
Fault attacks for CRT based RSA:
new attacks, new results, and new

countermeasures

Chong Hee KIM and Jean-Jacques Quisquater

UCL Crypto Group, Université Catholique de Louvain, Belgium
kim@dice.ucl.ac.be, quisquater@dice.ucl.ac.be

Abstract. Nowadays RSA using Chinese Remainder Theorem (CRT)
is widely used in practical applications. However there is a very powerful
attack against it with a fault injection during one of its exponentiations.
Many countermeasures were proposed but almost all of them are proven
to be insecure. In 2005, two new countermeasures were proposed. How-
ever they still have a weakness. The final signature is stored in a memory
after CRT combination and there is an error-check routine just after CRT
combination. Therefore, if an attacker can do a double-fault attack that
gives the first fault during one of the exponentiation and the other to
skip the error-checking routine, then he can succeed in breaking RSA. In
this paper, we show this can be done with the concrete result employ-
ing a glitch attack and propose a simple and almost cost-free method to
defeat it.

1 Introduction

After the advent of the concept of Side Channel Analysis by Kocher [15], many
variants have appeared to attack the embedded systems such as smart cards.
Among them, fault attacks introduced by Boneh et al. [5] are the most effective.

There are several kinds of methods to invoke faults such as variations in sup-
ply voltage, variations in the external clock, temperature variation, white light,
laser, and X-rays and ion beams [3]. The objective of invoking faults is to make
an abnormal operation in a target and to compute hidden secret information
with the faulty output. In this paper, we use a glitch attack which makes a
transient fault with a voltage spike. The target of glitches is to corrupt data
transferred between registers and memory or to prevent the execution of the
code. The glitch attack is used to attack RSA [1] and recently DSA [16]

The first victim of the fault attack on the cryptographic algorithms was RSA.
The straightforward RSA implementation with Chinese Remainder Theorm was
shown to be broken by fault attacks [5]. The simplest way to prevent the fault
attack is just to compute signatures twice and compare them. However this dou-
bles computation time. Furthermore it cannot avoid permanent errors. Another
way is to verify the signature with the public exponent e. That is, the device
returns the signature S only when Se ≡ m (mod N). However this method is



2

too costly if e is large. Furthermore in some applications (e.g. javacard), it is not
allowed to access the public exponent e during signature generation.

Many countermeasures were proposed [17, 1, 21] but they have been broken
[13, 18]. In 2005, two new algorithms were proposed by Ciet and Joye [8] and
Giraud [10] separately. However, their schemes also missed one important point.
In the next section, we review the RSA-CRT and the existing countermeasures
against fault attacks. Section 3 shows the problem of the existing countermea-
sures and experimental results. Section 4 present the new approach to avoid the
new attack and finally we conclude in Section 5.

2 Previous countermeasures

In this section, we briefly review the RSA-CRT (CRT based RSA) signature and
countermeasures against fault attacks .

2.1 RSA-CRT signature algorithm and fault attacks on it

Let N = p · q be the RSA modulus, where p and q are two large primes. Let e
be the RSA public exponent and d be the RSA private exponent satisfying that
e · d = 1 mod (p− 1)(q− 1). We also let dp (resp. dq) be the CRT exponent such
that dp = d mod (p− 1) (resp. dq = d mod (q− 1)). We denote by Iq the inverse
of q modulo p. Then the signature S of the message m is computed as

1. Sp = mdp mod p
Sq = mdq mod q

2. S = CRT(Sp, Sq) = Sq + q · ((Sp − Sq) · Iq mod p).

Bellcore researchers showed that if an error occurs in only one of the expo-
nentiations (that is, during a computation of Sp or Sq, but not in both), then
the factorization of N is possible with the faulty signature S̃ [5]. For example,
suppose that an error occurs during computation of Sp. Then a faulty S̃p will be
used in a CRT combination and S̃ = CRT (S̃p, Sq) will be returned. With the
correct signature S and the faulty one S̃, the secret prime q can be computed
by computing GCD(S-S̃, N).

This attack is further improved with only one execution of algorithm [12].
Secret prime number q can be found by computing GCD(S̃e −m,N).

2.2 Shamir’s countermeasure and its generalizations

Shamir used a redundant way to compute Sp and Sq and checked the correctness
of Sp and Sq before RSA combination[17]. Let r be a random k-bit integer
(typically, k=32). Then the signature is computed as



3

1. S∗p = md mod (p · r)
S∗q = md mod (q · r)

2.
{

S = CRT(S∗p , S∗q ) mod N if S∗p ≡ S∗q (mod r),
error otherwise.

Joye et al. pointed out one drawback of Shamir’s method [13]. It requires d
which is not known in CRT. Only dp = d mod (p − 1) and dq = d mod (q − 1)
are known. They proposed an improved algorithm which verifies the two half
exponentiations separately. Let r1 and r2 be two random k-bit integers. Then
device computes

1. S∗p = mdp mod (p · r1), s1 = mdp mod ϕ(r1) mod r1

S∗q = mdq mod (q · r2), s2 = mdq mod ϕ(r2) mod r2

2.
{

S = CRT(S∗p , S∗q ) mod N if S∗p ≡ s1 mod r1 and S∗q ≡ s2 mod r2

error otherwise.

The previous algorithms cannot detect errors occurred during RSA com-
bination. In [1], Aumüller et al. checked the correctness of the result of RSA
combination. Let r be a short prime number, e.g., 16 bits. Then device com-
putes

1. p′ = p · r
d′p = dp + random1 · (p− 1)
S′p = md′p mod p′

if ¬(p′ ≡ 0 (mod p) ∧ d′p ≡ dp (mod (p− 1))) then return error

q′ = q · r
d′q = dq + random2 · (q − 1)
S′q = md′q mod q′

if ¬(q′ ≡ 0 (mod q) ∧ d′q ≡ dq (mod (q − 1))) then return error

2. Sp = S′p mod p
Sq = S′q mod q
S = CRT(Sp, Sq)



4

3. if ¬(S ≡ Sp (mod p) ∧ S ≡ Sq (mod q)) then return error

Spr = S′p mod r
dpr = d′p mod (r − 1)
Sqr = S′q mod r
dqr = d′q mod (r − 1)
if (Sdqr

pr ≡ S
dpr
qr ) then

return S,
else

return error.

2.3 Infective computations

Yen et al. proposed a different kind of approach, fault infective computation [21].
They noted that an error detection based on decisional tests should be avoided.
From the viewpoint of low-level implementation of this decision procedure, it
often totally relies on the status of the zero flag of a processor. The zero flag is
a bit of the status register in a processor. So, if an attack can induce a random
fault into the status register, then conditional jump instruction may perform
falsely. In their method, if an error occurs in one of the exponentiations (Sp or
Sq), then it makes both S̃ 6≡ S (mod p) and S̃ 6≡ S (mod q). Unfortunately,
both their countermeasures were shown to be insecure by Yen and Kim [19]

Blömer et al. suggested another countermeasure based on Shamir’s method
and on fault infective computation [7]. Given a security parameter k, for two
appropriately chosen k-bit integers r1 and r2 (stored in memory), the following
quantities are pre-computed and stored in memory:

r1p, r2q, r1r2N ,

d1 = d mod ϕ(r1p), e1 = d1
−1 mod ϕ(r1),

d2 = d mod ϕ(r2q), e2 = d2
−1 mod ϕ(r2).

The device then computes

1. S∗p = md1 mod (r1p),
S∗q = md2 mod (r2q),

2. S∗ = CRT(S∗p , S∗q ) mod (r1r2N),

3. c1 = (m− S∗e1 + 1) mod r1,
c2 = (m− S∗e2 + 1) mod r2,
S = (S∗)c1c2 mod N .

If there is no error, then c1 and c2 become 1 and the device returns a correct
signature S.



5

Unfortunately, this countermeasure is also shown to be insecure by Wagner
[18]. Let us suppose a random transient fault that modifies the value of m as
it is being read from memory in the computation of S∗p while leaving the value
stored in memory unaffected, then c1 6= 1 but c2 = 1. Then the attacker can
mount a Bellcore-like attack by computing GCD(mc1 −Se, N) with the guess of
c1. In the scheme, c1 = (m− Se1 + 1) mod r1. Since Se1 = m̃ can be guessed in
his fault attack model, the attack was possible. Recently Blömer et al. proposed
a variant that overcome the weakness by randomizing the computation of ci [6]

2.4 Ciet and Joye’s countermeasure

In 2005, Ciet and Joye generalized Shamir’s countermeasure [13] and adapted
fault infective computation [21] to avoid decisional tests [8]. For two co-prime
k-bit integers r1 and r2 and l-bit integer r3, we define

p∗ = r1p,
q∗ = r2q,
I∗q = (q∗)−1 mod p∗.

Then device computes

1. S∗p = mdp mod p∗ and s2 = mdq mod ϕ(r2) mod r2,
S∗q = mdq mod q∗ and s1 = mdp mod ϕ(r1) mod r1,

2. S∗ = S∗q + q∗ · I∗q · (S∗p − S∗q ) mod p∗,

3. c1 = (S∗ − s1 + 1) mod r1

c2 = (S∗ − s2 + 1) mod r2

γ = b(r3c1 + (2l − r3)c2)/2lc
S = (S∗)γ mod N

2.5 Giraud’s countermeasure

In 2005, Giraud [10] used the fact that the temporary variables (a0, a1) are of the
form (mα,mα+1) in Joye and Yen’s SPA-countermeasure [14]. Let (dn−1, . . . , d0)
be the binary representation of d. Then a safe-error resistant exponentiation
based on Montgomery Ladder of [14] is computed as following:

a0 ← 1
a1 ← m
for i from n− 1 to 0 do

ad̄i
← ad̄i

· adi mod N
adi ← a2

di
mod N

return a0.



6

To construct a SPA-FA(fault attack)-resistant CRT-RSA, he first proposed
SPA-FA-resistant modular exponentiation (d is supposed to be odd):

a0 ← m
a1 ← m2 mod N
for i from n− 2 to 1 do

ad̄i
← ad̄i

· adi
mod N

adi
← a2

di
mod N

a1 ← a1 · a0 mod N
a0 ← a2

0 mod N
if (Loop Counter i not modified) & (Exponent d not modified) then

return (a0, a1),
else

return error.

Giraud used k ·N instead of N , where k is a 32-bit random number in [11].
Here, we denote above algorithm as (A,B) ← SPA-FA-EXP(m, d, N). Then the
output (A,B) is (md−1 mod N , md mod N). Finally SPA and FA-resistant
CRT-RSA algorithm is as follows:

1. (S∗p , Sp) ← SPA-FA-EXP(m, dp, p)
(S∗q , Sq) ← SPA-FA-EXP(m, dq, q)

2. S∗ = CRT(S∗p , S∗q )
S = CRT(Sp, Sq)
S∗ = m · S∗ mod (p · q)

3 if S∗ = S & (Parameters p and q not modified) then
return S

else
return error

3 Problem of previous countermeasures

The previously known countermeasures to defeat fault attacks on RSA-CRT
mostly consist of three parts. Firstly the device computes two exponentiation
S∗p and S∗q . The computation of S∗p (resp. S∗q ) is done by either straightforward
computation like Sp = mdp mod p (resp. Sq = mdq mod q) or inclusion of a kind
of redundancy which will be used later to check errors. Secondly it combines two
exponentiations to compute signature S∗.

The final step can be divided into two categories. The first one uses condi-
tional check routine in which if an error does not occur then it outputs correct
signature and if error occurs it gives predefined signal like “error has been de-
tected” (e.g. Aumüller et al.[1], Giraud’s [10], etc.). In the other method, instead



7

of using the conditional check routine it gives a random value instead of a sig-
nature if error occurs (e.g. Infective computations[21, 6], Ciet and Joye’s [8],
etc.).

Step 1. Computation of two exponentiation
- Compute S∗p and S∗q

Step 2. CRT combination
- Compute S∗ ← CRT(S∗p , S∗q )

Step 3. Fault detection

- Return
{

S ← f(S∗) if there is no error,
⊥ otherwise.

Suppose that the attacker tries to skip “fault detection” routine (Step 3 in
the above model) after CRT combination (Step 2). Then the attacker can get
S∗. Furthermore S can be computed easily since S = S∗ in the conditional check
routine approach and S = S∗ mod N in the other approach. Therefore we can
consider the following attack scenario.

Our fault attack model. The attacker tries to do a double-fault attack. He
gives the fist fault during only one of the two exponentiations to corrupt its
value. Then he gives the other fault during fault detection routine to skip some
operations. If he succeed in doing a double-fault attack, then he can get the
output of the CRT combination. That is, he gives a fault during Step 1. and
gets the output of Step 2. by skipping some operations of Step 3. by faults in
the above model.

Unfortunately all previous known countermeasures can be vulnerable to our
fault attack scenario. Because all of them check the occurrence of errors after
computation of a final signature.

3.1 Experiments of our attack

General description As seen in the previous section, RSA-CRT with a coun-
termeasure against fault attacks is composed of three parts. The attacker tries
to give two times faults. In the first trial, he tries to make errors during only one
of the two exponentiations during Step 1. If the attacker can get the faulty sig-
nature as the output of Step 2, then he can compute the private keys. Therefore,
he gives his second faults during Step 3 to skip some operations.

In the next section, as an example, we chose Ciet and Joye’s countermeasure
and implemented it. We gave a fault during the computation of S∗p . Then we
gave the next fault during the computation of S = (S∗)γ mod N and tried to
skip it.



8

Results We implemented 128-bit RSA-CRT with Ciet and Joye’s countermea-
sure (We note it as RSA-CRT with CJ ) [8] in an Atmel 8-bit AVR microcon-
troller, ATMega168 [2]. The program is implemented as follows:

Main() {
...
Set I/O pin low
Call subroutine RSA-CRT with CJ (as in 2.4)
Set I/O pin high
...

}
The tools used to create the glitches and the target board can be seen in

Fig.1. The chip is communicating with a computer via serial communication
and the power consumption is monitored by an oscilloscope even though they
are not shown in the figure. Fig.2 shows the I/O pin and power profiles. The
x-axis represents time and y-axis represents voltage (for I/O profile) and the
consumption of power (for power profile). The upper line represents the profile
of I/O behavior. The lower profile shows the power profile. The RSA-CRT with
CJ starts at the time block 0.4 and ends at the time block 6.8. In the figure the
blocks are numbered from 0 to 10. In our case the first exponentiation S∗p lies in
the time frame 0.4 to 3.2. and the second one S∗q in 3.2 to 6.0.

Fig. 1. Experiment setup for the glitch attack

Firstly we gave a glitch into chip’s power supply during the first exponenti-
ation. You can see the result in Fig.3. There is a high peak in power profile in



9

Fig. 2. RSA-CRT with CJ method without faults

the time frame about 0.6. You can also see the increase of total execution time
due to the faults. Since γ is no more 1, the computation of S = (S∗)γ mod N
requires more time. In Fig.3 the time frame from 6.4 to 7.0 corresponds to this.

Then we gave another glitch just before the last computation of S = (S∗)γ

mod N as in Fig.4. Compared to Fig.3, you can see the total time is reduced
and the final computation of S = (S∗)γ mod N is disappeared. However you
can see the chip is still working and PC(program counter) is in main function
by seeing the I/O pin is high. If the chip is dead then the I/O pin will stay
at low state. Because I/O pin is set to high in the main program after calling
subroutine RSA-CRT with CJ. We confirmed the computation of S = (S∗)γ is
skipped by reading the returned value and computing the prime number p and
q with this fault signature with Bellcore-like attack [4].

In addition, the second fault skipping operations was more difficult than the
one making faults during an exponentiation. Sometimes a chip was stunned and
it never returned back to main function. Sometimes it showed whole RAM values
(there is a command shows specific RAM value, but it seemed that there was a
disturbance on the required address of RAM). We could also change the value
of γ by giving a glitch during the computation of this.



10

Fig. 3. Glitch attack during S∗p operation

Fig. 4. Glitch attack both S∗p operation and (S∗)γ mod N



11

4 New approach to prevent fault attacks

The simplest method to prevent our attack in Ciet and Joye’s scheme is to allo-
cate all intermediate variables in different memory buffers that are not used for
the returned signature. (Initialization of γ with a random value was not perfect
in our experiment because we skipped only the last exponentiation after compu-
tation of γ). It means, for example, 128 bytes in a 1024-bit RSA implementation
should not be used during whole RSA operations. It can be a burden for a pro-
grammer. Usually there is a specialized RAM, it is called crypto RAM, in a
smart card only for cryptographic usage and this is not so large. Therefore the
programmer should implement a RSA within comparatively small crypto RAM.
Furthermore, because there is a possibility to know the value stored in RAM
according to our experiments, the best idea is not to store the final signature
until the end of checking errors.

Therefore we suggest more general idea to overcome previously mentioned
problem. It is that the final signature S to be computed and stored only after
Step 3. Then with the result of Step 2 the attacker could not get any useful
information about secret keys. We modify Ciet and Joye’s scheme and Giraud’s
scheme as examples. We put a randomness before CRT combination and get rid
of it after an error check. Our idea can be applied for other countermeasures.

Modified Ciet and Joye’s scheme

0. Choose a random integer a in Z∗r1r2N

Initialize γ with a random number

1. S∗p = (a + mdp) mod p∗ and s2 = (a + mdq mod ϕ(r2)) mod r2,
S∗q = (a + mdq ) mod q∗ and s1 = (a + mdp mod ϕ(r1)) mod r1,

2. S∗ = S∗q + q∗ · I∗q · (S∗p − S∗q ) mod p∗,

3. c1 = (S∗ − s1 + 1) mod r1

c2 = (S∗ − s2 + 1) mod r2

γ = b(r3c1 + (2l − r3)c2)/2lc
S = (S∗ − aγ) mod N

After Step 2, S∗ is the form of S + a, where a is a random value. Therefore,
the attacker cannot get any information on the real signature S even though he
succeeded in skipping the subsequent operations. More detail analysis follows.

Security analysis
Bellcore-like attack. Suppose that an attacker succeeded in introducing a fault

during one of the two exponentiations and also getting rid of the final operation



12

S = (S∗−aγ) mod N . Let S̃∗p be the faulty exponentiation and S̃∗ be the faulty
output of Step 2. Then the attacker will try to compute GCD((S̃∗)e − m,N).
However since (S̃∗)e = (S̃+a)e, neither ((S̃∗)e−m) 6≡ 0 mod p nor ((S̃∗)e−m) 6≡
0 mod q. Consequently the attacker cannot factorize N .

This is the same when the attacker tries to compute GCD(S∗ − S̃∗, N). Let
a be the random number used in computing S∗ and b be the random number
used in computing the second faulty signature S̃∗. Then S∗ ≡ Sp +ap (mod p)
and S∗ ≡ Sq + aq (mod q). And S̃∗ 6≡ S̃p + bp (mod p) and S̃∗ ≡ Sq + bq

(mod q). Therefore, since (S∗ − S̃∗) = (Sp + ap − S̃p − bp) 6≡ 0 mod p and
(S∗ − S̃∗) = (Sq + ap − Sq − bq) 6≡ 0 mod q, the attacker cannot factorize N .

Consideration on skipping operations. Step 3 is consists of two parts. The one
is computing c1, c2, and γ (Let’s say Step 3.1). The other is computing S (We
call it as Step 3.2). Our experiments focused on skipping Step 3.2 . Therefore if
an attacker succeeds in skipping this, he gets (S∗ + a) and receives no valuable
information on secret keys. This is the same when he skips both Step 3.1 and
Step 3.2. Then how about skipping only Step 3.1? In our modified scheme, γ is
initialized with a random number, therefore he gets (S∗ − aγ). The only possi-
bility to attack is to make γ = 1 which is negligible.

Let us consider Giraud’s scheme. We first modify SPA-FA-resistant modular
exponentiation in order to make the output as the form of (a + md−1 mod N ,
a+md mod N), where a is a random value. Similar security analysis is possible,
but since Giraud’s scheme uses a conditional check-routine, if it is skipped the
attack is possible. Therefore avoiding a conditional check-routine is much better.
The proposed one is a simple example to avoid our attack (skipping Step 3.2 and
skipping both Step 3.1 and Step 3.2). To avoid the attack skipping only Step 3.1
(a conditional check) can be prevented by adding a randomness before the start
of exponentiation . Because if an error occurs in a one of exponentiations, then
it will affect also a random number used.

Modified SPA-FA-resistant modular exponentiation, SPA-FA-EXP∗

a0 ← m
a1 ← m2 mod N
for i from n− 2 to 1 do

ad̄i
← ad̄i

· adi mod N
adi ← a2

di
mod N

a1 ← (a + a1 · a0) mod N
a0 ← (a + a2

0) mod N
if (Loop Counter i not modified) & (Exponent d not modified) then

return (a0, a1),
else

return error.



13

Modified Giraud’s scheme

0. Choose a random integer a in Z∗N

1. (S∗p , Sp) ← SPA-FA-EXP∗(m, dp, p, a)
(S∗q , Sq) ← SPA-FA-EXP∗(m, dq, q,a)

2. S∗ = CRT(S∗p , S∗q )
S = CRT(Sp, Sq)
S∗ = (m · S∗ + a) mod (p · q)
S = (S + a ·m) mod (p · q)

3 if (S∗ = S) & (Parameters p and q not modified) then
return (S − a− a ·m) mod N

else
return error

5 Conclusions

In this paper, we pointed out the weakness of previous countermeasures against
fault attacks on CRT-RSA. Previous countermeasures are all vulnerable since
they are constructed without considering this weakness. Furthermore, to the
authors’ best knowledge, we showed the first (public reported) physical experi-
ment allowing double faults during one execution of the algorithm. Finally, we
proposed a simple and almost cost-free method to defeat this attack.

Acknowledgments The author would like to thank for anonymous reviewers
for their valuable comments.

References

1. C. Aumüller, P. Bier, W. Fischer, P. Hofreiter, and J.-P. Seifert, Fault attacks on
RSA with CRT: Concrete results and practical countermeasures, Cryptographic
Hardware and Embedded Systems – CHES 2002, LNCS V.2523, pp.260-275, 2002

2. http://www.atmel.com/product/AVR/

3. H. Bar-El, H. Choukri, D. Naccache, M. Tunstall, and C. Whelan, The Sorcerers
apprentice guide to fault attacks, Workshop on Fault Diagnosis and Tolerence
in Cryptgraphy in association with DSN 2004 – The International Conference on
Dependable Systems and Networks, pp.330-342, 2004

4. D. Boneh, R.A. DeMillo, and R.J. Lipton, On the importance of checking cryp-
tographic protocols for faults, Advances in Cryptology – EUROCRYPT’97, LNCS
V.1233, pp.37-51, 1997.



14

5. D. Boneh, R.A. DeMillo, and R.J. Lipton, On the importance of eliminating errors
in cryptographic computations, Journal of Cryptology 14(2), pp.101-119, 2001. An
earlier version appears in [4].

6. J. Blömer and M. Otto, Wagner’s attack on a secure CRT-RSA algorithm re-
condiered, Fault Diagnosis and Tolerance in Cryptography – FDTC’06 LNCS
V.4236, pp.13-23, 2006

7. J. Blömer, M. Otto, and J.-P. Seifert, A new CRT-RSA algorithm secure against
Bellcore attacks, 10th ACM Conference on Computer and Communications Secu-
rity, pp.311-320, 2003

8. M. Ciet and M. Joye, Practical fault countermeasures for Chinese Remaindering
based RSA, Fault Diagnosis and Tolerance in Cryptography – FDTC’05, pp.124-
131, 2005

9. P.-A. Fouque and F. Valette, The doubling attack - why upward is better than
downwards, Cryptographic Hardware and Embedded Systems – CHES’03, LNCS
V.2779, pp.269-280, 2003

10. C. Giraud, Fault resistant RSA implementation, Fault Diagnosis and Tolerance in
Cryptography - FDTC’05, pp.142-151, 2005

11. C. Giraud, An RSA implementaiton resistant to fault attacks and to simple power
analysis, IEEE Transactions on computers, VOL. 55, NO. 9, pp.1116-1120, 2006

12. M. Joye, A.K. Lenstra, and J.-J. Quisquater, Chinese remaindering based cryp-
tosystems in the presence of faults, Journal of Cryptology 12(4), pp.241-245,1999.

13. M. Joye, P. Pailler, S.-M. Yen, Secure evaluation of modular functions, Interna-
tional Workshop on Cryotpology and Network Security 2001, pp.227-229, 2001

14. M. Joye and S.-M. Yen, The Montgomery powering Ladder, Cryptographic Hard-
ware and Embedded Systems – CHES 2002, LNCS V.2523, pp.291-302, 2002

15. P. Kocher, Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and
other systems, CRYPTO’96, LNCS V.1109, pp.104-113, 1996

16. D. Naccache, P.Q. Nguyen, M. Tunstall, and C. Whelan, Experimenting with
Faults, Lattices and the DSA, Public Key Cryptography - PKC 2005, LNCS V.3386,
pp.16-28, 2005

17. A. Shamir, Method and apparatus for protecting public key schemes from tim-
ing and fault attacks, United States Patent ]5,991,415, November 23, 1999. Also
presented at the rump session of EUROCRYPT’97.

18. D. Wagner, Cryptanalysis of a provably secure CRT-RSA algorithm, 11th ACM
Conference on Computers and Communications Security, pp.92-97, 2004

19. S.-M. Yen and D. Kim, Cryptanalysis of two protocols for RSA with CRT based
on fault infection, Workshop on Fault Diagnosis and Tolerance in Cryptography –
FDTC’04, pp.381-385, 2004

20. S.-M. Yen, S. Kim, S. Lim, and S. Moon, RSA speedup with residue number system
immune against hardware fault cryptanalysis, Information Security and Cryptology
– ICISC 2001 LNCS V.2288, pp.397-413, 2001

21. S.-M. Yen, S. Kim, S. Lim, and S. Moon, RSA speedup with Chinese remain-
der theorem immune against hardware fault cryptanalysis, IEEE Transactions on
Computers 52(4), pp.461-472, 2003. An earlier version appears in [20]


