical Report 517, ETH Zurich (2006)

25. Sevinç, P.E.: Securing Information by Controlling Access to Data in Documents.
PhD thesis, ETH Zurich (2007)


