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Abstract—We consider a data offloading scenario where the
small-cell service providers (SSPs) are allowed to implement
a flexible-pricing scheme. In the aforementioned scheme, the
price that an SSP charges the mobile-network operator (MNO)
depends on the amount of MNO’s traffic that is offloaded onto the
respective SSP. Formulating the SSPs’ problem of determining
their traffic-dependent prices as a Bayesian game, we first show
that there exists no Nash equilibriums in pure strategies. We then
proceed to derive the structure of a mixed-strategy symmetric
Bayesian Nash equilibrium (BNE). We also compare the flexible-
pricing scheme with the traditional flat-pricing scheme (where
the SSPs are restricted to announce a single price, irrespective
of the traffic that is offloaded onto them) in terms of the payoffs
achieved by the SSPs as well as the MNO. We show that the SSPs
benefit under the flexible-pricing scheme while the MNO incurs
a loss in payoff; however, the net-payoff of the system remains
balanced. Formally, in terms of mechanism design, the flexible-
pricing scheme is incentive compatible as all entities (including the
neutral MNO) achieve a non-negative payoff. Finally, focussing on
the SSPs’ payoff, we conduct a numerical study to demonstrate
the efficacy of the flexible-pricing scheme over the flat-pricing
scheme (using price of anarchy as the metric).

I. INTRODUCTION

We have been witnessing an ever-increasing demand for
mobile data. Indeed, according to the latest report by Cisco [1],
global mobile-data traffic is expected to reach figures of about
77.5 exabytes per month by 2022 (1 exabyte = 10° gigabyte).
In order to meet this huge demand for mobile data, one
promising approach that researchers have been envisioning is
that of mobile data offloading [2]-[4]. Mobile data offloading
is a proposal whereby the mobile network operators (MNOs)
are allowed to offload some of their users onto small-cell
service providers (SSPs) e.g., femto-cell operators, public
WiFi providers, etc. The MNOs can thus benefit by implicitly
serving more traffic (equivalently, by providing subscription to
more users), while the SSPs can generate revenue by charging
the MNOs for providing offloading services. However, when
multiple SSPs are present, the data offloading scenario leads to
interesting pricing problems whereby the SSPs are expected
to set competitive prices in order to make profit by serving
sufficient offloaded data (see [5]-[8] and references therein).

In this work we propose a novel flexible-pricing scheme
where the SSPs are allowed to charge the MNO differently
for the different amount of traffic demands generated by the
offloaded users. Alternatively, we assume that the demand for
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traffic flow is random, while the SSPs are allowed to set
different prices for the different traffic flow it may actually
experience. Our model is thus in contrast to the existing work
in the literature where the flows are generally assumed de-
terministic (or simply use average flow into the formulation);
moreover, flat-pricing schemes are implemented in the existing
work where the SSPs are restricted to announce a single price,
irrespective of the amount of traffic offloaded onto them [5].

Our main technical contributions are as follows: (1) We
model the above data offloading scenario (comprising random
flows and involving flexible pricing) as a Bayesian game; the
solution is characterized in terms of Bayesian Nash equilib-
rium (BNE). (2) We prove the non-existence of a BNE in
pure-strategies (Theorem 1), and then proceed to derive the
structure of a mixed-strategy symmetric BNE (Theorem 3).
(3) We show that the SSPs achieve a higher payoff in the
flexible-pricing scheme when compared with their payoff in
the traditional flat-pricing scheme (Lemma 2); the MNO in
contrast achieves a lower payoff (Lemma 3). However, the net-
payoff of the system remains conserved. (4) We demonstrate
the efficacy of the flexible pricing scheme (from the SSPs
point-of-view) via. a numerical study.

The remainder of the paper is outlined as follows. In
Section Il we first present the details of the considered
flexible-pricing data-offloading model, and then characterize
the solution in terms of BNEs. The case of pure-strategy
BNE:s is study in Section III, while in Section IV we consider
mixed-strategy BNEs. In Section V we compare the proposed
flexible-pricing scheme with the existing flat-pricing scheme.
Results from our numerical study are reported in Section VI.
We finally present our conclusions in Section VII.

II. SYSTEM MODEL

We consider a system comprising one Mobile Network
Operator (MNO) and two Small-cell Service Providers (SSPs).
The MNO can achieve data-offloading by handing-off some of
its users to the SSPs for service. Specifically, the users that
are within the coverage region of (the access points installed
by) SSP-i (i € {1,2}) but not in the coverage region of SSP-j
(j # 1) are offloaded to SSP-i, whereas the users that lie in the
overlap region can be offloaded to either of the SSPs. Let F;
(1 € {1,2}) denote the aggregate traffic demand (henceforth
referred to as flow) generated by all the users that are offloaded
to SSP-i, while f, is used to denote the flow generated by the
users that lie in the overlap region.
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A. Flow Model

Our model has thus far been similar to the one considered
in the recent work of Li et al. [S]. We however now deviate
from their model by introducing randomness into the flows
experienced at the SSPs. Further, we take into consideration
the lack of information at SSP-¢ regarding the flow experienced
at SSP-j. The formal details are as follows.

We assume that the values of the flows, F; and F%, being
private information, are known only to the respective SSPs;
whereas, the overlap-flow value f, is commonly known to both
the SSPs. We model the above scenario by assuming that F}
and F5 are random variables, whose realized values are known
only to the respective SSPs. For simplicity, we begin with a
simple model where F} and F5 are i.i.d. taking two values
fe and f;, with probabilities 6 and (1 — ), respectively. We
assume that f;, < fj, so that the probability that the flow F;
(t ={1,2}) is low (i.e., fo) is 6, while the flow is high (i.e.,
fr) with probability (1 —6). The average flow is thus given by
fo = 0fe+(1—0) f1,. Finally, the overlap flow f, is considered
constant whose value is known to both SSPs.

Remark: For # = 0 or § = 1 our model degenerates to the
model studied by Li et al. [5] where the flows are deterministic.
Alternatively, the model in [5] can be thought as simply taking
the average flow f, into account while modeling the SSP
flows, instead of considering the detailed distribution like in
our model.

B. Pricing Strategy

The MNO charges its users at a fixed flat-price of p,s per-
unit-flow of request for data. The SSPs on the other hand,
are allowed to implement a flexible-pricing scheme whereby
a SSP can charge different prices for the different flow levels
(low or high) it would actually experience. Formally, let p; =
(pi¢, pi,n) denote the price vector of SSP-i (i € {1,2}) where
Die (resp. p; 1) is the price per-unit-flow that SSP-i charges the
MNO when the flow F; = fy (resp. fp). Thus, given a price
vector p;, the price set by SSP-¢ depends on the realized value
of F;. For convenience, we define the price random variables

pie if Fy = fo

P; as follows:
P = :
{ pin if By = fr

Note that P; and P, are independent (since F; and F5 are
i.i.d.) and their respective p.m.fs are given by P; = p; o w.p.
0, and P; = p; p, w.p. (1 — 0). Finally, we use cg to denote
the cost incurred by a SSP to serve one-unit of flow.

Remark: The above flexible-pricing scheme is in contrast to
the flat-pricing scheme implemented in [5] where the SSPs are
restricted to set a single price, irrespective of the amount of
flow offloaded onto them. The flat-pricing scheme is discussed
in detail in Section V.

Now, since F; can be served only by SSP-i, the SSPs
have monopoly over their respective flows (assuming that the
SSPs’ prices are less than the MNO’s price of p;s, otherwise
the MNO has no incentive to offload). However, since the
MNO would naturally offload the overlap flow f, to the SSP

that charges the lowest price', the SSPs are hence expected
to set competitive prices so as to optimize their profits by
additionally serving the overlap flow f,.

C. Payoff Functions

Given the price vectors of both SSPs, the (random) payoff
achieved by the MNO can be written as’

Unm (pispj) = Fi (pM - Pi) + F (pM - Pj)

+fo(par - min{P P}). (D)
The average payoff is given by
Unt (pispj) = E[UM (piypj)} 2)

where the expectation is w.r.t the joint p.m.f of (Fy, F3). The
payoff achieved by the SSPs can be similarly obtained. First,
the random payoff of SSP-i is given by

Fi(Pifcs) lfPl>P]
Ui (pisp;j) = ¢ (Fi+ fo)(P; — cs) itP <P (3
(Fi =+ O.5fo)(Pi — Cs) if P, = Pj

The average payoff can then be expressed as
U; (pi, pj) :E[Ui (pzvpj)] “4)

Further, given that SSP-; has information about its flow-level
(but not that of SSP-j), we define the following conditional
payoffs: for t € {¢,h}

Ui (pipj) = E{Ui(pi,pj) Fi:ft] %)

In terms of the above conditional payoffs, the average payoff
in (4) can be expressed as

Ui (pispj) = 0 Ui o(pi, ps) + (1 — 0) Ui n(pi, ps)- (6)

Remark: While writing the above expressions it is assumed
that cg < P; < pps (i € {1,2}). The above assumption is
natural because, otherwise (i) if P; > pjs, the MNO will have
no incentive to offload flow to SSP-7, or (i1) if P; < cg, SSP-i
has no benefit in serving the offloaded flow.

D. Bayesian Game Formulation

Since the two SSPs are owned by different operators, the
SSPs are naturally interested in choosing prices so as to
maximizing their individual payoffs. The above problem can
be studied using the framework of game theory. Specifically,
since SSP-7 lacks information about the flow F}; at SSP-j, we
can formulate the flexible-pricing problem as a Bayesian game
[9]. The correspondence between our model and the Bayesian
game formulation can be established as follows:

e SSP-1 and SSP-2 constitute the set of players.

o The set of states is given by the following collection of

flow-pairs: {(fe, fe), (fe, fn), (fns fe), (frs f0) )}

'In case of a tie, the overlap flow f, is equally split among both the SSPs
(as can be seen from the P; = P; case in (3))

2For simplicity, here after we use the flexible notation (p;, p;) (i # j) to
denote the price-vectors of both SSPs (instead of fixing these to (p1, p2)).



o The probability distribution over the set of states is
given by 62, 0(1—6), (1—0)0 and (1 —0)?, respectively.

o The set of types of each SSP is simply the set of possible
flow-level {f¢, fr}.

« Given the type of SSP-i, the interval [cg, pjs] from which
SSP-¢ can fix a price constitutes its action space.

o Finally, the payoffs Uf; , and U; ; represents the utility
functions of SSP-i given its respective types fy and fp,.

Using the framework of Bayesian games we finally character-
ize the solution in terms of Bayesian Nash equilibrium.
Definition 1 (Bayesian Nash Equilibrium): Price vectors
(p3,p3) are said to constitute a Bayesian Nash equilibrium
(BNE) if the following holds: for all ¢ € {1,2} and ¢t € {/, h}
we have U, +(p;,p}) > Ui t(pi,p;) for all p; = (pie, pin)-
Thus, unilateral deviation from a Bayesian Nash equilibrium
does not benefit either of the SSPs. (]
Remark: Technically, the above definition corresponds to
that of a pure-strategy BNE. The mixed-strategy generalization
is obtained by introducing probability distributions from which
the SSPs can pick their respective price-vectors. Details of
mixed-strategy BNEs will be discussed in Section IV. Mean-
while, in Section III we study the case of pure-strategy BNEs.

III. PURE STRATEGY BNES

In this section we establish that there are no BNEs in pure-
strategies. The results in this section are along the lines of the
results in [5]. However, some caution is required as the flows
F; (1 = 1,2) in our model are random which is unlike that in
[5]. Hence, for completeness we review the results here. The
details are as follows.

Suppose F; = f; (t € {{,h}) then SSP-i can accrue a
guaranteed payoff of at least u; := f;(pa — cs) by setting the
price to maximum (i.e., p; + = py). However, by reducing the
price (i.e., p; 1 < par), it is possible to achieve a higher payoff
of ve(pit) :== (ft + fo)(pit — cs) (by acquiring the overlap
flow f, as well). Since v, is decreasing in p; ; it follows that
there exists a threshold price p; such that for prices below
Py there is no incentive in acquiring the overlap flow; SSP-¢
is instead better-off by simply serving the monopoly flow at
the maximum price. The value of p,; is obtained by solving
ve(pit) = uy, and is given by

. pufitesho
pr=——"F
ft +fo

Note that, since cg < pjs it follows that cg < p; < pps. In
the following lemma we formally show that the prices below
Py are indeed dominated strategies.

Lemma 1: Consider a price-vector p; = (p; ¢, pi,n) of SSP-i
(z € {1,2}) such that p; ; < p; for some (or both) t € {¢, h}.
Then p; is strictly dominated.

Proof: Without loss of generality, suppose that p; o < py.

Let p; be any price-vector of SSP-j. Then,

(7

(a)
Uie(pip;) < (fe+ fo)pie —cs)
b)

< (fe+ fo)(De —cs)

—~

—

c

= folpm —cs)
< U e(Ps, pj)

where p; = (par,pin) (€., p; is the price-vector obtained
by replacing p; ¢ by par). In the above expression, (a) holds
because the RHS represents the maximum payoff that SSP-¢
can possibly accrue at price p; ¢, (b) is due to the hypothesis
Die < De, (c) simply follows from the definition of p, in (7),
and finally (d) holds because the actual payoff received at p;
may include contribution from the overlap flow?. Thus, we see
that p; is strictly dominated by p;. [ ]

Since the SSPs have no incentive to choose a dominated
strategy, we can hence revise the range of allowable prices-
vectors of the SSPs (i.e., the action set) to [p¢, pas] X [P, Par]
(instead of [cs, pas]?). With the assistance of the above result,
we now state the following main theorem.

Theorem 1: There is no BNE in pure strategies for the
flexible-pricing game developed in Section II-D.

Proof: Consider a generic pure-strategy price vector pair
(p1,p2). We argue that (p1,p2) does not constitute a BNE in
each of the following (exhaustive) cases:

(1) Suppose p;; € (Pi,pm] for some ¢ € {1,2} and
t € {¢,h}. Then, (a) if p;; € (pi¢,pm] (§ # 7) then SSP-j
can acquire the overlap flow (and thus increase its payoff) by
choosing a price in (py, p;¢); (b) if pj+ = p;+ then choosing a
price less than, but arbitrarily close to p; ¢, SSP-j can benefit
by acquiring the complete overlap flow f, (instead of 0.5f,
if it continues to use p;,); (c) Finally, if p;; € [P, pi¢) then
SSP-j is better-off choosing a price in (p; ¢, pit).

(2) On the other hand, suppose p;; = p; for all < € {1,2}
and t € {¢, h}. Then, for p; = (par, pas) we have

Ui (pisDj) = filpoasr —cs) = (fe + fo) (e — cs)
> Uj(pirpj)

—

where the last inequality simply follows because, using p;,
SSP-j would only acquire partial overlap flow. SSP-5 can thus
benefit by deviating to p;. [ ]

With the above non-existence result in place, it is now nat-
ural to ask questions about mixed-strategy BNEs. Specifically,
we are interested in determining probability distributions over
the range of price-vectors (instead of individual price-vectors)
that can constitute a solution to the SSPs’ pricing problem.
The details are presented in the following sub-section.

IV. MIXED STRATEGY BNES

The definition of mixed-strategies involves allowing the
SSPs to choose prices p;; in a random fashion. Specifically,
for i € {1,2} and ¢ € {¢,h}, let G;; denote the c.d.f of
Dit» 1€, Git(p) = P(piy < p). We assume that G, is a
distribution on the set of undominated prices [p;, pas] (since
there is no rational in choosing any price less than p;; recall
Lemma 1). Finally, we use G; = (G, G; ) to denote a
mixed-strategy of SSP-:.

3if p;+ = pas for some (or both) t € {¢, h}; otherwise equality holds.



Uie(p,G;) = 0 (Gj,e(p)ft(p —cg) + (1 -

+(1-9) (Gj,h(p)ft(p —cs)+ (1 -

(fi+ fo) (0 = c5) = (6Gi.4(0) + (1= 0)G;

Gj,E(p)) (fe + fo)(p — 05)>

Gin®)) (i + fo)lp - CS)) ®)

(D)) folp = cs). ©

Given a mixed strategy G; of SSP-j, the payoff received
by SSP-i for playing price p, given that F; = f; (t € {¢,h}),
can be written as in* (8). The payoff term associated with @ in
(8) can be understood as follows. With probability 6 the flow
at SSP-j is f,. Then, further, with probability G ¢(p) SSP-j
chooses a price less than p in which case SSP-i gets to serve
only the monopoly flow f; accruing a payoff of fi(p —¢); on
the other hand, with probability (1 — G, ¢(p)) the price set
by SSP-j is greater than p in which case SSP-j receives a
payoff of (f; + f,)(p — c) by serving both monopoly as well
as the overlap flows. The term associated with (1 — ) can be
similarly understood. Simplifying (8) yields the simpler form
in (9) for the expression of the payoff Uf; ;.

The expected payoff received by SSP-¢ if it uses the mixed-
strategy G; = (G, Gi ) is given by

/ uzt pa

where the integral in the above expression is understood as
the Riemann-Stieltjes integral with respect to the distribution
function G+ [10]. We can now define mixed-strategy BNEs.

Definition 2 (Mixed-strategy BNE): A mixed-strategy pair
(G%,G%) is said to constitute a mixed-strategy BNE for the
flexible-pricing game if the following holds: for all ¢ € {1,2}
and t € {{,h} we have U; (G}, G7) > U;+(G;,G}) for all
mixed-strategies G; of SSP-i. A mixed-strategy BNE (G7, G3)
is said to be symmetric if G} = G} = G™. O

A. Deriving the Structure of a Mixed Strategy BNE

Obtaining mixed-strategy BNEs directly from the definition
is difficult in general. However, there is an equivalent repre-
sentation that can be used to compute mixed-strategy BNEs [9,
Section 4.11, Proposition 140.1]. We state this result without
proof (however, adapted to our notation) in the following.

Proposition 2 (Osborne 2004): Consider a mixed-strategy
(G},G%). For simplicity, let u;, := U;(G},G7). Then,
(G}, G7) is a BNE if and only if, for each player i € {1,2}
and state t € {{, h}

o G, does not place any probability distribution on any p

such that U; +(p, G}) < uj,.

o There exists no p such that U; +(p, G}) > u;,

The above two conditions imply that i; ;(p, G}) = u; , for all
p that lies in the domain of G7,, while U; +(p, G}) < uj, for
p that are outside its domain.

Uit (Gi, Gj) j) dGig(p)  (10)

4For simplicity, in (8) we overload the notation ; ; from (5) to also denote
the payoff received by SSP-i in response to a mixed strategy of SSP-j.

Using the above proposition we proceed to identify mixed-
strategy BNEs. Specifically, we compute a symmetric BNE>
whose structure is as reported in the following theorem.

Theorem 3: The mixed-strategy pair (G*,G*) constitutes
a symmetric BNE for the flexible-pricing game where G* =
(G3,G?,) is given by

GZ(I)) _ (fh(J; (_10)]?)]00) E]I;—ZZ; for g, < p <pyp (11)
o) = (fee; D) gj_gi)) for g < p < qn. (12)

The thresholds g, and ¢, are computed as follows:

pufn+cs(1—0)fo

L (12 (42
anlfe+ (1= 0)f,) + sy
u Fot fo “4)

Proof: Before proceeding to the details of the proof, it is
useful to note that G, and G} are indeed valid probability
distributions on their respective domains. For instance, we
see that G7 is increasing in p; also it can be verified (by
direct substitution and simplification) that G} (¢n) = 0 and
G (pm) = 1. Similarly, G is also increasing in p, satisfying
G;(q¢) =0 and G} (gn) = 1.

Now, the proof is essentially based on verifying the suffi-
cient conditions in Proposition 2. Equivalently, we show that
the payoff function U; ,(p, G*) is constant on the domain of
Gy, and lower elsewhere. The details are as follows.

We begin by recalling the expression for ¢/; ; in (9) (adapted
to the current case where (G, G;) = (G*,G*)):

Uii(p,G*) = 15)
(fo+ o) (0 = cs) = (0Gi (D) + (1 = O)G3(p) ) folp — c).

For t = /¢, evaluating the above expression for ¢, < p < gp,
we obtain (by noting that G, (p) = 0 for p in the above range)

ui,l(pv G*) =

Thus, the payoff stays constant in the domain of Gj. However,
for p < ¢y, since both G} (p) = G5.(p) = 0, we obtain

U; é(pa ) (f€+fo)(

(fe + fo)(qe — cs) =: uy. (16)

cs) < uyp.

SDetermining non-symmetric BNEs (if any) is a scope for future work.



Finally, for p > gy, substituting G;(p) = 1 and G} (p) from
(11), and simplifying yields

Uio(p, G*) = (fe — fn)p + ke

where ky = (thh — feecs+(1—=0) folqn — cs))
in p. Since f; < fy, it follows that the above expression is
decreasing in p. Thus, for p > g5 we have U; ¢o(p,G*) <
Ui o(qn, G*) = uj.

Similarly, for ¢ = h, evaluating the payoff expression in
(15) for qn, < p < pps we obtain

a7

is a constant

Uin(p,G*) = (fn + (1= 0)fo)(an — cs) = uj,. (18)
On the other hand, for p < g5, we obtain
Ui n(p, G*) = (fn — fo)p + kn (19)

where kj, = (fm — fnes + folqe — 05))- Since fn > fo
the above expression is increasing in p. Thus, for p < g, we
obtain U, 1, (p, G*) < U; n(qn, G*) = uj. ]

B. Illustration and Discussion

In Fig. 1 we illustrate the structure of the BNE distributions
G and G} for a numerical example (where f; =5, f, = 20,
fo = 10 and 0 = 0.6). Also depicted in the figure are
the respective payoff functions U/; , and U;j (see the plots
corresponding to the right-sided y-axis). The ¢;, and g, values
(computed using (13) and (14)) are 8.5 and 5.5, respectively.
These thresholds (marked on the x-axis) determine the respec-
tive domains of the BNE distributions G} and G7. The payoff
values u; = 180 and u; = 67.5 (computed using (18) and
(16), respectively) are similarly marked on the right-sided y-
axis. From Fig. 1 we make the following observations:

o We first note that the domains are non-overlapping. This
condition is necessary as otherwise (due to the form of
the payoff function in (15)) it would not be possible to
satisfy the condition U; +(p, G*) = uj (i.e., a constant)
for all p in the domain of G7.

« Further, we also notice that the distribution corresponding
to the state of larger flow has a “greater” domain, and
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Fig. 1. Illustration of BNE distribution and payoff functions.

vice versa. Specifically, the domain of Gj is [qn,p]
which is greater than that of G} (which is [ge, ¢z]). The
above requirement is necessary in the proof to show that
the value of the payoff U; .(p, G;) is lower outside the
domain of G. For instance, from (17) we notice that the
condition f; < fj, is critical to ensure that U; ¢(p, G*) <
uy for p € (qn,pum]. The above condition (i.e., fr < fr)
is similarly required in (19) to argue that U; ,(p, G*) <
uy, for p outside the domain of G7j.

The above two observations, in fact, enabled us to derive the

result in Theorem 3 as follows:

1) We first recognize that the domains of Gj, and G} are
of the form [gy, pas] and [ge, gr], respectively.

2) We then identify the forms of the distributions G; (p)
(t € {¢,h}) that is necessary to ensure that the payoff
U; +(p, G*) remains constant over the respective do-
mains. Expressions (11) and (12) are results of this
process.

3) We finally calculate g, and gy in an iterative fashion: we
first obtain ¢, by solving G (par) = 1; we then derive
q¢ by solving G (gn) = 1. The resultant expressions are
as reported in (13) and (14).

The above procedure can be extended to scenarios comprising
more than two flow levels. The details are presented in the
following subsection.

C. Generalization to Scenarios with Multiple Flows

Consider a general model where f; < fo < --- < f,, denote
n > 2 different flow levels. The probability that F; takes value
ft is given by 6; (for t € [n] where [n] := {1,2,--- ,n}). The
other aspects of the model remain unchanged. As a result, we
have the following analog of expression (15):

Uis(p.G*) = (fi + fo)(p — cs) = > 0:G1(p) folp — c5)

where G* = (G7,G5, -+ ,G) represents a mixed-strategy
BNE. Using the above payoff function into the 3-step proce-
dure discussed earlier (and extending the procedure to n > 2
flow-levels), we obtain the following generalization of the
result in Theorem 3:

Theorem 4: The mixed-strategy pair (G*, G*) constitutes a
symmetric BNE where G* = (G} : t € [n]) is given by

(ft ¥ iesfo)
* _ s=t (p—a)
G (p) B 0t fo (p - CS)

for ¢t € [n]. The thresholds g; can be computed via. backward
induction as follows: g, 41 := pas and

for ¢t <p < q41 (20)

qt+1 (ft + (1 - i:19s)fo> +cs0: fo

- @1
ft + z_:tesfo

gt =

fort=mn,(n—1),---, 1. O



Proof: The proof is exactly along the lines of the proof

of Theorem 3. We do not repeat the proof here for brevity. B

It is easy to verify that for n = 2 the above result readily

simplifies to the expressions in Theorem 3. Also, we note that

the payoffs functions remain constant over the domain of the

respective distributions. The value of the constant payoff uy
that is achieved by any p in the domain of G7; is given by

u: = <ft + ZQ@fO) (Qt - CS)'

s=t

(22)

We can again easily verify that the above expression is
consistent with the expressions of u; and v} in (16) and (18).

D. MNO Payoff

We finally compute the payoff received by the MNO when
SSPs operate using the symmetric BNE G* = (G},G})
derived in Theorem 3. For this, let us define p; = (p; ¢, pi.p) to
be the random price-vector of SSP-¢ such that the distribution
of p;. is given by G (for t € {{,h}). In other words, the
distribution of p; is given by G*. Define p; = (p;.e,Djn)
similarly, and assume that p; and p; are independent. Then,
recalling (1) and (2) the average payoff of the MNO can be
expressed as uy, := E|Un (pi, p;) |-

Towards computing the above expectation, we define the
conditional payoffs of the MNO as

UR/[(ti,tj) = E|:Z/IM (pz;p]) Fz = ti7Fj = tj
for t;,t; € {¢,h}. Now, noting that u},(¢,h) = uj},(h,?)
(since both the SSPs are identical), we can write

upy = 0ui(00) +20(1 = O)uj (¢, h)
+(1 = 0)*ul, (h, h).

(23)

Recalling (1) and (2) again, the individual payoff terms in the
above expression can be computed as follows: for ¢ € {¢, h}

wis(t,t) = (24)
2f (pM - E[pi,t}) + fo (pM —-E [min{pi,tapj,t}})

wir(6h) = > fi(par = Elpidl) + fo(par — Elpid))-

te{l,h}

Note that the above expressions have been simplified by
replacing E[p; ] by E[p;.] for ¢ € {{,h} (since both ex-
pectations are computed using the common distribution G7).
Also, we have made use of the observation p; ; < p; 5 (which
follows from the domain of the distributions G and G7 ; recall
Theorem 3) to simplify the min-term in the second expression.
Expectation of p; ; can be computed using the identity

Blpid = [ P> pidp= [ (- Gilohdp. @)
0 0
Similarly, since p;; and p;, are i.i.d it follows that
o 2
E[min{pi7t,pj)t}} = / (1 — G;‘(p)) dp. (26)
0

Using the above development in (23) and simplifying eventu-
ally yields (for brevity we have omitted the intermediate steps)

20(1 — 0)(par — cs)(fn — fo) fo
fo+(1=0)fo
V. FLEXIBLE VS. FLAT PRICING

The value of v} in (22) denotes the payoff achieved by SSP-

i (i € {1,2}) given that the respective flow-level is f;. Thus,
the average payoff is given by

ups = folpm — cs) — - (27)

u* = U;(G*,G*) = Zﬁtuf.
t=1

The above expression represents the payoff achieved by the
SSPs under the flexible-pricing scheme, referred to as the
flexible-pricing payoff. For n = 2, the flexible-pricing payoff
is simply given by

v = Oup+ (1 —0)uj, (28)

where u; and u} are as given in (16) and (18), respectively.

In this section we are interested in comparing the flexible-
pricing payoff with the payoff achieved under a flat-pricing
scheme (referred to as the flat-pricing payoff) where the SSPs
are restricted to announce a single price, irrespective of the
flow-level it may actually experience. This is in contrast to
the flexible-pricing scheme where the SSPs are allowed to set
different prices for different flow-levels it could experience.

In order to determine the flat-pricing payoff, we begin by
establishing a correspondence between the flat-pricing scheme
and the model studied by Li et al. in [5]. In [5], like in the flat-
pricing scheme, the SSPs are asked to announce a single price.
The model in [5] however assumes that the SSPs’ flows (F})
are deterministic, or in other words, there is a single possible
flow-level. This is in contrast to our model where the flows F;
are assumed to be random, taking values from the set { f¢, /1 }
(or {f: : t € [n]} in general). The above discrepancy between
the two models can however be resolved by simply replacing
the random flow in our model with the (deterministic) average
flow f, = 0f, + (1 — 0)f5. Indeed, given the flat-prices®
(ﬁi,ﬁj) of the SSPs, the payoff received by SSP-¢ depends
only on the average flow f, as follows:

- fa(P; — cs) if p; > p;
Ui (p:,0;) = § (fa+ fo)(Bi —cs) if p; <;
(fa +0.5f0)(D; —cs) if p; =D,

The above expression is identical to the payoff expression
considered in [5]. Thus, leveraging the results from [5], we
immediately identify the structure of the mixed-strategy BNE
in the flat-pricing scheme.

Theorem 5 (Li et al. 2019): The mixed strategy (G ,G )
constitutes a symmetric BNE for the flat-pricing scheme where

_ (fa + fo) (P — qa)
(p>_ fo p—=cs

*

G

for ¢, <p < pum. (29)

5We use overline for all notations corresponding to the flat-pricing scheme.
Also, note that p; and ﬁj are scalar prices, which is unlike the case in the
flexible-pricing scheme where these are vectors (e.g., p; = (Pi,¢, Pi,n))



The threshold ¢, is given by

o = Py fa +csfo
‘ fot+fo

Discussion: It is interesting to compare the above result
with the form of the BNE for the flexible-pricing scheme in
Theorem 3. For this, we first note that for 6 = 0 or 6 = 1,
since only one of the flow-levels occur with probability 1, our
model reduces to the scenario studied in [5]. Suppose 6 = 0
then, noting that fa fn, and simplifying (11) and (13) we
obtain G} = G and qn = qq (while the dlstrlbutlon G
degenerates). The case § = 1 similarly yields G} = G and
q¢ = qq. Thus, our result in Theorem 3 is a generalization of
the above result by Li et al. in [5].

Now, for a given price p, the payoff received by SSP-¢ when
SSP-j uses the mixed strategy G can be written as

(30)

= G OMulp—cs)+ (1— “(0)) (fa+ f)(p — cs)
(fa+ fo)(p—cs)— (P)fo(p—cs)
)

(fa+ fo)(4a _CS)
fa(par — cs)

for p € [¢q, pas]- Thus, we see that the payoff remains constant
for p in the domain of G". As a result, the flat-pricing payoff
(i.e., the average payoff) is simply given by

T =U;(G,G) =

Ja(par — cs) 3D

In the following lemma we establish the relation between
the flexible and flat-pricing payoffs in (28) and (31).

Lemma 2: The difference in payoffs achieved by the SSPs
in the flexible and the flat-pricing schemes is given by

_w) = 0(1 —6)(pm — cs)(fn — fe) fo
(fn+ (1 =0)fo) ’

Proof: Substituting the expressions of gqp, ¢ and g,
(from (13), (14) and (30), respectively) into (u* — uw*), and
simplifying yields the above result. Since the steps are straight-
forward, we do not present the details here for brevity. ]

Discussion: Since py; > cg and fp, > fy, from (34) it
follows that u* > w*, with equality if and only if § = 0
or § = 1. Thus, the SSPs can achieve a higher payoff in
the flexible-pricing scheme than if flat-pricing were to be
implemented. Although we expect similar result for the general
case comprising more than two flow-levels (i.e., n > 2), we
leave the details of the generalization to future work. Here, we
instead conduct a numerical study to demonstrate the efficacy
of the flexible-pricing scheme for the general case. Details are
available in Section VI.

Finally, we compute the payoff received by the MNO under
the flat-pricing scheme. Analogous to the conditional payoff
term u},(¢,t) in (24), the MNO’s payoff in the flat-pricing
scheme can be written as

Why = 2fa (pM —ED]) +fo (pM _E{min{ﬁi’ﬁj}b

(u*

(32)

where p,; and pj are i.i.d random prices with their common
c.d.f given by G in (29). Substituting the expectation terms
(which can be computed using the identities in (25) and (26))
in the above expression and simplifying yields the following
simple form for the payoff expression

uyy = folpm — cs). (33)
Analogous to the result in Lemma 2, we have the following:
Lemma 3: The difference in payoffs achieved by the MNOs

in the flexible and the flat-pricing schemes is given by

20(1 = 0)(par — cs)(fn — fofo

Uy —Upp) = — (34)
(e = o) (0= 0)1,)

Proof: The proof easily follows by recalling the expres-

sions of u}, and w}y, from (27) and (33), respectively. |

Discussion: From the above result we see that MNO
achieves a lower payoff in the flexible-pricing scheme. How-
ever, comparing the above result with that in Lemma 2, we see
that the amount of loss in payoff incurred by the MNO is equal
to the total gain in payoff achieved by both SSPs. Thus, the
net-payoff in the system is conserved when moving from flat
to flexible-pricing scheme. Further, from mechanism design
point-of-view, the MNO is in fact not at loss in the flexible-
pricing scheme as its payoff in (27) remains non-negative
inspite of being a neutral entity who sets up the game between
the SSPs (by first fixing the price pjs, and then instructing the
SSPs to announce their flexible prices). Formally, the flexible-
pricing scheme is incentive compatible as all entities achieve
non-negative payoffs.

VI. NUMERICAL WORK

In this section we will compare the performances of the
flexible and the flat-pricing schemes. Instead of comparing the
raw payoffs (u* and u*) we choose to use the price-of-anarchy
(PoA) metric that takes into account the social optimal payoff
that the SSPs could achieve it they choose to cooperate with
one another while setting the prices. Formally, the PoA, for
instance, for the flexible-pricing scheme is defined as follows:

Social Optimal Payoff  uep
Payoff at BNE ~ wu*

where uop = (fo +0.5f5)(par — cs), which is the maximum
payoff that each SSP can accrue if both SSPs were to choose
the price-vector p = (pas,par)’. From the above definitions
it follows that PoA > 1 with a lower value being more
preferable (as is would imply that the payoff at the BNE is
closer to the optimal payoff). Similarly, the PoA for the flat-
pricing scheme is given by PoA = /U

In Fig. 2 we present the results of our PoA study. We first
fix the values of the following parameters: cg = 1, pps = 10
and f, = 5. The other parameters 6, f, and fj, are then varied
to obtain the respective plots. For instance, in Fig. 2(a) we
depict PoA vs. 0 for f, = 10 and f;, = 20. The plots in
Fig. 2(b) and 2(c) are similarly obtained by varying f, and

PoA =

(35)

"However note that (p,p) does not constitute a BNE, and hence is not
considered a rational solution to the SSPs’ pricing problem.
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pends only on the average flow f, (= 12.5 for all n) the PoA
value does not vary with n. From Fig. 3 we notice that the PoA
of the flexible-pricing scheme (including n = 100 and 1000)
always remains lower than the PoA incurred by the flat-pricing
scheme. The flexible-pricing scheme is thus also efficient in
the general scenario comprising more than 2 flow-levels.

VII. CONCLUSION

We proposed a flexible-pricing scheme for the problem
of mobile data offloading in scenarios where the flows (i.e.,
offloaded traffic) are random. Formulating the problem as a
Bayesian game, we derived results illustrating the structure of
a symmetric mixed-strategy BNE (Theorem 3 and 4). We also
conducted a study to compare the flexible-pricing scheme with
the traditional flat-pricing scheme. The efficacy of the flexible-
pricing scheme over the flat-pricing scheme (from SSPs point-

Fig. 3. PoA of the general model comprising n > 2 flow-levels

fn, respectively, by fixing the values of the other parameters.
Inspecting the plots in Fig. 2 we conclude that the overall
performance of the flexible-pricing scheme is superior to that
of the flat-pricing scheme.

In Fig. 3 we study the effect of increasing n (number of
flow-levels) on the PoA of the flexible-pricing scheme. As
before we fix cg = 1 and py; = 10, while we set f, = 10.
Then, for a given n > 2 we choose n equally spaced flow-
levels f; (¢t € [n]) in the interval f; = 5 to f,, = 20. All the n
flows are assumed equally likely so that 6, = 1/n for all ¢t €
[n]. We make the following observations from Fig. 3: (i) First,
we note that PoA is increasing with n, implying that there is
no benefit in providing a detailed distribution of the flows to
the SSPs. (ii) The increments in PoA are however reducing,
thus implying that the PoA may eventually converge for larger
values of n (from Fig. 3, notice the marginal increment in the
PoA value as n is increased from 100 to 1000).

Finally, we compare the PoA of the flexible-pricing scheme
in Fig. 3 with the corresponding PoA of PoA = 1.4 incurred
by the flat-pricing scheme. Since the flat-pricing payoff de-

of-view) was also demonstrated via. a numerical study.
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