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Abstract—We propose two downlink scheduling algo-
rithms that take advantage of partial information on
future channel conditions for improving the sum utility.
The scheduling model allows for both power control and
channel allocation. The objective of the scheduler is the
long-term utility under an average power constraint. The
two algorithms incorporate the channel predictions in their
decisions.The STO1 algorithm computes the decision in
each slot based on the means of future channel gains.
Depending on the horizon considered, this can require
solving a large-dimensional problem in each slot. The
STO2 algorithm reduces the dimensionality by operating
on two time-scales. On the slower scale it computes an
estimation over a larger horizon, and in the faster scale of
a slot, it computes the decision based on a shorter horizon.
Numerical experiments with both fixed number of users
as well as a dynamic number of users show that the two
algorithms provide gains in utility compared to agnostic
ones.

Index Terms—Scheduling, utility maximization, average
power constraint

I. INTRODUCTION

Downlink scheduling and power control has been
widely investigated for wireless networks [1]–[4]. In
each time-slot, one or multiple base-stations have to
decide the users to serve and the transmit powers with
the objective of maximizing the sum of the utilities of
the users. Two different types of utilities can be defined:
(i) opportunistic [1], [2]; and (ii) long-term [3], [5]. In
the opportunistic model, the utility function operates on
the rate obtained in a time-slot whereas in the long-term
model, the utility operates on the average rate obtained
over an horizon.

The focus of this paper is on the long-term utility
model. When transmit powers cannot be varied, the
celebrated Proportional-Fair algorithm (see [6] and ref-
erences therein) is known to work well when the utilities
are logarithmic functions of the total rate. This algorithm
belongs to the class of gradient-based algorithms that
choose the user that maximizes the marginal utility or

the gradient of the utility function. In [3] the gradient-
based solution was then extended to the setting in which
joint power control and user scheduling is possible.

We revisit this problem in the context of vehicles
which share their itineraries with the decision maker.
With the availability of SINR maps in urban zones, the
decisions can now be based also upon the future channel
conditions of the users (or vehicles) [7]. The future
channel conditions are, however, not known exactly as
the they vary randomly in time. The SINR maps are
assumed to give the expected values of the channel gains
on the routes takes by the users. With this additional
information on the future expected channel gains, per-
formance improvements can be expected compared to
the setting when this information is not available.

We consider a downlink scheduling and power control
problem for one base station with an average power
constraint. The objective is the sum utility of the users,
and the dependence of the utility function on the channel
allocation and transmit power is similar to that in [3]
with only one sub-channel and we do not have queues.
In that respect, our model is a special case of that in
[3]. However, the scheduling algorithms that we propose
can be extended to the multiple sub-channel case though
for this first paper we restrict ourselves to the simpler
case of one sub-channel. There are two difference with
the models studied previously. The first, and the main
difference is that the base station is also aware of the
mean channel gains in the future slots, and the second
one is that we include an average power constraint over
time in the optimization problem.

A. Contributions

We propose two heuristics for that use information
on future channel conditions in order to improve the
total utility. Both the heuristics were first proposed
in [8] in a setting without power control. The first
one optimizes over future time-slots in every current
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slot whereas the second one reduces the complexity
by optimizing over the future time-slots only once in
a certain number of slots. The performance of these
heuristics will be evaluated on three types of stochastic
models for the channel gain processes. In the first, the
channel gains are a stationary process with fixed mean
channel gains (which can be different for different users)
whereas in the second model, the mean channel gains
are themselves varying on a slower time-scale to that of
the channel gains themselves. Finally in the third model,
the mean channel gains vary in every slot. For three
models, these heuristics are shown to perform better
than the other setting in which future information is not
available.

B. Related work

Scheduling on the downlink but with fixed power
examined in numerous papers [9]–[11]. For a logarith-
mic utility function, the Proportional-Fair (PF) scheduler
has been known to be optimal for stationary channel
conditions [6] and its performance has been analyzed in
both static and dynamic user scenarios [12]. A restless
bandit framework for network utility maximization for
channel states modeled as partially observable Markov
chains is proposed in [4].

In [13], future rates are assumed to be known accu-
rately over the optimization horizon and improvement in
data rates and fairness is compared with algorithms such
as greedy (or max-rate) and equal share. Proportional-
Fair algorithms with partial information on future chan-
nel conditions have been proposed in [14] (on short-time
scales) and [7] (on longer-time scales). The algorithm in
[7] is based on SINR maps that can be obtained from
vehicles or users that were present earlier. They pro-
posed a PF-like index algorithm that takes into account
the future rate allocations using round-robin or a few
other heuristics. In [8], we proposed two heuristics that
solve in each time-slot the utility maximization problem
over a short-term horizon assuming that the means of the
future rates are known over this short horizon.

The joint optimization of channel allocation and
transmit power control has been investigated for dif-
ferent multiplexing schemes such as like CDMA [5]
and OFDM [3]. The proposed algorithms based their
decisions on the current channel conditions and previous
decisions. In the context of high-speed trains, [15] solves
the opportunistic utility maximization problem assuming
all the future rates are known and with average power
constraints.

This paper generalizes the algorithms in [8] for joint
channel allocation and transmit power control in order

to maximize the total long-term utility. In addition to
this, we also include an average power constraint on
the base-station. These algorithms can be seen as being
similar in spirit to model predictive control [16].

C. Organization

The system model and the optimization problem is
presented in Section II where we also explain the
different channel-gain models. In Section III, we de-
scribe the two algorithms that we propose as well as a
baseline locally optimal algorithm which can be seen as
gradient-based scheduling. These performance of these
algorithms is then evaluated numerically in Section IV.
Finally, we state the conclusions and future research
direction in Section V.

II. PROBLEM FORMULATION

Consider a base station with K mobile users in its
coverage range. In time-slot t, the base station transmits
to user i with power pi(t). Assume that user i has a
channel gain of γi(t) in slot t. These gains will be
assumed to stochastic and independent between vehicles
but not necessarily stationary for each user.

The received data rate for user i is computed accord-
ing to the Shannon formula:

ri(t) = xi(t) log

(
1 +

γi(t)pi(t)

xi(t)

)
, (1)

where xi(t) is the fraction of the channel assigned to
user i is slot t. User i gets a utility of Ui(z) when it
obtains an average rate of z. In order to keep the notation
light, we will write ri(t) as a shorthand for ri(x, p, γ).
Let S be the appropriate dimensional simplex. We shall
the use the notation

[xi(t)] ∈ S (2)

to mean that the vector [x1(t), . . . , xK(t)] ∈ S , where
S is the K-dimensional simplex.

The utility function will be assumed to concave and
differentiable. A widely-used class of utility functions
is that of the α-fair functions [17] that are parametrized
by α ≥ 0:

Ui(z) =

{
z1−α

1−α , α 6= 1;

log(z), α = 1.

The special case of α = 1 is also known as the
proportional-fair utility function.

The objective of the base station is to choose the
power and the channel allocation so as to maximize the
total utility of these K users over a horizon of T time



slots. That is, the base station solves the optimization
problem:

maximize
K∑
i=1

[
Ui

(
1

T

T∑
t=1

ri(t)

)]
(OPT)

subject to [xi(t)] ∈ S,∀t; (3)
1

T

∑
t

∑
i

pi(t) ≤ P̄ ; (4)∑
i

pi(t) ≤ Pmax ∀t. (5)

Here P̄ is the average transmit power budget available to
the base station, and (4) is the average power constraint.
This constraint also makes the problem different from
that in [3] where there was no constraint on the average
power.

Remark 1 (Short-term fairness). A drawback of the
utility function defined on the average rate is that if the
scheduler knows that, for a particular user, the channel
gain may be very high some time in the future then it
might wait until this time to serve this user. This user
may be starved of allocations in the short-term and the
solution may be unfair to this user on short-time scales.
One way to resolve the short-term unfairness is to
introduce additional quality of service constraints such
as requiring each user be scheduled at least once every
given number of slots. This constraint was imposed in,
for example, [7]. We can also include this constraint
in the optimization problem. For simplicity, we do not
impose it. We believe the results will be similar as long
as this constraint is not very restrictive.

Remark 2 (Fractional channel allocation). In (OPT) we
have allowed for fractional channel allocations. If the
system imposes a binary constraint, that is only one user
on one channel in any given slot, then these constraints
can be imposed in OPT as well as in the algorithms
we propose. In the experiments with a logarithmic util-
ity function, we observed that allocations were mostly
binary. So, we expect the qualitative conclusions will be
valid whether allocations are binary or not.

Remark 3 (Maximum power constraint). For concise-
ness, we shall not write the maximum power constraint
explicitly in the optimization problems that we will
define from now on. This constraint will be implicit and
assumed to be applicable in all slots.

The current literature mostly solves (OPT) when the
base station is aware of only the channel gains in the
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Fig. 1. Mobility model.

current slot1. For vehicles sharing their itineraries, par-
tial information on the future channel conditions could
also be available to the decision maker in the current
time-slot. We assume that this partial information is in
the form of the mean of the channel gains in the future
slots. One would expect to improve the value of the
objective when this information is incorporated in the
decision-making.

A. Channel gains

The heuristics will be evaluated on three different
stochastic models for channel gains: (i) the stationary
model in which, for each vehicle i, γi(t) are independent
and identically distributed across t with mean γ̄i; (ii)
non-stationary and slowly varying model in which, for
each vehicle i, the mean of the channel gains varies on
a slow time-scale. For example, for a time-slot of 2 ms,
the means may vary every 100 slot or 200 ms; and (iii)
a mobility model on a stretch of road, where cars can
come and leave as shown in Fig. 1. For this model γi(t)
are non-stationary, and also the mean of γi(t) changes
every slot.

Partial information on future channel conditions will
be shown to be helpful for the second model and the
third model. Nevertheless, the first (or the stationary)
model will still be useful to illustrate the benefits of
being able to vary the allocated power under an average
power constraint.

III. ALGORITHMS

In this section, we present the three algorithms that
will be evaluated in the numerical experiments. The first
one is the standard gradient-based scheduling which will
be taken as the baseline. The other two are the ones we
propose in this paper.

A. Locally optimal algorithm

The locally optimal algorithm is a special case of the
one in [3] for the scenario in which there is only one

1We shall use slot and time-slot interchangeably to mean the
decision making instants.



sub-channel and the power budget is P̄ in each slot. We
remark that the algorithm can be handle the multiple
sub-channel case but that in this paper our focus is on
the single sub-channel case. When there is no average-
power constraint as in [3], this algorithm chooses max-
imizes the objective function computed without the
knowledge of the future scheduling decisions. That is,
in slot t, the scheduler solves

maximize
K∑
i=1

[
Ui

(
1

t

t∑
t=1

ri(t)

)]
(LA)

subject to [xi(t)] ∈ S,∀t; (6)∑
i

pi(t) ≤ P̄ ,∀t. (7)

Here, the past rate ri(s) for s = 1, 2, ..., t − 1 are
known to the scheduler, so the decision variables are
the channel allocations xi(t) and the transmit powers
pi(t) in slot t. The maximum power constraint is set to
P̄ in order to make the comparison fair with algorithms
which are subject to the average power constraint of P̄ .
For the logarithmic utility function, we shall call this
the Proportion Fair (PF) solution.

B. Short-term Objective 1 (STO1)

We begin by defining a big-slot to be B consecutive
time-slots. The first heuristic we propose uses future
mean channel gains to improve the objective. It includes
in its decisions the future channel allocations and trans-
mit powers but only on the scale of big-slots. In each
time-slot, the allocations are recomputed for the current
time-slot as well as the future big-slots. The intuition
behind this is to maximize in each slot the long-term
objective based on the best information available. We
explain its workings in the context of the non-stationary
slowly varying channel model and the mobility model.

For the slowly varying model, B will be the number
of time-slots during which mean channel gain remains
constant whereas in for the mobility model B can be set
by the system designer depending on how fast the mean
channel gains vary. Let T̂ = T/B be the number of
big-slots in the horizon, and let τ̂t ∈ {1, . . . , T̂} be the
big-slot to which time-slot t belongs to, and let θt be the
number of slots remaining in big-slot τt not including
t, that is

θt = (τt + 1)B − t.

We shall use the notation x̂ for a quantity that is com-
puted over a big-slot. For example p̂i(τ) will denote the
power used in all the slots inside big-slot τ . Similarly,

r̂i(τ) = Bx̂i(τ) log

(
1 +

γ̄i(τ)p̂i(τ)

x̂i(τ)

)
(8)

is the total rate obtained by vehicle i in big-slot τ when
it is served x̂i(τ) fraction of time at a transmit power of
p̂i(τ). Note that here the rate is computed assuming that
the channel gain is its mean value in big-slot τ . With
slight abuse of notation,

r̂i(τt) = θtx̂i(τt) log

(
1 +

γ̄i(τt)p̂i(τt)

x̂i(τt)

)
, (9)

shall denote the total rate in the remaining slots in
current big-slot τt. Also, define

Pt = T P̄ −
K∑
i=1

t−1∑
s=1

pi(s)

to be the total remaining power available to the sched-
uler in slot t.

In each slot, STO1 maximizes

K∑
i=1

Ui

 1

T

t−1∑
s=1

ri(s) + ri(t) +

T̂∑
τ=τt

r̂i(τ)


(STO1)

subject to

[xi(t)] ∈ S; [x̂i(τ)] ∈ S, τ = τ̂t, . . . , T̂ ; (10)
K∑
i=1

pi(t) + θtp̂i(τt) +

T̂∑
τ=τt+1

Bp̂i(τ)

 ≤ Pt. (11)

The variables in this problem are [pi(t)] and [p̂i(τ)], τ =
τt . . . T̂ , and the corresponding channel allocations. In
(11), the LHS is the total transmit power starting from
the current slot which has to be less than the remaining
power Pt.

For the mobile model, instead of solving (STO1)
over the whole horizon T , we solve it on a shorter
horizon, which is equal to the maximum staying time
of the users currently inside the system. This shorter
time horizon can vary from one slot to another, and it
explains the words ’short-term objective’ in the name
of the algorithm. The advantages of this is to reduce
the computation time which can be helpful when the
algorithm has to be executed every 1ms.

C. Short-term Objective 2 (STO2)

The STO1 algorithm recomputes in each time slot
the optimal solution of the future big-slots. In STO2,
we recompute the solution of the future big-slots only
at the beginning of each big-slot. Inside a big-slot, we
compute only the solution for the current slot assuming
the solution for the future big-slots to be the same as



that computed at the the start of the current big-slot.
That is if t ≡ 1 (mod B), STO2 first maximizes

K∑
i=1

Ui

 1

T

t−1∑
s=1

ri(s) +

T̂∑
τ=τt

r̂i(τ)

 (STO2-Big)

subject to

[x̂i(τ)] ∈ S, τ = τ̂t, . . . , T̂ (12)

B

K∑
i=1

T̂∑
τ=τt

p̂i(τ) ≤ Pt. (13)

The variables in this problem are [x̂i(τ)] and
[p̂i(τ)], τ = τt . . . T̂ .

Next, in each slot t, we compute the optimal alloca-
tion and transmit power assuming that the allocations
and transmit powers in the future big-slots are those
computed from solving (STO2-Big). In slot t, STO2
maximizes

K∑
i=1

Ui

 1

T

t−1∑
s=1

ri(s) + ri(t) +

T̂∑
τ=τt

r̂i(τ)


(STO2-Small)

subject to
[xi(t)] ∈ S, [x̂i(τt)] ∈ S; (14)
K∑
i=1

(pi(t) + θtp̂i(τt)) ≤ Pt −
K∑
i=1

T̂∑
τ=τt+1

Bp̂i(τ).

(15)

The variables in this problem are [xi(t)], [pi(t)],
[x̂i(τt)] and [p̂i(τt)]. As can be seen, in a slot the
dimension of the problem is no bigger than the one
for STO1. As in STO1, for the mobile model, STO2
solves (STO2-Big) and (STO2-Small) over a shorter
horizion which is the maximum staying time of the users
currently in the coverage range. The pseudo code for
STO2 is shown in Algorithm 1.

Algorithm 1 The STO2 algorithm
t← 1
while t ≤ T do

if t ≡ 0 mod B then
Solve (STO2-Big) and obtain x̂(τ) and p̂(τ).
Solve (STO2-Small)

else
Solve (STO2-Small)

end if
end while

In terms of computational effort, compared to STO1,
STO2 solves a lower dimensional problem in each

slot except at the starting of every big-slot where the
dimension is same as for STO1. Thus, one can except
it to be faster but further from the optimal solution.

IV. NUMERICAL EXPERIMENTS

The numerical experiments were run in Python, and
all optimization problems were solved using the python
package CVXPY [18] and the solver MOSEK. The
results will be presented according to the channel-gain
models. For the stationary and slowly varying channel
models, we assume that the number of users is fixed.
The third model will be evaluated in a dynamic setting
in which users will arrive and leave the network.

In all the experiments, P̄ is set to 15 and Pmax is
set to 30. Whenever we show any performance measure
of the optimal solution, it will be assumed to mean that
the optimal is computed assuming all the future channel
gains are known exactly.

A. Stationary channel

For the first experiment, we take K = 4, that is four
users, and a logarithmic utility function for every user.
The vector of means [γ̄i] = [6.76, 5.45, 4.35, 1.31]. The
channel gain in slot t for user i is generated as follows:

γi(t) = γ̄iAi(t; η) (16)

Here Ai(t; η) is a sequence of i.i.d. uniform random
variable in the range [1− η, 1 + η]. We shall refer to η
as the noise level. It is assumed that Ai(t) and Aj(t) are
assumed to be independent for i 6= j. Varying η from
0 to 1 changes the variance of Ai(t) from low to high.
For η = 0, the channel gains become deterministic and
known to the decision maker.

Remark 4. The method for generating γi(t) need not
be necessarily multiplicative as in (16). Our heuristics
can be used as long as the means of the future channel
gains are known. In this paper, we limit the numerical
evaluation to the form in (16).

Figure 2 shows the total utility as a function of the
noise level η. The time horizon T was taken to be 500
with 5 big-slots, that is, one big-slot has B = 100.
If the scheduling slot is 1 ms as in 4G [19], then the
scheduling horizon is of 500 ms. Five sample paths for
channel gains were generated, and the plot shows the
average of these 5 samples. The label PF is for the local
optimization algorithm. The suffix FP attached to STO1
means that STO1 was run wilth a fixed power budget
of P̄ in each slot.

As expected, allowing for an average transmit power
constraint and using future information (even if it is just
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Fig. 2. Total utility as a function of noise level. Channel is stationary.
Log utility function.

the mean channel gains) improves the utility. When η =
0, all the algorithms are equivalent and give the same
utility since the channel gain is the same is every time
slot and is known. Further, performance improvement is
more when the noise variance is higher which is again
to be expected.

B. Slowly varying channel

Next, we conduct experiments with the slowly varying
channel model. It is assumed that the channel means
are constant during B = 100 slots. The optimization
horizon is T = 2000, that is there are 20 big-slots in
each run. The mean channel gains were first determined
for each big-slot. Within a big-slot, the channel gains
were then generated using the same method as for the
stationary case and given in (16). The number of users
was again set to 4.

In the first experiment, the mean channel gains are
relatively homogeneous with an empirical average of
the mean channel gains being [5.98, 5..55, 4.69, 5.30].
Figure 3a, plots the total utility as a function of the
noise level while Fig. 3b shows the total transmit power
in a slot as a function of time-slot. The data in the latter
plot was obtained on a separate run with B = 50, η = 1,
and only STO2 and OPT are shown so as to have a more
readable figure.

We observe that all algorithms except PF are close
to optimal almost throughout. Since the total transmit
power in a slot is not far from P̄ , STO1FP is almost
as good as STO1. However, in this scenario prediction
is still useful as PF is away from OPT even for η = 0,
that is when there is no noise.

The mean channel gains in the second experiment are
widely varying with the empirical average of the mean
channel gains being [2.63, 10.3, 3.76, 0.009]. One user

0.0 0.2 0.4 0.6 0.8 1.0
Noise level ( )

0.55

0.60

0.65

0.70

0.75

0.80

0.85

To
ta

l U
til

ity

PF
STO2
STO1
STO1FP
OPT

(a) Total utility vs. noise level
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Fig. 3. Slowly varying channel. Log utility function. Experiment 1.
η = 1.

is in a very bad channel state, whereas another one has
much better mean channel gains than the others. The
plots for the total utility and total transmit power in a
slot are shown in Fig. 4. Again, the total power was
computed from a separate run.

This time we observe that both power control and
channel prediction result in improvements. Due to one
user being much worse than the others, the optimal
transmit power varies much more than in the previous
experiment and hits the maximum constraint quite of-
ten. Since the fixed-power version is inflexible in this
respect, it performs worse for all noise levels.

C. Mobility Model

Consider a stretch of road of length 1 km covered
by one base station, in which vehicles enter from the
left and leave on the right (Fig. 1). To simplify for
illustration, we assume they move with same velocity
v = 25 m/s, but the algorithms presented in Sec. III
do not depend on this assumption. So they stay in
the coverage range of the base station in 40 seconds.
New vehicles can enter the network only at the start of
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Fig. 4. Slowly varying channel. Log utility function. Experiment 2.
η = 1.

the big-slots. The length of a big-slot is set to 1 sec.
The probability of a new arrival in a big-slot is set to
p = 0.3. For each value of noise level (η) we simulate
this network for 800 seconds. In this model, the channel
gain of mobile user is non-stationary and varies every
time slot (1 ms), STO1 and STO2 solves over an horizon
of 40 seconds which is the staying time of users in the
network. These two aspects make this model different
from the two first models. Since the dimension of (OPT)
is very large in this case, we do not compute the optimal
solution in the experiments. Also, since STO1 solves
a high dimensional problem in every slot compared to
STO2, it is much slower when the horizon is large. So,
we show only the performance of STO2 and PF.

Fig. 5 illustrates the channel gain curve in the noise
and no noise cases. Here, the rate is a function of users’
position which is in fact a function of the distance to
the base station. Let us take the left margin of the road
be 0, and the right margin be 1000, then for position
x ∈ [0, 1000] inside the coverage range, the channel
gain is equal to f(x) = β(1+κ exp(|500−x|/σ). Here,
β, κ, σ are adjustable parameters; in our experiment β =

Fig. 5. Channel gain for two cases: with noise (η = 0.2) and without
noise.
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Fig. 6. Mobility model. Log utility function.

0.01, κ = 40, σ = 200.
Fig. 6 illustrates the numerical results for the above

mobile system. The total allocated power is shown only
for a small interval of time. Again, we observe that
channel prediction leads to a better total utility. Further,
by observation, STO2 allocates more power when there



are many users (than usual) close to the peak where
channel gains are good with high probability.

V. CONCLUSIONS AND FUTURE WORK

We proposed two heuristics for joint power control
and channel allocation that exploit partial information
future channel conditions to improve the utility. Even
little information such as mean channel gains is suf-
ficient to observe improvement compared to when no
information is used.

This preliminary work opens several directions for
future work. First, these algorithms can be generalized to
multiple base-station networks. Second, the robustness
of these algorithms with respect to errors in future
information will be worth investigating. Third, dual-
decomposition methods could be applied to get a STO2-
like algorithm but with a penalty term instead of the av-
erage power constraint. For this relaxed problem, struc-
tural results similar to that for gradient-based scheduling
could be hoped for. Finally, these scheduling problem
can also be studied on the uplink, and similar algorithms
can be investigated for the opportunistic utility model.
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