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Abstract. Embedded devices performing RSA signatures are subject
to Fault Attacks, particularly when the Chinese Remainder Theorem is
used. In most cases, the modular exponentiation and the Garner recom-
bination algorithms are targeted. To thwart Fault Attacks, we propose a
new generic method of computing modular exponentiation and we prove
its security in a realistic fault model. By construction, our proposal is also
protected against Simple Power Analysis. Based on our new resistant ex-
ponentiation algorithm, we present two different ways of computing CRT
RSA signatures in a secure way. We show that those methods do not in-
crease execution time and can be easily implemented on low-resource
devices.

Keywords: RSA, Chinese Remainder Theorem, Modular Exponenti-
ation, Fault Attacks, Simple Power Analysis, Smart Card.

1 Introduction

In 1997, Boneh, DeMillo and Lipton [1] introduced a new type of cryptanalysis
based on error computations: Fault Attacks (FA). Various public-key cryptosys-
tems were concerned but the RSA algorithm was especially targeted. Indeed,
Fault Attacks are particularly effective when the Chinese Remainder Theorem
(CRT) is applied. Using these techniques, an RSA modulus of arbitrary length
can be factorized practically instantly on a PC.

Fault Attacks can be directed at cryptographic embedded devices, like smart
cards, as shown in [2]. Straightforward protection mechanisms compute the sig-
nature twice, or verify it by performing the inverse operation. Nevertheless, this
can be time consuming and further complicated if the corresponding public key
is unknown to the device. So, alternative counter-measures, inside the algorithm
itself, have been proposed to protect RSA signatures computations against Fault
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Attacks [3–7]. Unfortunately, many of them have been broken since their publi-
cation [2, 8, 9].

Counteracting FA is not sufficient to ensure the security of an embedded
cryptosystem. Indeed, another threat comes from physical leakage during cryp-
tographic computations. A category of attacks, called Side Channel Analysis
(SCA), exploits this leakage to retrieve information about sensitive data manip-
ulated by the algorithm. Among these attacks, Simple Power Analysis (SPA) is
the easiest to mount in practice and an implementation of a cryptosystem in
mobile devices must thwart it. Counteracting FA and SPA attacks at the same
time is an issue. Indeed, some counter-measures against SPA can been exploited
by elaborate Fault Attacks such as Safe Error Attacks. In fact, it appears that
Simple Power Analysis and Fault Attacks (classical and Safe Error) must be si-
multaneously taken into account when implementing cryptographic algorithms.

The paper is organized as follows. In the next section we briefly recall the
RSA cryptosystem, the use of the Chinese Remainder Theorem to speed up gen-
eration of RSA signatures and the description of Fault Attacks directed against
it. Then, in Sect. 3, we present our method for computing a modular exponen-
tiation protected against Fault Attacks, proving its security in a practical fault
model whose relevance to (real life) scenarios is discussed. The new algorithm
is used in Sect. 4 to design two CRT RSA implementations resistant to FA and
SPA.

2 RSA and Physical Attacks

2.1 RSA Cryptosystem

The public-key cryptosystem RSA [10] involves a public modulus N , which is the
product of two large secret primes p and q. The public exponent e is co-prime
with (p − 1) · (q − 1) and the private exponent d is the modular inverse of e
modulo (p− 1) · (q − 1).

An RSA signature S of a message M is computed with the following formula:

S = Md mod N.

To speed-up the exponentiation on low-resource devices, like smart cards, one
usually applies the Chinese Remainder Theorem [11]. The resulting CRT RSA
signature algorithm is four times faster compared to the classical method. It
involves two modular exponentiations and a recombination step using Garner’s
Algorithm [12]. It needs 5 parameters: the two large primes p and q, the values
dp = d mod p−1, dq = d mod q−1, and the pre-computed value A = p−1 mod q.

Algorithm 2.1 RSA Signature using CRT
Input: M, p, q, dp, dq, A
Output: S

1. Sp ←Mdp mod p //First Exponentiation



2. Sq ←Mdq mod q //Second Exponentiation
3. S ← ((Sq − Sp) ·A mod q) · p + Sp //Garner’s Algorithm
4. return(S)

2.2 Simple Power Analysis on RSA Algorithm

By exploiting physical leakage of a device, secret parameters can be retrieved
[13, 14] depending on the implementation of the algorithm. Among those Side-
Channels Attacks, Simple Power Analysis retrieves information by measuring
the power consumption of one execution of the algorithm, whereas Differential
Power Analysis (DPA) uses many samples of power consumption and applies
statistical techniques to get information. In the following, we particularly focus
on SPA attacks. More details about DPA attacks on modular exponentiations,
and counter-measures against these attacks, can be found in [15].

To explain how SPA allows one to get information on the secret exponent,
let us consider the following basic implementation of a modular exponentiation,
known as the Square and Multiply Algorithm, in which the exponent bits are
scanned from right to left [16]:

Algorithm 2.2 Right-to-Left Modular Exponentiation
Input: M, d = (dn−1, . . . , d0)2, N
Output: Md mod N

1. S ← 1
2. A←M
3. for i from 0 to n− 1 do
4. if di = 1 then S ← S ·A mod N
5. A← A2 mod N
6. return(S)

If the executions of a modular square and a modular multiplication have
different power consumptions, it has been shown in [13,14] that information on
the value of the secret exponent d can be retrieved. Indeed, if two consecutive
modular squares are identified, this means that the exponent bit processed was 0.
On the contrary, if a modular multiplication is interleaved between two modular
squares, the exponent bit was equal to 1.

To get around this problem, the following algorithm, called Square and Mul-
tiply Always, was proposed in [17]:

Algorithm 2.3 SPA Resistant Right-to-Left Modular Exponentiation
Input: M, d = (dn−1, . . . , d0)2, N
Output: Md mod N



1. S[0]← 1
2. S[1]← 1
3. A←M
4. for i from 0 to n− 1 do
5. S[di]← S[di] ·A mod N
6. A← A2 mod N
7. return(S[0])

In Algorithm 2.3, each iteration of the loop involves a modular multiplication
whatever the bit-value of the exponent d. Since the sequence of successive oper-
ations performed are independent of the key-bits, attacks such as SPA become
impossible.

2.3 Fault Attacks on CRT RSA Algorithm

Fault Attacks have been suggested by Boneh et al. [1]. They observed that if a
device outputs an erroneous CRT RSA signature, an attacker can deduce the
private key from this information and the correct signature.

Indeed, let us assume than an error occurs during one of the modular ex-
ponentiations of Algorithm 2.1. This results in an incorrect intermediate result,
e.g. S̃p, which will generate an erroneous signature S̃. The faulty signature S̃

and the correct signature S are likely to satisfy S̃ 6≡ S mod p and S̃ ≡ S mod q.
Consequently, if S − S̃ is not divisible by p, the prime number q is revealed by
a gcd computation : q = gcd(S − S̃, N).

Remark 1. As noticed in [18], the attack can also be performed without the
knowledge of the correct signature: computing gcd(S̃e−M,N) will also discover
q.

The classical protection against this attack is to verify the computed sig-
nature with the public exponent e before sending the signature. The erroneous
signature being not returned, the gcd computation can no more be computed.
However, this can be costly in time (depending on the value of e) and sometimes
impossible, if the public key is unknown to the device3.

In Sections 2.2 and 2.3, we recalled two simple ways of thwarting SPA and
FA separately. In the next section, we show that this approach is not enough to
obtain a secure implementation of a modular exponentiation.

2.4 Fault Attacks on SPA-resistant RSA Algorithm

Algorithm 2.3 ensures protection against SPA, but introduces a weakness with
respect to another type of Fault Attacks, known as Safe Error, as described
in [19].
3 Computing the public exponent with the knowledge of the 5 CRT parameters is

possible but time-consuming on low-resource devices.



When an exponent bit equals 0, the result of the dummy computation of the
modular multiplication is not used any more in the algorithm. Consequently, if
a fault is induced on this modular multiplication, an attacker can determine the
value of the bit, depending on the correctness or the incorrectness of the modular
exponentiation. If the result is correct, the modified modular multiplication was
a dummy operation, and so the bit of the exponent was 0. On the contrary, if
the result is erroneous, the modified modular multiplication was used in the rest
of the algorithm, meaning that the exponent bit was 1.

This kind of attack can be applied to an RSA signature to recover the private
key, irrespective of whether it uses the CRT mode. This kind of cryptanalysis
requires more work on the part of the attacker than the analysis discussed in
Sect. 2.3 where only one fault was sufficient to obtain the private key. However, it
is much more powerful since it thwarts the classical counter-measure consisting
in checking the signature before sending it.

The attack described above illustrates the difficulty of thwarting SPA and FA
simultaneously. In the following section, we present a new method to compute
modular exponentiation resistant against Simple Power Analysis, Fault Attacks
and Safe Error Attacks.

3 Exponentiation Resistant to Fault Attacks

3.1 Our Proposal

Our idea consists essentially in modifying an SPA-resistant algorithm by intro-
ducing some coherence test at the end. This test aims at ensuring that no fault
has been induced during the execution of the algorithm. In fact, our reasoning
is very close to that proposed in [5] and [20].

Before explaining the core idea of our proposal, let us recall the content of
the loop of Algorithm 2.3:

4. for i from 0 to n− 1 do
5. S[di]← S[di] ·A mod N
6. A← A2 mod N

Our idea is based on the three following observations:

– The value A is independent of d. At the end of the algorithm, A satisfies:

A = M2n

mod N.

– The value S[1] is the result of the modular exponentiation of M by the binary
complement of d, denoted d (and satisfying d = 2n − d− 1):

S[1] = M2n−d−1 mod N.



– Since S[0] equals Md mod N , the following relation holds for the content of
A after the loop:

M · S[0] · S[1] = M ·Md ·M2n−d−1 = M2n

= A mod N . (1)

Equation (1) establishes a relationship between the contents of S[0], S[1], A
and M after each loop iteration. So, to ensure that none of the modular multi-
plications was interfered with (thus counteracting Fault Attacks and Safe Error
Attacks), we perform a check between the four values involved in the algorithm.
We verify that M , S[0], S[1] and A satisfy Equality (1) before returning S[0]:

Algorithm 3.1 SPA/FA Resistant Right-to-Left Modular Exponentiation

Input: M 6= 0, d = (dn−1, . . . , d0)2, N
Output: Md mod N or ”Error”

1. S[0]← 1

2. S[1]← 1

3. A←M

4. for i from 0 to n− 1 do

5. S[di]← S[di] ·A mod N

6. A← A2 mod N

7. if (M · S[0] · S[1] = A mod N) and (A 6= 0) then

8. return(S[0])

9. else

10. return(”Error”)

As it can be easily checked, our algorithm is still resistant to SPA: a modu-
lar square always follows a modular multiplication, independently of the value of
the exponent. We have added two modular multiplications to the original version
(Algorithm 2.3). One modular multiplication can be avoided if, at the beginning
of the algorithm, S[1] is initialized with the message M . But as we will argue in
Sect. 4, the re-use of the message at the end of the algorithm is useful when it
comes to protect a CRT RSA that performs exponentiations with Algorithm 3.1.
We shall prove in Sect. 3.3 that the coherence check M · S[0] · S[1] = A mod N
avoids realistic fault attacks when A is not set to zero by the adversary. If A is set
to zero, then S[0] and/or S[1] and A shall be null and the coherence check will
fail in detecting the fault induction. To prevent such an attack, the verification
A 6= 0 has been added.

To prove the resistance of our proposal to Fault Attacks, we first have to
clarify the capabilities of an attacker. In the following, we define the model in
which our algorithm will be proved.



3.2 Attacker Model

As argued in [3] and [8], sensitive applications (e.g. Banking, GSM or Identity
Card) cannot make use of countermeasures with ad hoc security but need coun-
termeasures which are provably secure against a precisely modeled adversary.
Blömer et al. [3], Wagner [8] and, more recently, Lemke-Rust and Paar [21]
have introduced adversarial models for Fault Analysis. They consider various
natures of faults and attack scenarios with a focus on pervasive computing on
low-cost cryptographic devices. The attacker model presented hereafter follows
the outlines of those described in [3] and [8]. It is divided into three parts which
respectively aim at specifying how the attacker interacts with the device, the
kind of variable targeted during the attack and the type of fault.

We shall assume that the attacker is only able to induce one fault per execu-
tion of the algorithm (this assumption is discussed in [2]). In [3], Blömer et al.
identified three different ways to induce faults on an algorithm.

1. Modification of the input parameters [22].
2. Modification of the algorithm execution [23].
3. Modification of the local variables [3].

A powerful adversary is able to induce a fault in the three different manners
listed above and nowadays devices are usually provided with hardware mech-
anisms that render the task of such an adversary as difficult as possible. The
adding of redundancy by hardware functions (e.g. based on error correcting codes
or on hash functions) is often sufficiently effective to protect an implementation
against permanent modification of input parameters (first model). Hardware
mechanisms can also be successfully involved to guarantee the correctness of an
algorithm execution (second model) and they give confidence that the algorithm
does not end before all the exponent bits are processed [23]. Even if they are
effective and efficient to counteract fault inductions of types 1 and 2, hardware
mechanisms are rarely able to thwart attacks based on the perturbation of local
variables. Defeating such attacks is usually the main role of software counter-
measures. In the rest of the paper, we shall consider an adversary that modifies
local variables, assuming that the security against the two other kinds of fault
inductions is carried out by the Hardware.

Remark 2. In Appendix A, we propose a slightly modified version of Algorithm
4.1 in which a simple mechanism has been added to counteract some fault injec-
tions belonging to the first and the second categories of faults. This version may
be used when the effectiveness of some hardware countermeasures is in doubt. It
allows to check that the loop has been entirely executed and that the exponent
d used during the calculation (and temporarily stored in RAM) has not been
modified and equals the exponent d stored in the non-volatile memory of the
device.

Let X denote the value of a n-bit local variable and let X̃ denote the corre-
sponding faulty value. From X and X̃ one can deduce an error vector ε such



that X̃ = X + ε. The nature of the error vectors ε essentially depends on the
adversary type: a strong adversary shall be able to disturb the value of a local
variable at a very precise position (e.g. a bit modification at a given position),
whereas a weak adversary could induce a fault but could not determine its po-
sition or its value. Blömer et al. exhibited in [3] four different kinds of fault. We
recall their classification hereafter.

1. Precise Bit Errors. In the strongest scenario, an attacker can change the
value of one bit: X̃ = X ± 2k for 0 ≤ k ≤ n− 1

2. Precise Byte Errors. One selected byte is affected by the attack: X̃ = X±b·2k

for a known 0 ≤ k ≤ n− 8 and an unknown 0 ≤ b ≤ 255
3. Unknown Byte Errors. One random byte is affected by the attack: X̃ =

X ± b · 2k for a unknown 0 ≤ k ≤ n− 8 and an unknown 0 ≤ b ≤ 255
4. Random Errors. An attacker has no knowledge of the modification: X̃ =

X ± f(X) for 0 ≤ f(X) ≤ 2n−1

In our security proof exhibited in the next section, we shall not need to focus
on a type of fault in particular and we will prove that our proposal is secure
whatever the nature of the fault ε induced by the adversary.

3.3 Security Proof

The message M being assumed to be not null, it can be easily checked that A
cannot equal 0 if no fault is introduced. An attack consisting in setting A to zero
during the execution of the loop is thwarted by the second test at Step 7. In the
rest of this section, we argue that the first test at Step 7 allows to detect any
other kind of fault induction in the model described in Sect.3.2.

Wagner proposed in [8] a framework to prove the resistance of an algorithm
against Fault Attacks. He suggests that the algorithm be divided into a succes-
sion of finite states that correspond to single step computations and to study
how faults propagate throughout the algorithm. Such an analysis allows to es-
tablish that the fault is either detected by the algorithm or cannot be exploited
by the attacker.

The algorithm is split up in such a way that the initial state corresponds
to the input of the algorithm and the final state corresponds to the output. All
normal transitions between intermediate states are represented by  . A Fault
Attack between intermediate states is symbolized by � .

Algorithm 3.1 involves the three variables S[0], S[1] and A. In Wagner’s
framework, the algorithm execution can be represented by the three following
schemes above:

1 Md0  Md1·2+d0  . . . Md

1 Md0  Md1·2+d0  . . . Md

M  M2  M4  . . . M2n

To prove that the coherence test at the end of our algorithm detects any error
during the computation of the three variables, we simulate a fault in a random
state i + 1 for the three schemes above:



1. Attack changing the content of S[0]:

1 Md0  . . . M
∑i−1

j=0 dj ·2j

�M
∑i

j=0 dj ·2j

+ ε . . . M̃d

The wrong state M
∑i

j=0 dj ·2j

+ ε implies a final state M̃d satisfying:

M̃d = (M
∑i

j=0 dj ·2j

+ ε) · (M
∑n−1

j=i+1 dj ·2j

),

that is M̃d = Md + ε · (M
∑n−1

j=i+1 dj ·2j

) which differs from Md if ε and M are
not equal to 0 modulo N .

2. Attack changing the content of S[1]. In a similar way, a disturbance of S[1]
at any moment results in the following state:

M̃d = Md + ε · (M
∑n−1

j=i+1 dj ·2j

)

which differs from Md if ε and M are not equal to 0 modulo N .

3. Attack changing the content of A:

M  M2  . . . M2i−1
�M2i

+ ε . . . M̃2n

Contrary to the two previous cases, attacking A at a random state i + 1
impacts the content of the two others registers S[0] and S[1] at state i + 2.
To better analyze this error propagation, let us rewrite the error in a multi-
plicative way:
– If M2i

is co-prime with N , we deduce from the additive error ε the
multiplicative error β such that:

M2i

+ ε = M2i

· (1 + ε ·M−2i

) = M2i

· β

– If M2i

is not co-prime with N , we denote by z the least common multiple
of M and N . The error β is such that:

M2i

+ ε = M2i

· (1 + ε · z ·
(

M

z

)−2i

) = M2i

· β

So, the different states of the three variables are the following

1 Md0  . . . M
∑i

j=0 dj ·2j

 M
∑i+1

j=0 dj ·2j

· βdi+1  . . .

1 Md0  . . . M
∑i

j=0 dj ·2j

 M
∑i+1

j=0 dj ·2j

· βdi+1  . . .

M  M2  . . . M2i−1
�M2i

· β  M2i+1
· β2  . . .

and the contents of S[0], S[1] and A finally equal Md · β
∑n−1

j=i+1 dj ·2j−(i+1)
,

Md · β
∑n−1

j=i+1 dj ·2j−(i+1)
and M2n · β2n−i

respectively.



When applying our verification formula, we get:

M · S[0] · S[1] = M ·Md · β
∑n−1

j=i+1 dj ·2j−(i+1)
·Md · β

∑n−1
j=i+1 dj ·2j−(i+1)

= M2n

· β2n−i−1
,

which is different from the value M2n · β2n−i

if the original error ε was not
equal to 0.

Remark 3. The error β may have the undesired property that there exists
some value k (lower than n− i− 1) such that β2k ≡ 1 mod N . However, it
has been shown in [24] that those values are extremely rare. For instance if
N is a RSA modulus equal to the product of two primes p and q, then we
have β2k ≡ 1 mod N iff 2n−i−1 ≡ 0 mod lcm(fp, fq), where fp and fq are
the orders of β modulo p and q respectively. If p and q are such that p − 1
and q−1 are not divisible by large powers of 2, then the probability that this
equality holds is comparable to the probability of factoring N by randomly
picking one of its prime factors.

Consequently, any error in an intermediate state of the three variables will result
in an erroneous result. Thus, we prove that the final check of our algorithm
detects any disturbance of any variable during any step of the computation.

4 CRT RSA Resistant to Fault Attacks

In the previous section, we introduced an exponentiation algorithm and proved
its security in a realistic fault model. However, even if the two modular expo-
nentiations in the CRT RSA algorithm have not yet been compromised, the
correctness of the whole algorithm is not guaranteed. Indeed, it has been shown
in [2] that Garner’s recombination can be successfully attacked using FA tech-
niques.

The following algorithms use the same principle as the method described in [5]
and [20]. A secure modular exponentiation algorithm (Algorithm 3.1) is used to
prevent faults during the two exponentiations in the CRT RSA algorithm. Then,
additional information given by this secure modular exponentiation is employed
to check that the recombination step was not disturbed.

4.1 First Method

Algorithm 3.1 can be used to strengthen the security of a CRT RSA implemen-
tation but it has to be slightly modified. Instead of always returning the result
of the exponentiation, it returns the three variables if they satisfy Equality (1).
Garner’s Algorithm is then applied three times, and finally a check is performed
to verify that those results satisfy an equality we exhibit below. The goal of this
coherence verification is to protect the recombination step.



Proposal We denote by l the bit-length of the secret moduli. Our CRT-RSA
algorithm protected against FA is:

Algorithm 4.1 FA-Resistant RSA Signature using CRT
Input: M 6= 0, p, q, dp, dq, A, and l the bit-length of p and q
Output: S or ”Error”

1. (Sp, S′
p, Tp)← (Mdp mod p, M2l−dp−1 mod p, M2l

mod p)

2. (Sq, S
′
q, Tq)← (Mdq mod q, M2l−dq−1 mod q, M2l

mod q)
3. S ← ((Sq − Sp) ·A mod q) · p + Sp

4. S′ ← ((S′
q − S′

p) ·A mod q) · p + S′
p

5. T ← ((Tq − Tp) ·A mod q) · p + Tp

6. if M · S · S′ = T mod N then
7. return(S)
8. else
9. return(”Error”)

Correctness We now consider the relevance of the coherence test in Step 6.
First, let us denote by d, dp and dq the binary complements of the values d, dp

and dq respectively. They all satisfy:

d + d = 22l − 1, dp + dp = 2l − 1, dq + dq = 2l − 1.

Moreover, by definition of dp, there exists an integer k such that d = dp + k ·
(p− 1). Thus, we have:

d = dp + k · (p− 1),
22l − 1− d = 2l − 1− dp + k · (p− 1),
d− 22l + 2l = dp − k · (p− 1) .

In a same manner, for an integer k′ we have:

d− 22l + 2l = dq − k′ · (q − 1) .

Due to the Chinese Remainder Theorem, the result of the Garner’s recom-
bination of S′

p = Mdp mod p with S′
q = Mdq mod q is S′ = Md−22l+2l

mod N .
Thus, since d equals 22l − d− 1, the value S′ satisfies S′ = M2l−d−1 mod N .

After multiplying S′ by the signature S and the message M (Step 6), we get
M · S · S′ = M ·Md ·M2l−d−1 mod N that is M · S · S′ = M2l

mod N .
The fifth step of Algorithm 4.1 computes the value T = M2l

mod N . Con-
sequently, if no error occurs during the execution of the CRT RSA algorithm,
then the four values M , S, S′ and T must satisfy the equality:

M · S · S′ = T mod N.



Security The security of Algorithm 4.1 with respect to FA is straightforwardly
deduced from the coherence test and the analysis done in Sect. 3 (it thwarts in
particular the recent attack [25]). The Square and Multiply Always structure
of the algorithm makes it resistant against known-plaintext SPA attacks. SPA-
Attacks assuming that the messages can be chosen by the adversary (e.g. [26,27])
are out of the scope of this paper. Classical countermeasures such as the ran-
domization of M (see for instance [28]) can be used together with our SPA/FA
countermeasure to counteract such attacks by rendering the value of M unpre-
dictable. The use of the message at the end of Algorithm 4.1 (during the last
check) protects against modification of the message before one of the two expo-
nentiations and thwarts the attack described in [8]. To insure the validity of the
other input parameters of Algorithm 4.1, hardware mechanisms may be used
(for instance in order to check the CRC value of each parameter).

Complexity This method requires adding only two Garner’s recombinations
and two modular multiplications to the classical CRT RSA algorithm. However,
memory consumption is larger. Four l-bit values and two additional 2l-bit values
are required compared to non-protected implementations.

As an alternative, we propose the following algorithm which detects an error
with some probability.

4.2 Second Method

Our second proposal uses less memory than the previous one, but the coherence
verification is made with a probability error, depending on the bit-length b of a
security parameter r. This means that an error can remain undetected with a
probability equal to 1

2b . In the following, we decided to choose a 32-bit parameter
b, which is a good compromise between security and efficiency:

Our memory-optimized version of Algorithm 4.1 is:

Algorithm 4.2 FA-Resistant RSA Signature using CRT
Input: M 6= 0, p, q, dp, dq, A, and l the bit-length of p and q
Output: S or ”Error”

1. (Sp, S′
p, Tp)← (Mdp mod p, M2l−dp−1 mod p, M2l

mod p)

2. (Sq, S
′
q, Tq)← (Mdq mod q, M2l−dq−1 mod p, M2l

mod q)
3. r ← 32-bit random number
4. Rp ← Tp mod r
5. Rq ← Tq mod r
6. S ← ((Sq − Sp) ·A mod q) · p + Sp

7. if (M · S · S′
p mod p) 6= Rp mod r then

8. return(”Error”)
9. if (M · S · S′

q mod q) 6= Rq mod r then
10. return(”Error”)
11. return(S)



The accuracy of the proposed algorithm comes from the definition of the
modular exponentiation algorithm employed. The value Rp computed before
the recombination is equal to:

Rp = Tp mod r

Rp = (M2l

mod p) mod r .

The first check computes the value:

M · S · S′
p = (M ·M2l−1 mod p) mod r

= (M2l

mod p) mod r

= Rp .

In a similar way, the last verification step is coherent:

M · S · S′
q = (M2l

mod q) mod r

= Rq .

This method requires two additional comparisons with respect to the previous
one. But these comparisons are made on values of the same length as p (or q),
whereas the comparison in Algorithm 4.1 involves values of same length as N .

Algorithm 4.2 does not require the storage of the l-bit values M2l

mod p and
M2l

mod q, during the Garner recombination. Only three 32-bits values must be
stored. Instead of Tp and Tq, we store their remainders modulo the 32-bit ran-
dom number r. Also, the computation and the storage of the public modulus N
is no more required.

This optimized version ensures that no attack occurs during the recombina-
tion step with a detection probability, which can be parameterized following the
bit-size b of the security parameter r.

5 Conclusion

In this paper, we propose a modular exponentiation algorithm that is resistant to
Fault Attacks and Simple Power Analysis. We formally prove that this algorithm
thwarts classical Fault Attacks and Safe Error Attacks in a realistic and practical
fault model. Moreover the timing/memory overhead incurred by the security
add-on is quite reasonable. Compared to the classical modular exponentiation
algorithms that are resistant to SPA, it requires only two additional modular
multiplications.

We show that this exponentiation algorithm can be used to strengthen both
versions of the CRT RSA signature algorithm against Fault Attacks. In the first



one, only two additional Garner’s recombinations and two modular multiplica-
tions are needed. And in the second one, only two modular reductions and two
modular multiplications are required. These additional overheads do not consid-
erably increase execution time, particularly when compared to the overhead of
computing the signature twice over, and is well suited for use on low-resource
devices.

Further, the method proposed for computing modular exponentiation in a
secure way could be used to compute scalar multiplication of points over the
group defined by the points of an elliptic curve.
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A SPA/FA resistant exponentiation with software
checking of the exponent

Algorithm A.1 SPA/FA Resistant Right-to-Left Modular Exponentiation - 2nd ver-
sion
Input: M 6= 0, d = (dn−1, . . . , d0)2, N
Output: Md mod N or ”Error”

1. S[0]← 1
2. S[1]← 1
3. A←M
4. ectrl← 0
5. for i from 0 to n− 1 do
6. S[di]← S[di] ·A mod N
7. ectrl← ectrl + 2n · di

8. A← A2 mod N
9. ectrl← ectrl/2

10. if (M · S[0] · S[1] = A mod N) and (ectrl = d) and (A 6= 0) then
11. return(S[0])
12. else
13. return(”Error”)


