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Abstract—The ever-growing trend of mobile users to consume
high quality videos in their devices has pushed the backhaul
network to its limits. Caching at Small-cell Base Stations (SBSs)
has been established as an effective mechanism for alleviating this
burden. Next generation mobile networks promise high Access
Network density, hence multiple SBS association options per
mobile user may exist. In this paper, we study the joint problem
of mobile user association to SBSs and content placement to
SBS-collocated caches, aiming to further optimize the utilization
of backhaul network. The problem is solved periodically, con-
sidering time intervals where the users’ location to the system
is assumed to be fixed. First, we decompose the joint problem
into two sub-problems that are solve sequentially, namely the
content preference similarity-driven user association and the
demand aware content placement sub-problems. We then propose
a heuristic that consists of multiple phases. In particular, at
a preparation phase, it performs clustering of users based on
the similarity of their content preferences, accounting also for
geographical constraints. The resulting clusters are then utilized
for the demand-aware association of users to the SBS, while the
placement of content is driven by the resulting local demand
in each SBS, and takes place at the end. We demonstrate
the effectiveness of our heuristic by evaluating its performance
against multiple schemes that either lack a preparation phase
or do not account for geographical constraints. As it is evident
through the numerical results, the user clustering that takes place
during the preparation phase can increase the overall cache hit
ratio up to 20%.

Index Terms—Clustering, User Association, Caching.

I. INTRODUCTION

Video on Demand (VoD) traffic toward mobile devices
increases exponentially and is going to explode in the next few
years. This mainly happens due to the increased mobile users’
daily consumption of video content for multiple purposes,
from business to entertainment. According to Cisco [1], there
will be a seven-fold increase of the global mobile traffic
between 2017 and 2022, with 79% of it being video. In
order to mitigate the impact of this trend to the Mobile
Network Operators’ (MNOs) backhaul network and maintain
high Quality of Experience (QoE) for mobile video viewers,
caching at Small-cell Base Station (SBS) has been proposed
as effective mechanism [2], [3]. The storage capability of the
SBSs is limited, hence they can only maintain a small fraction
of content items that mobile users may request through Con-
tent Provider (CP) platforms such as Netflix, Amazon Prime
Video or YouTube. To this end, sophisticated mechanisms that
capture the spacial locality of content demand are needed in
order to better utilize this storage space.

Next generation mobile networks support dual connectivity
for mobile devices, with simultaneous connectivity to a Macro-
Cell Base Station (MBS) and an SBS. Furthermore, the
high density of heterogeneous small-cell networks, results in
multiple SBSs being in the proximity of a mobile user, giving
the MNO a variety of association options. Consequently, user
association becomes critical since placing users with similar
demand patterns to the same SBS will boost the impact of
caching. The joint control over user association and caching
can be performed by the MNO with information gathered by
the CPs, e.g. user content preferences. The question of how to
exploit user similarity in terms of content preferences in order
to perform joint optimization is the topic of this paper.

The popularity of content items across different geographi-
cal areas is determined by local mobile users’ demand patterns.
Given that VoD platforms define multiple thematic categories
in order to better classify their content, demand patterns can
be extracted by taking advantage of mobile users’ preferences
over the different thematic categories. The common practice
for users’ association to SBSs is to associate each mobile user
to the closest (proximity-wise) SBS. However, this approach
does not take into account the user demand patterns, neither
does it take advantage of the multiple association options per
user. On the other hand, clustering of mobile users based on the
similarity of their content preferences, may bring significant
benefits for caching. In particular, an association strategy that
matches each user cluster to an SBS may increase the cache
hit ratio [4]. Recent studies assume that user demand patterns
are a priory known [2], [5] or are obtained through Machine
Learning techniques [6].

Traditionally, the actions of content placement and user
association are performed in two discrete steps. Content place-
ment is mostly driven by content items’ popularity, while user
association is usually performed based on user-SBS proximity
criteria, ignoring the user demand patterns. In practice, the
frequency of cache updates varies from “once a day” to “every
few minutes”, depending both on the type of content and the
strategy adopted by the cache operator. On the other hand, user
association updates are usually triggered by the mobility of
users. According to recent literature [7], users follow certain
mobility patterns in their daily life and spend most of their
time at place of “high-interest”, such as home and work. Con-
sequently, we can consider certain time intervals of few hours
where the users are supposed to remain static, i.e. in fixed
locations. The duration of these time intervals is determined
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by events of major shift on users’ geographic location. Such
an event will trigger a notable number of association updates
and a “bulk” update on caches’ contents since the demand in
each location will be significantly affected.

In this paper, we study the joint problem of associating
users to SBSs and caching content to the SBS-collocated
caches, taking into account the mobile users’ geographical
constraints and the similarity of their content preferences. We
decompose the joint problem into two sub-problems that are
solved sequentially. User association will take place first and
content placement will follow, hence caching decisions are
aware of the local demand generated in each SBS. However,
it challenging to a priori decide user association, so that
the effectiveness of content placement is boosted. We thus
introduce a preparation phase, where clusters of mobile users
are generated taking into account their content preferences.
Associating users from the same cluster to an SBS will
indirectly increase the efficiency of caching in terms of cache
hit ratio. Our contribution is summarized as follows:
• We formulate the joint problem of user association and

caching, which is proven NP-hard. Then, we decompose
it into two sub-problems that are sequentially solved, i.e.
(i) the user association sub-problem, which is driven by
the similarity of users’ content preferences and (ii) the
caching sub-problem, which performs content placement
driven by the local demand.

• We introduce a heuristic that initially performs a K-
means-inspired clustering of users on the content prefer-
ence space, capturing also geographical constraints aris-
ing from the users’ location. This serves as a preparation
phase for the user association that will follow.

• For the user association sub-problem, our heuristic takes
advantage of the resulting clusters and performs a
content-preference aware user association, by solving
an instance of Generalized Assignment Problem (GAP).
In particular, the user clusters are utilized for the so-
phisticated initialization of GAP instance parameters.
For the caching sub-problem, our heuristic performs a
local demand-aware content placement by solving a 0-1
Knapsack Problems per SBS.

• We demonstrate the effectiveness of our heuristic through
numerical results, evaluating it against schemes that fol-
low association approaches that either lack a preparation
phase or do not take into account the user geographical
constraints. As it is evident, our clustering phase can
increase the cache hit ratio up to 20%.

The rest of the paper is organized as follows. In section II
we introduce our system model. In section III, we formulate
the joint problem, through which the two sub-problem occurs,
and in section IV we present our heuristic. In section V
we demonstrate our evaluation results and in section VII we
conclude the paper.

II. SYSTEM MODEL

We assume that a set of SBSs S and an MBS M work
in conjunction, comprising a next generation mobile network,

Fig. 1. An MBS and three SBSs work in conjunction to cover a certain
geographic area, serving multiple users.

as depicted in Fig. 1. Each SBS can serve a set of mobile
users within its range, while the MBS can serve any mobile
user in the system. The system supports dual connectivity,
hence a user is always connected to the MBS but he can
simultaneously have a connection to one of the SBSs. A set
U of mobile users that access the Internet through the MNO’s
network, generate content item requests by browsing videos
in the platform of a CP such as YouTube, Netflix or Amazon
Prime Video. We assume that all SBSs are equipped with
caches, thus are capable to store content items provisioned
by the CP. Taking advantage of SBS’s caches, content can
be placed close to the users, thus leading to better user QoE
and reduced backhaul link utilization and conservation of
MBS’s radio resources. The dimension of time in our system
is captured by time-slots, i.e. time intervals of few hours. In
each time-slot, we consider a “snapshot” of our system where
users are assumed to be static, and their demands are assumed
stationary stochastic processes.

Users’ association to SBSs. Each mobile user u ∈ U is
by default associated to the MBS M , but he can as well be
associated to at most one SBS s ∈ S in his proximity. At
a given time-slot, user u may be located within the range of
multiple of SBSs. We use N (u) to denote the SBSs that u can
be associated with, i.e., the SBSs located in his neighborhood.
When a user u is associated to an SBS s ∈ S , s serves
as u’s primary source for fetching content, while the MBS
is mostly responsible for the control plane. Note that users
that can not be associated to any SBS will use MBS as their
primary content source. Figure 1 shows a scenario where a
geographic area is covered by an MBS and 3 SBSs. Some
users fall in the range of more than one SBSs, thus certain
association decisions should be taken.

SBS power constraints. Each SBS has a limited transmis-
sion power that is split among all users associated with it.
The mobile users have QoS requirements that come from the
CP platform, based on the “quality” of the acquired product
(720p, 1080p etc.). This means that the MNO should guarantee
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a minimum downlink data rate for each user. Hence, the
SBS resources should be allocated in a way so that the QoS
requirements of each associated user are satisfied. The cost of
achieving the required downlink data rate is not the same for
all users, as it is strongly related to the physical distance of the
user from the associated SBS and link conditions. In particular,
the achievable data rate rus for a user u associated to an SBS s
is an increasing and concave with respect to SINR (Signal-to-
Interference-and-Noise-Ratio) function, which can be derived
through Shannon’s formula:

rus = bus log2(1 + SINRus) , (1)

where bus is the bandwidth that SBS s allocates to user
u. Assuming that SBS s has a total bandwidth of Bs, the
number of users that can be served is limited and depends
on their SINR values for the given SBS. The SINR fades as
the distance of a user for the SBS increases, or the noise
and interference from other signal sources becomes higher.
In this work, we assume that SINR for each user-SBS pair
is given and the power of OFDMA sub-carriers is fixed. The
MNO only controls the bandwidth that is allocated to each
user for achieving the required data rate, i.e., the number of
sub-carriers. Thus, we assume that the bandwidth allocated
to each user is an increasing function on his distance from
the SBS. Finally, we assume that the only case where a
user is associated only to the MBS is when all SBSs in his
neighborhood have reached the Bs upper bound and cannot
serve more devices.

Content items. We consider that a content catalogue I is
made available to users U . Considering that there is a number
of features F whose values denote the type of a content
item or a mobile viewer, we assume that each item i ∈ I
is characterized by a vector pi ∈ [0, 1]F of dimension F .
The requested content items may have different sizes, ranging
from large movie files to small advertisement clips, thus we
use Li, i ∈ I to denote the size of item i in bytes.

Cache-enabled SBSs. We assume that each SBS s ∈ S
maintains a cache of storage capacity Cs bytes. Each cache
stores a set of content items Ps (cache placement), which is
a subset of the complete catalogue I. The placement to each
cache is determined once in each time-slot and can be only
updated during the transition to the next time-slot. Recall that
a time-slot can be of the order of few hours. The requested
items that are not available in the local caches are served by
the MBS M that fetches the content from a back-end remote
server located to the cloud.

Content demand. Each user u ∈ U is characterized by a
feature vector pu ∈ [0, 1]F of dimension F . Then, we can
derive user’s u preferences over all items i in the catalogue I,
by examining the cosine similarity of vector pu to each vector
pi, ∀i ∈ I. In other words, the following formula determines
how “close” to the preferences of user u item i is:

φ(pu,pi) =

F∑
f=1

pu(f)pi(f)√
F∑
f=1

p2
u(f)

√
F∑
f=1

p2
i (f)

(2)

By calculating the above for each user-item pair, we get a user-
to-items similarity vector

(
φ(pu,p1), ..., φ(pu,p|I|)

)
for each

user u ∈ U . This vector is normalized in order to extract user’s
u demand distribution du over all items in I. We denote as
du(i) the probability that item i ∈ I is requested by user u,
which is

du(i) =
φ(pu,pi)∑

j∈I
φ(pu,pj)

. (3)

III. PROBLEM FORMULATION

In this section we formulate the problem of jointly associ-
ating mobile users to SBSs and placing content in the SBS-
collocated caches. Then, we decompose the joint problem
into two sub-problems that are solved sequentially. First, a
content preference-aware user association is determined. Then,
a demand-driven content placement is decided for each SBS
independently. As preparation step for solving the former,
we propose a heuristic that takes advantage of clustering
techniques to perform an initial grouping of mobile users with
similar content preferences. The resulting user clusters are then
utilized for achieving a similarity-driven association of users,
based on their content preferences. Associating users with
similar preference to the same SBS will boost the efficiency of
content placement that will be performed by solving the later
sub-problem, i.e. it will increase the overall cache hit ratio.

A. Joint User Association and Content Placement Problem
Our objective is to maximize the portion of the total users’

demand satisfied by the content being cached at the SBSs.
We use two sets of binary decision variables that determine
users association and content placement, x = {xus}u∈U,s∈S
and y = {yis}i∈I,s∈S respectively. If xus = 1, user u is
associated to SBS s, while xus = 0 otherwise. Respectively,
yis = 1 means that item i is cached to SBS s collocated cache
and yis = 0, otherwise. Then, the joint content placement and
user association problem is formulated as follows:

max
x,y

∑
u∈U

∑
s∈S

∑
i∈I

xusyisdu(i) (4)

s.t.
∑
i∈I

yisLi ≤ Cs, ∀s ∈ S (5)∑
u∈U

busxus ≤ Bs, ∀s ∈ S (6)∑
s∈N (u)∪M

xus = 1, ∀u ∈ U (7)

xus ∈ {0, 1}, u ∈ U , s ∈ S (8)
yis ∈ {0, 1}, i ∈ I, s ∈ S (9)

where constraints (5) and (6) reflect the limited cache capacity
and bandwidth for each SBS, respectively. Constraint (7)
captures the fact that a user can have only one primary content
source, either one of the SBSs or the MBS. Note that the by-
default contribution of MBS as secondary content source is
not taken into account in the problem formulation. The above
optimization problem has been shown to be NP-hard [8], hence
we decompose into the two sub-problems that follow.
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B. Sub-Problems Formulation

In this section, we define the user association and caching
sub-problems in such a way that their objectives are aligned
with the objective of joint problem, i.e. they both aim at
maximizing the portion of total demand satisfied by the SBS
caches.

User association sub-problem: We decide the user as-
sociation, so that the aggregate over all SBSs preference
similarity of users associated to the same SBS is maximized.
We cannot yet accurately quantify the cache hit ratio, as the
cache placement will be determined in the next step. However,
the association of users with similar demand characteristics to
the same SBS will generate a more compact local demand, and
indirectly boost the effectiveness of caching. We assume that
each SBS s is characterized by a vector ps ∈ [0, 1]F , which
captures the “SBS content preferences”. Note that vector ps
is an input to our problem and can be initialized either by the
preferences of all users being in range or by more sophisticated
methods. In Remark 1, we elaborate more on the initialization
options for vectors ps and our approach. The user association
sub-problem is formulated as:

max
x

∑
u∈U

∑
s∈S

xus φ(pu,ps) (10)

s.t. (6), (7), (8).

The user-association sub-problem is an instance of the GAP,
for which multiple known approximation algorithms exist.

Caching sub-problem: We decide the content placement so
as to maximize the total demand satisfied by all caches, taking
as input the solution of the association sub-problem. Using Us
to denote the set of users associated to SBS s, the caching
sub-problem is formulated as follows:

max
y

∑
s∈S

∑
u∈Us

∑
i∈I

yisdu(i) (11)

s.t. (5), (9).

This formulation leads to solving multiple separate 0 − 1
Knapsack problems, one for each SBS.

Remark 1. While in the caching sub-problem we perform
a content placement that is aware of users’ association, the
association sub-problem cannot take into consideration the
content placement that will follow. We alleviate this lack of
awareness through a sophisticated initialization of each SBS
preference vector ps. To do so, we introduce a preparation
phase that initializes all SBS preference vectors through a
method that is driven by user clustering. The heuristic we
propose consists of two discrete phases:
• Clustering phase. It performs clustering of users based

on the similarity of their content preferences, accounting
for constraints raised by their location in the system.

• Association and Caching phase. First, it exploits the
resulting user clustering to perform sophisticated users’
association by solving the association sub-problem. Then,

TABLE I
NOTATION TABLE

Notation Context
I,U ,S Items, Users, SBSs
M MBS
F Number of features characterizing an item or a user
pi Vector with item’s i relevance to all thematic categories
pu Vector with user’s u preferences over all thematic categories
ps Vector with SBS’s s “preferences” over all thematic categories
φ() Function that estimates cosine similarity between two vectors
du Demand distribution of user u over all items
N(u) Set of SBSs that user u can be associated to
bus Bandwidth of SBS s allocated user u (if u is associated to s)
rus Achievable downlink data rate for user u if associated to SBS s
Bs Total bandwidth of SBS s
Cs Storage capacity of cache collocated with SBS s in bytes
Ps Items placement in cache s
Li Size of item i in bytes

it performs an association-aware content placement by
solving the caching sub-problem.

IV. OUR HEURISTIC

We introduce a pseudo-polynomial-time heuristic whose
constituent procedures are: (i) a preparation step, where a
location-aware clustering of users based on their content
preferences takes place. (ii) the user association algorithm,
that utilizes the resulting clusters of users for the sophisticated
initialization and solution of the user-association sub-problem,
and (iii) the content placement algorithm, that solves a 0− 1
Knapsack problem per SBS.

A. Clustering phase

We perform clustering of mobile users based on the similar-
ity of their preferences over the different content thematic cate-
gories. User preferences are already available in CP platforms,
thus minor effort is required for obtaining it. In particular,
we generate user clusters following an approach inspired
by the K-means clustering technique [9]. In our case, the
geographical proximity of each pair of users should be taken
into account together with the similarity of their preferences.
We thus avoid clustering together users that cannot be served
by the same SBS by virtue of proximity. This constraint can
be extracted from the capabilities of SBSs. The main steps of
the preparation phase are:

(i) Location-constrained user similarity. The similarity of
each pair of users is evaluated by means of cosine similar-
ity of their preference vectors. In particular, the similarity
φ(pu,pu′) ∈ [0, 1] between users u and u′ can be extracted
by (2). The calculation of cosine similarity for all user pairs,
results to a matrix Φ : |U| × |U| → [0, 1]. Considering
that the geographic coverage of an SBS is determined by
a radius ρ, we assume that it is not possible to associate
two users in the same SBS if their distance in greater than
2ρ. Given the coordinates (x, y)u, (x, y)u′ for each pair
of users u, u′ ∈ U , if the Euclidean distance of two user
locations is greater than 2ρ, we set element Φu,u′ to zero,
i.e.,

√
(xu − xu′)2 + (yu − yu′)2 > 2ρ =⇒ Φu,u′ = 0.

4



(ii) Initial centroids. In this step, we aim at creating a
set K = {κ1, ..., κ|K|} of clusters, where |K| = |S|. This
modeling decision is discussed in Remark 2. To kick off the
clustering process, we need to define |K| initial centroids, by
preforming the following:
• We utilize the resulting matrix Φ to calculate the average
preference similarity Φ̂u of each user to all other users in the
system

Φ̂u =

∑
j∈U\{u}

Φj,u

|U| − 1
(12)

• We select the user with the highest average similarity
u∗ = arg maxu Φ̂u, and we initialize the centroid of first
cluster κ1 ∈ K with this user’s content preferences, i.e.
pκ1

= pu∗ .
• For the remaining |K| − 1 cluster centroids, we follow an
iterative process until all |K| centroids have been determined.
In each step of the process, one of the remaining users is
selected to initialize a new centroid vector. The vector of the
i-th cluster’s centroid is determined by the following formula:

pκi =

{
pu∗

∣∣∣∣u∗ = arg max
u

[
Φ̂u −

1

i− 1

i−1∑
j=1

φ(pu,pkj )

]}
.

(13)
The first term in the formula above, is the average similarity
of user u with all others in the system, while the second term
captures the average similarity of user u with the already
initialized centroids of clusters κ1, ..., κi−1. The intuition
behind formula (13) is that we would like to initialize the next
cluster centroid with the preferences of a user that has a high
average similarity with all other users, while its preferences
significantly differ from the already initialized centroids.

(iii) Clustering process. With the initial centroids as in-
put, we perform an iterative user clustering process with a
rationale similar to that of K-means. Each iteration has two
steps that are repeated until the users-to-clusters assignment
converges, or until the maximum iteration is reached. First, we
assign each user to his closest centroid, in terms of location-
constrained preference similarity. The similarity of users to
the different centroids is again evaluated by means of cosine
similarity eq. (2). Thus, the “closest” centroid for user u is
given by κ∗ = arg maxκ φ(pu,pκ), where κ ∈ K. We use Uκi
to denote the set of users assigned to cluster ki. Second, we
recalculate the mean preference vector for each of the resulting
user clusters and we update the preference vector of respective
centroids, including its geographic location in the system. In
particular, the new centroid preference vector of cluster κ ∈ K
across all F thematic categories is pκ = (pκi(1), ...,pκi(F ))
where pκi(f) = 1

|Uκi |
∑

u∈Uκi
pu(f).

Remark 2. Recent literature [10] indicates that the strict
assignment of entire cluster(s) to the SBS, combined with
a low total number of clusters, may affect the efficiency of
content placement. In that context, a system could determine
cluster-SBS assignments that would lead to a slack loss in

Algorithm 1: Clustering phase
Input: Preferences pu and coordinates (x, y)u, ∀u ∈ U
Output: |K| user clusters, each cluster κ ∈ K has users
Uκ and preference vector pk

Complexity: O(|U|2)

Location-constrained user similarity:
1 foreach (u, u′) do
2 if

√
(xu − xu′)2 + (yu − yu′)2 < 2ρ then

3 Φu,u′ = φ(pu,pu′)
else

4 Φu,u′ = 0
end

end
Centroids’ initialization:

5 foreach u do

6 Φ̂u =

∑
j∈U\{u}

Φj,u

|U|−1
end

7 pκ1 =
{
pu∗
∣∣u∗ = arg maxu Φ̂u

}
8 for i = 2 : |K| − 1 do

9 pκi =

{
pu∗

∣∣∣∣u∗ = arg maxu

[
Φ̂u − 1

i−1

i−1∑
j=1

φ(pu,pkj )

]}
end
Clustering Process:

10 while Uκ,∀κ ∈ K remain the same do
11 foreach u do
12 κ∗ = arg maxκ φ(pu,pκ), κ ∈ K
13 Uκ∗ = Uκ∗ ∪ {u}

end
14 foreach κ do
15 Update pκ with avg. preferences of users in Uκ

end
end

terms of bandwidths, i.e. the spare bandwidth of an SBS could
remain unallocated since no unassigned user cluster would
fit in this SBS. In our study, we follow an approach where
the resulted cluster centroids (average content preferences)
are only utilized to perform a sophisticated initialization of a
GAP instance where the actual user association is performed.
Especially, during this initialization, we set the “content prefer-
ences” of each SBS and we do not perform a strict association
of entire clusters to SBSs. Eventually, users from multiple
clusters may end-up to the same SBS. Consequently, our
modeling decision to sets the number of cluster equal to that
of SBSs (|K| = |S|) will not lead into resources under-
utilization.

B. Association and Caching phase

In this phase, we initially map the mean preference vectors
of the resulting clusters to SBSs. However, this does not imply
the association of this cluster’s users to an SBS, but it is only
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used for initializing ps for each SBS s ∈ S. The main steps
of the association and caching phase are:

(i) Map cluster centroids’ mean preference to SBSs. We
map the mean preference vector of each cluster centroid to an
SBS taking into account both the benefit and the cost generated
when the users of a cluster are associated to a certain SBS.
We thus define a function V (κ, s) to estimate the value of
mapping cluster κ to SBS s, as:

V (κ, s) =
∑
u∈Uk

φ(pu,pκ)− b̂us . (14)

The first term denotes the potential benefit that will be gener-
ated if the users of the given cluster are associated to the given
SBS. The second term denotes the respective association cost
in terms of bandwidth. Note that b̂us ∈ (0, 1] is the normalized
value of bus. By applying formula (14) for each cluster-SBS
pair, we generate a |K| × |S| matrix V that gives a rough
estimate of the value of associating a cluster to each of the
SBSs. Taking V as input, we perform an one-to-one matching
between the mean preference vector of each cluster and the
SBSs by following the Hungarian method [11]. This results to
the initialization of all vectors ps, ∀s ∈ S.

(ii) Associate users to SBSs. We associate users to SBSs by
solving our association sub-problem (10), which is an instance
of the GAP. In particular, users and SBSs are mapped to the
items and agents/bins of the GAP, respectively. The value
for associating a user u to an SBS s is given by estimating
the similarity between the preference vectors of u and s, i.e.
φ(pu,ps) ∈ [0, 1], while the respective normalized association
cost is given by b̂us ∈ (0, 1]. To solve this GAP instance,
we apply the Martello-Toth approximation scheme [12] that
has a complexity of O(|U||K| log |K|+ |U|2). This algorithm
requires a desirability metric that drives the assignment. In
most of the cases, the desirability matches the value. However
it can also be a metric that combines both value and cost. In
our heuristic, we define desirability as φ(pu,ps)/b̂us.

(iii) Local demand-aware caching. Taking the resulting
association as input, we determine the placement of content
in each cache aiming to maximize the sum of local demand
that will be served across caches. This results in the caching
sub-problem which is tackled by solving a 0 − 1 Knapsack
problem for each SBS by using any related algorithm, e.g.,
the pseudo-polynomial Dynamic Programming algorithm in
[12]. The value of placing a content item i to the an SBS s
is given by aggregating the demand probabilities over all the
associated users to Us, i.e.

∑
u∈Us

du(i) = φ(pu,pi)∑
j∈I

φ(pu,pj)
. On the

other hand, the placement cost of item i is determined by its
size Li.

Remark 3. The overall complexity of our heuristic is deter-
mined by the sum of the individual complexities of its three
constituent procedures. The user clustering and the user asso-
ciation are two system-wide procedures that exhibit a polyno-
mial time complexity of O(|U|2) and O(|U||K| log |K|+|U|2),
respectively. For the caching procedure, we solve multiple
parallel 0 − 1 Knapsack problems, one per SBS-collocated

cache. Each caching procedure is performed by a Dynamic
Programming algorithm, which implies a pseudo-polynomial
time complexity O(|I|2), where |I| is the size of item cata-
logue.

V. EVALUATION

We demonstrate the performance of our heuristic against
alternative schemes that either do not perform clustering or
do not take into account the geographical constraint aspects.
The schemes under comparison are: (i) Our heuristic. (ii)
The JCA scheme, which is the algorithm proposed in [8], but
without accounting for recommendations. This scheme follows
a naive initialization of the GAP instance, that solves user
association. In particular, it does not perform clustering of
users as a preparation phase, instead the SBS preferences are
built based on the preferences of all users in the proximity
of an SBS. (iii) Our heuristic without taking into account
the geographical constraints, neither during the clustering, nor
during the association phases. (iv) A scheme that performs
user association based on the proximity of users and SBSs.
This scheme adopts the methods followed in association and
caching phase of our heuristic, however the objective of the
association problem is the minimization of association cost,
hence it has the same complexity with our scheme. (v) A
greedy algorithm that is briefly presented below.

Greedy algorithm. We first sort each user-item pair in
decreasing order of valuation, thus creating a matrix of |U|·|I|
values. Then, we parse the matrix once and for each user-time
pair we perform on of the following actions:
(a) If the user is associated, we check if the current item is
stored in the cache of the respective SBS. If it is not, and there
is enough cache capacity, we then store the item.
(b) If the user is not associated and there are available SBSs,
we estimate the “score” for associating the user to each of the
SBSs taking into account that a caching action may follow:

Score = aspen · asval − (1− aspen) · ascost +

capen · caval − (1− capen) · cacost
The association value asval captures the valuation of the
current user for items that are already stored in the cache
of the examined SBS. The caching value caval captures the
valuation generated for the users that are already associated to
the SBS if we store the current item. The association and cache
penalties, aspen and capen, take into account the residual SBS
data rate and cache capacity respectively. If the current item
is already cached, the second part of the formula is omitted.
The user with the higher score is associated.

Simulation Parameters. We set up multiple instances of
our system by setting different values on the key parameters.
The evaluated instances consist of an MBS and multiple SBSs
(4 to 50 ) serving a certain geographic region (10000 meters2),
where mobile users (50 to 500) are randomly scattered. Users
are requesting content items of variable size (4 to 6 MB) from
a catalogue (20 to 1000 items) based on their preferences.
Both mobile users and content items are characterized by a
feature vector of size 8 that follows a Zipf distribution. Each
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Fig. 2. Impact of total number of users in the system. Hit ration of all schemes
in a set up of: 1 MBS, 25 SBSs each of them able to serve from 7 up to 35
users, 100 total items, SBS density of 4 SBSs per user, cache size that fits
40% of total items and number of total users ranging between 100 and 400.

SBS can support a certain number of users (5 to 75) in his
range (10 to 85 meters) due to bandwidth limitations. The SBS
caches can store a limited number of items (10% up to 85% of
catalogue). By setting different values on these parameters, we
can evaluate the performance of all schemes under different
levels of network/users’ density and for system dimensioning.

Evaluation Metric. We use the percentage of the global
demand to be satisfied by the SBS-collated caches as the
evaluation metric for all schemes. We also use the term “hit
ratio” to refer to this metric. Note that users being associated
only to the MBS are also considered in the calculation of this
metric. The hit ratio for these users is 0. It is worth mentioning
that even a more % of improvement in overall cache hit ratio,
may result to significant cost reduction for the MNO.

Evaluation Results. The numerical results reveal that our
heuristic achieves superior performance (increase cache hit
ratio up to 20%) compared to all other schemes in most of
the cases. In particular:
(i) Number of users. For instances with only few users in
the system, our heuristic achieves a hit ratio which is very
close to the ones achieved by the JCA-No clustering and Our
heuristic without location-constraints schemes. However, as
shown in Fig. 2, when the total number of users in the system
increases, the performance of these two schemes significantly
decreases. We can also observe that as the total number of
users increases and the system is stressed, i.e. the SBSs cannot
serve a percentage higher than 4% of users in the system,
the proximity-driven scheme has the best performance since it
“fits” more users to SBSs.
(ii) SBSs’ density. Figure 3 demonstrates that as the number of
association options per user increases, our heuristic achieves
even higher hit ratio improvement compared to the proximity-
driven scheme, while it still significantly outperforms all other
schemes.
(iii) Users’ density. As shown both in Fig. 2 and Figure 3,
when the average number of users located in the range

Fig. 3. Impact of SBS density, i.e. average number of available SBSs per
user. Hit ratio of all schemes in a set up of: 1 MBS, 25 SBSs each of them
able to serve from 7 up to 35 users, 300 total users, 100 total items, cache
size that fits 40% of total items and SBS density from 1 up to 8.5.

Fig. 4. Impact of cache size. Hit ratio of all schemes in a set up of: 1 MBS,
25 SBSs each of them able to serve from 7 up to 35 users, 100 total items,
300 total users, SBS density of 4 SBSs per user and SBS cache size that can
store from 10% up to 80% of the total item catalogue.

of a single SBSs increases, the JCA-No clustering scheme
faces performance deterioration due to its naive approach on
initializing the SBS feature vector, i.e. ps.
(iv) Cache size. Figure 4 shows that as the cache size
increases, our heuristic maintains better performance than all
other schemes. Interestingly, the performance of the greedy
algorithm becomes higher than the CA-No clustering and Our
heuristic without location-constraints schemes when the cache
size approaches a value that is higher than 40% and 55% of
total catalogue, respectively.

VI. RELATED WORK

There are several studies for joint content placement and
user association [4], [8], [13]–[18]. Their objectives focus on
the minimization of the content access delay, minimization of
the aggregate operational cost to serve all the incoming request
or maximization of cache hit ratio. The authors in [13]–[15]
attempt to solve the join caching and association problem by
applying the McCormick envelopes and the Lagrangian partial
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relaxation methods. An issue with these solutions is the large
number of repetitions that need to be made in order to ensure
convergence. The authors in [16] attempt to solve the problem
with an iterative two step algorithm. In the first step, the
association is considered as fixed and they optimally determine
the placement of content. In the second step, the optimal
mobile user association is determined over fixed caches. A
similar approach is followed in [8], and a third step with
content items’ recommendation to users is also considered.
However, both [8], [16] lack extensive simulation results. The
authors in [17] perform a demand-aware user association to
SBSs, i.e. each SBS decide which user to serve based on the
local content availability and the data rates it can delivers.

The authors in [4], [18] consider clustering methods to
achieve efficient association of mobile users to the SBSs.
Specifically, in [4], a two-phase solution is proposed. First, the
authors consider a clustering algorithm that groups users with
similar content demand in order to associate them in the same
SBS. Then, a reinforcement learning algorithm is proposed in
order to learn the popularity distribution of contents requested
by its group of users to optimize its caching strategy. The
authors in [18] use a k-NN approach to cluster users with
similar demands and entirely associates different groups of
users to different SBSs. These studies do not use geographical
constraints during clustering process and do not dig into details
on how matching of clusters to SBSs is performed. Methods
for estimating the content items’ similarity has been proposed
for similarity caching [19]. However, in our problem we aim
at serving the users’ actual demand and do consider offering
of alternative items when the requested one is not available.
Finally, a comparative analysis of multiple initialization meth-
ods for the K−means algorithm has been presented in [20].

In this work, we decompose the joint problem into two
sub-problems that are solved sequentially, where the first one
focuses on the content preference-aware user association while
the second one handles the demand-aware caching per SBS.
Contrary to [4], [18], during the clustering process, our work
takes into account geographical limitations that may arise
from the users’ location and defines a method for mapping
user clusters to SBSs. Also, as shown in section V, our
heuristic outperforms algorithms that follows naive approaches
for capturing user preferences during the association process.

VII. CONCLUSIONS

In this work, we decomposed the NP-hard problem of
joint control over user association and content placement
into to simpler sub-problems. We proposed a heuristic that
solves the two sub-problems sequentially taking advantage of
clustering techniques and approximation algorithms for the
well-know GAP and Knapsack problem. The results revealed
that our heuristic outperformed schemes that are agnostic to
the preferences of users and to geographical constraints. As
future steps, we would like to evaluate the performance of our
heuristic at a larger scale and under real system conditions,
and to study the problem in a setup that captures the mobility
of users and cost of cache updates.
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