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Abstract—In this paper, we study learning-assisted multi-user
scheduling for the wireless downlink. There have been many
scheduling algorithms developed that optimize for a plethora
of performance metrics; however a systematic approach across
diverse performance metrics and deployment scenarios is still
lacking. We address this by developing a meta-scheduler – given a
diverse collection of schedulers, we develop a learning-based over-
lay algorithm (meta-scheduler) that selects that “best” scheduler
from amongst these for each deployment scenario. More formally,
we develop a multi-armed bandit (MAB) framework for meta-
scheduling that assigns and adapts a score for each scheduler to
maximize reward (e.g., mean delay, timely throughput etc.). The
meta-scheduler is based on a variant of the Upper Confidence
Bound algorithm (UCB), but adapted to interrupt the queuing
dynamics at the base-station so as to filter out schedulers that
might render the system unstable. We show that the algorithm
has a poly-logarithmic regret in the expected reward with respect
to a genie that chooses the optimal scheduler for each scenario.
Finally through simulation, we show that the meta-scheduler
learns the choice of the scheduler to best adapt to the deployment
scenario (e.g. load conditions, performance metrics).

Index Terms—wireless scheduling, multi-armed bandit, UCB

I. INTRODUCTION

Multi-user scheduling for wireless downlink systems is
a particularly challenging task for two key reasons. First,
mobile users and services may have diverse performance
goals/requirements that should ideally be optimized over a
wide variety traffic loads/mixes and heterogeneous user service
rates that can vary by over an order of magnitude. Second,
because mobile users’ see time-varying service rates, it is
desirable to incorporate some form of opportunistic schedul-
ing, favoring scheduling users when their service rates are
high. To address these challenges wireless schedulers use a
combination of the current channel conditions (e.g., obtained
through channel quality feedback from mobile users) and
current queue backlogs to dynamically assign users to channel
resources so as to meet the desired various performance
objectives including, e.g., throughput optimality (stability),
mean packet/flow delay, delay tails, timely throughput, video
quality of experience etc.

Although a substantial number of scheduling algorithms
have been proposed, solutions that are able to systematically
address the above mentioned challenges are still lacking. In-
deed, an algorithm best suited for a given scenario may depend
on a variety of factors including traffic load/mix and users’

channels, or more generally on the usage patterns associated
with the time of day. Moreover in some cases the desired
performance metrics for a subset of users may not be easily
pre-specified, e.g., measures of video quality, whence it is not
clear what type of scheduler to deploy. Furthermore, even if
one has access schedulers which are fine tuned to particular
scenarios (e.g., learned through a reinforcement learning algo-
rithm), we typically have no performance guarantees over the
wide range of settings typical of wireless systems. Whence it
is unclear that it is safe to deploy such scheduling policies.

In this paper, we propose a meta-scheduler – an online
learning (bandit) algorithm which for a given operational
scenario dynamically selects the best scheduler from a set
of predefined policies (e.g., MaxWeight, Exp rule, Log rule,
Priority rule, and Round-Robin). The scheduler in turn, deter-
mines user-to-channel assignments. In our approach, schedul-
ing policies are viewed as bandit arms, and the meta-scheduler
dynamically chooses the scheduler (aka plays an arm) based
on the mobile users’ feedback.

In adapting the bandit framework to our queueing setting,
we need to address two challenges: (i) Arbitrarily switching
among schedulers over time can lead to queue instability, even
if each of the schedulers is stable. Indeed, one can show that
switching between two Max-weight schedulers with different
weights can lead to unstable queues. (ii) If one or more of
the possible schedulers is unstable for a given scenario (e.g. a
round-robin scheduler in a high-load wireless setting), then a
poor choice may lead to long term instability.

Our approach uses the fact that stable queueing systems
typically exhibit cyclical sample-paths associated with busy
periods for the overall system. Under appropriate assumptions,
the queue dynamics in a busy period are conditionally (given
the scheduling policy) independent. Our meta-scheduler thus
determines which scheduler (arm to play) only at the beginning
of cycles and the chosen scheduler is maintained for the
duration of the cycle ensuring independent reward samples
across cycles). Further to ensure that cycles do not have
infinite durations, the meta-scheduler interrupts1 cycles that
have exceedingly long durations. These decisions have to be
properly designed such that cycles due to unstable schedulers

1A cycle is interrupted by forcibly making all queues to be zero, e.g., by
dropping packets in the buffers.
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(which have unbounded cycle lengths) are played infrequently,
and when played, get interrupted (truncated) as soon as pos-
sible. Further “good” cycles associated with stable schedulers
should not get interrupted. As we will see, designing a sound
interruption mechanism in conjunction with online learning
through bandit feedback is crucial designing a meta-scheduler
which achieves a low regret with respect to a genie algorithm
(baseline that always plays the best/highest-reward scheduler
for a particular scenario).

A. Contribution

Our main contributions are the following:
• Meta-scheduler: We develop a meta-scheduler algorithm

based on (UCB + Interruptions). At the beginning of each
queuing cycle, the meta-scheduler determines a scheduler
to be used for that cycle using a variant of the Upper
Confidence Bound (UCB) Algorithm. This consists of (i)
determining a score for each scheduler (empirical reward
+ confidence bonus) that is multiplied by a indicator that
estimates if each scheduler is stable (meaning the cycle
times are finite), and choosing the scheduler with the
highest score; and (ii) determining an interrupt threshold
for the cycle, at which time all packets in the queues are
dropped if the cycle has not ended before then.

• Theoretical guarantees: For the meta-scheduler, we show
that the regret (expected cumulative difference in reward)
with respect to a genie algorithm that chooses the optimal
(highest expected reward) scheduler scales as O(log n),
where n is the number of cycles2 and correspondingly
O(log2 τ) where τ is the time-slot index. Further, the
expected number of packets dropped due to interruptions
also scales as O(log2 τ).

B. Related Work

Wireless Scheduling. The design of multi-user wireless
schedulers has received substantial attention, see e.g., [22] and
references therein. For infinitely backlogged user queues re-
searchers have devised various classes of opportunistic sched-
ulers that optimize the sum user utility (fairness criteria) of
their long-term throughputs or so called timely throughput, see
e.g., [12], [13], [16], [23], [28]. For settings where user queues
are subject to stochastic arrivals e.g., packet streams, initial
work focused on characterizing throughput-optimal schedulers
which ensure queue stability if indeed stability can be achieved
without prior knowledge of the traffic load and service ca-
pacity. These include, for example the MaxWeight rule [3],
[26], Exp rule [20] and Log rule [18], which in addition to
throughput optimality achieve different user-level performance
objectives. Meanwhile, non-throughput-optimal policies can
in certain load scenarios provide better performance, e.g.,
max-rate, proportionally fair, Round-Robin and the priority-
based rules. Although there is substantial work in this area,
the question of how to realize the best performance tradeoffs

2The regret scaling is slightly weaker under weaker assumptions on the
cycle tail distributions, please see [21] for details.

among heterogeneous users with diverse performance goals
remains open and challenging.

Not surprisingly recently, reinforcement learning (RL) ap-
proaches have been proposed to address complex scheduling
problems, including job scheduling for data centers [17] and
wireless scheduling in various settings [6], [9], [19], [30].
RL algorithms provide a general approach to determine good
schedulers for specific scenarios and possibly, but substantially
more challenging, ones that are good for a range scenarios in
terms of the user traffic, service capacity and or performance
objectives. Despite showing great potential in several applica-
tions, RL based schedulers typically lack rigorous performance
guarantees, and thus it is unclear they are safe to deploy.

Multi-armed Bandits. Multi-armed Bandits (MAB) prob-
lems have been studied for many decades, with applications to
clinical trials, recommendation systems and online advertising;
see [7] and [15] for a comprehensive discussion on the state-
of-art. In our model, each time we choose a new arm, the
corresponding (random) cycle time can be interpreted as a
cost. Such problems where each action costs non-unit amount
of resources is referred to as budgeted bandits. Unlike classical
MAB settings, the regret is not parameterized by a time
horizon; instead the regret parameterization (and thus, the
best arm) involves both the reward and cost variables, which
significantly increases the complexity of the problem. This line
of work was started by [5] and has been followed in many
directions by [1], [27], [29].

A recent study on budgeted bandits in [8] introduces the
idea of MAB with interruptions. At each time, a server works
on a single task that has a heavy-tailed service completion
time. A task can be interrupted if it is taking too long (but
with loss in reward). The authors in [8] develop a variant
of the Upper Confidence Bound (UCB) algorithm [4] that
selects over (a finite set of) tasks as well as a finite set of
task interrupt thresholds to discard ongoing tasks, i.e. arms are
(task, interrupt-threshold) pairs. Their motivation is to interrupt
a task that takes too long so as to start a new one to collect
more rewards, and thereby benefit the total reward. Our model
is inspired by their work, but significantly differs in the way
that we deal with interruptions. In contrast to [8], our goal is to
eventually avoid any interruptions, thus, we do not treat inter-
ruptions as arms of a bandit. Instead, we dynamically increase
the threshold for each task (aka scheduling policy) to ensure
we quickly filter out unstable policies for which the cycle
times are infinite, while leaving stable policies (eventually)
uninterrupted. Algorithmically, our approach modifies UCB
with a multiplicative censoring that penalizes interruptions
from occurring too often, which ensures that unstable arms
(with infinite expected cycle completion times) are aggres-
sively eliminated.

Finally, bandit algorithms have also been applied to wireless
resource allocation problems more broadly. These include
studies in cognitive radio probing [10], spectrum access [2],
decentralized wireless computing [14], [24] and most recently,
cellular scheduling [25].

Throughout this paper, we use characters in bold font to
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denote vectors and normal font to denote scalars. Random
variables are indicated by capital letters unless stated other-
wise.

II. MODEL SETTINGS

In this section, we consider a multi-arm bandit model for
the wireless scheduling problem. The goal is to formulate a
meta-scheduler that can explore different scheduling policies
and learn in an online manner which among the candidate
policies is the best, given a certain performance metric. Before
introducing the meta-scheduler in detail, we first describe the
traffic model and then describe the system from a perspective
of regenerative processes. We will see it is natural to allow
the meta-scheduler to switch policies only when the system
“regenerates”. Formal definitions of a meta-policy (policy of
a meta-scheduler) and its regret are given at the end of this
section.

A. Traffic and Service Model

We consider a packet-based queuing system with a set
of u different users, denoted by U , and a single server
(base station). The system operates in discrete time slots. For
simplicity, suppose all packets have the same size. At any time
t, define the random vector Q[t] = (Q1[t], · · · , Qu[t]) ∈ Zu+,
where Qi[t] denotes the number of packets of the i-th user at
the beginning of time slot t.

The random packet arrivals at time t are denoted by
A[t] = (A1[t], · · · , Au[t]) where Ai[t] has a integer-valued
distribution bounded by ā for any user i ∈ U . We assume
(A[t])t≥1 are i.i.d. across time and denote its expectation by λ.
The wireless channels’ service rates at time t are modeled by
a random vector S[t] = (S1[t], · · · , Su[t]) where Si[t] denotes
the service rate available to the i-th user at t. (S[t])t≥1 are
i.i.d. over time and also independent of the queue lengths and
arrival process. A scheduling policy will decide which user to
serve at each time slot based on the queue and channel state.

Let C denote the long-term capacity of the system (see [22]).
This means for any arrival rate that lies in Co (the interior of
C), there exists at least one policy that stabilizes the system
(the average queue lengths are finite). We require λ ∈ Co. We
say a policy is stable (with respect to λ) if it stabilizes the
system.

Now suppose there is a finite set of scheduling policies (or
arms in the bandit context), denoted by A. For a fixed λ ∈ Co,
A consists of both stable and unstable policies, denoted by
As(λ) and Au(λ). Assume that As(λ) 6= φ.

B. Regenerative Dynamics

Suppose the arrival always occurs right after the beginning
of a slot while the transmission happen right before the end of
a slot. We say the system returns idle when the sum of users’
queue lengths is down to 0 from some positive value at the
end of a time slot. A cycle is defined as the interval of time
slots between two consecutive points in time when the system

returns idle.3 Further, without loss of generality, we assume
the system starts empty at the beginning of the first slot. We
can describe the system’s dynamics based on such cycles as
follows. The notation and definitions in this section follows
[8], with appropriate modifications to reflect our setting.

Each arm k is associated with a stochastic process
((C(k)(n),U (k)(n)))n≥1 where n denotes the index of cycles.
If arm k is implemented after n-th time the system returns idle,
the system observes a random cycle length C(k)(n) (before it
returns idle again), and receives a sequence of non-negative
rewards U (k)(n) = (U (k)(n, i) : i = 1, 2, · · · , C(k)(n)) for
each time slot in the cycle. Note that C(k)(n) for n ≥ 1 are
i.i.d. and C(k)(n) ≥ 1 a.s. .

We consider a reward scheme where the generated rewards
are i.i.d. over cycles and grow no faster than linearly with
corresponding time, which is formally stated in the next
assumption.

Assumption 1. The cycle reward sequence U (k)(n) is inde-
pendent and identically-distributed over n, and satisfies that

0 ≤
l∑
i=1

U (k)(n, i) ≤ r̄l, ∀n ≥ 1, 1 ≤ l ≤ C(k)(n) (1)

for some r̄ > 0.

This assumption holds, for instance, if each packet is
associated a bounded reward (e.g., in [0, 1]) upon transmission
(such as a function of the packet’s delay), which is independent
of rewards seen in other cycles, and the cumulative reward
over a time period is thus bounded by the maximal number of
packets transmitted within that period, i.e., r̄ = āu. We denote
the (total) cycle reward by U (k)(n) =

∑C(k)(n)
i=1 U (k)(n, i).

Thus, it follows that U (k)(n) for n ≥ 1 are i.i.d. across cycles
and bounded as follows

0 ≤ U (k)(n) ≤ r̄C(k)(n) a.s., ∀n ≥ 1. (2)

One question regarding the process is how frequently a pol-
icy forces the system to finish a cycle, i.e., the distribution of
C(k)(n), which is vital for the meta-scheduler discussed in the
sequel. When k is a stable arm, we have P(C(k)(n)<∞)=1
and the system will start a new cycle infinitely often. In
addition, we have the following assumption on the cycle length
of a stable arm.

Assumption 2. For a given λ ∈ Co, we assume if arm k ∈
As(λ), C(k)(n) is a sub-exponential random variable. This
implies that, there exist (possibly λ-dependent) non-negative
parameters (ν2k , αk), such that for all n ≥ 1,

P(|C(k)(n)−E[C(k)(n)]|≥ε) ≤

{
2e−ε

2/(2ν2
k) 0 < ε ≤ ν2

k

αk
,

2e−ε/(2αk) ε >
ν2
k

αk
.

(3)

3In technical terms, a cycle consists of an idle period plus a busy period.
When the system stays empty for a whole time slot, this slot is part of the
idle period rather than a new cycle.
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Remark 1: This assumption implies that for stable arms
k ∈ As(λ), C(k)(n) has a light tail on the right (the left
side is bounded). One can then show that the empirical av-
erage (1/n)

∑n
i=1 C

(k)(i) is sub-exponential with parameters
(ν2k/n, αk/n). By the linear constraint in (2), U (k)(n) is also
sub-exponential (with possibly larger parameters). Without
loss of generality, we let the parameters (ν2k , αk) suffice
both C(k)(n) and U (k)(n) assuming the rewards are properly
normalized.

Remark 2: When the system has bounded arrival and chan-
nel distributions, and the policies considered are Markovian
(choosing service vector at time t based on S[t] and Q[t]
only), this assumption holds true following an argument of
[11].

If an unstable arm is applied, however, the system is
transient and there is a chance that the system will never start
a new cycle as P(C(k)(n) = ∞) > 0 for all k ∈ Au(λ).
This suggests that an additional stopping mechanism is needed
when an unstable arm is explored by the meta-scheduler.

When k ∈ As(λ), observe that
(
(C(k)(n), U (k)(n))

)
n≥1

form a well-defined renewal-reward process. We next define
the renewal reward rate of a stable policy.

r(k) =
E[U (k)(1)]

E[C(k)(1)]
∀k ∈ As(λ). (4)

By Renewal Theory, this rate captures the rate of rewards
generated by a policy.

C. Meta-Scheduler, Feedback and Interruptions

A meta-scheduler makes decisions on which arms to use and
when, so as to maximize the rate of rewards of the system. In
this paper, we will only consider meta-schedulers that comply
with the following rules:

(1) A meta-scheduler can switch to another arm when the
system returns idle;

(2) A meta-scheduler can interrupt a cycle, i.e., discarding
all packets currently in the system and forcing the system
to start a new cycle, so as to prevent unstable arms from
occupying the system indefinitely. Furthermore, as in [8], we
only consider conditions triggering such interruptions solely
based on cycle time: a cycle gets interrupted when its length
exceeds a threshold pre-selected before the cycle starts.

There are several advantages in adopting such rules. First,
even scheduling policies that might result in unstable queues
can be added to the mix, since the interruptions ensure that
cycle times remain bounded. Moreover, they simplify the
design of a meta-scheduler, since the system can be fully
characterized by arm-independent cycle lengths and rewards,
i.e., the collection of processes {

(
(C(k)(n),U (k)(n))

)
n≥1 :

k ∈ A}, from the meta-scheduler’s point of view regardless
of how the actual queues and channels vary with time. This
guarantees the independence of statistics for different arms and
allows us to apply classical MAB methodologies. Furthermore,
such a meta-scheduler preserves properties of regenerative
processes that help analysis.

According to the rules mentioned above, a meta-scheduler
can only make a decision when the system returns idle, which
consists of two selections: the arm and the interruption thresh-
old. Formally, we let π = (πn)n≥1 be a meta-policy (policy of
a meta-scheduler), where πn = (An, Ln) ∈ A×(Z+∪{+∞}).
A decision πn = (k, l) implies that arm k is selected for n-th
cycle, and the cycle will be interrupted immediately if it lasts
over l time slots.

In order to model cycles under our interruption policy, we
let Ĉ(k,l)(n) = min[C(k)(n), l] and Û (k,l)(n) = (U (k)(n, i) :
i = 1, 2, · · · , Ĉ(k,l)(n)). The observed (total) cycle reward
Û (k,l)(n) =

∑Ĉ(k,l)(n)
i=1 U (k)(n, i). Note that it still holds that

0 ≤ Û (k,l)(n) ≤ r̄Ĉ(k,l)(n) almost surely.
If πn = (k, l), we assume stochastic feedback Zn is received

for n-th cycle by the meta-scheduler as follows,

Zn = (Ĉ(k,l)(n), Û (k,l)(n),1{Ĉ(k,l)(n)<C(k)(n)}).

An illustration of the meta-policy dynamics is shown in
Figure 1. Note that the reward for each single time slot is not
required in the feedback. This suggests that if performance
is evaluated at user side, additional communication cost only
occurs at the end of a cycle.

We assume πn is solely based on the history of actions and
feedback up to the decision. Thus, an admissible meta-policy
considered in this paper is formally defined as follows. This
is analogous to a similar notion in [8].

Definition 1 (Admissible Meta-Policy). We call a meta-policy
π = (πn)n≥1 admissible if πn ∈ Fn where Fn := σ(π1, Z1,
π2, Z2, · · · , πn−1, Zn−1) is the σ-field induced by all the ran-
dom decisions and feedback before n-th cycle.

Our goal is to design a good meta-policy that satisfies the
following two objectives: (1) it suffers negligible throughput
loss, i.e., the number of packets discarded due to interruptions
by the meta-scheduler is sub-linear in time, and (2) it has a
sub-linear expected regret over a given time horizon. We will
define the regret in the next section.

D. Regret
As in the traditional MAB setting, we are interested in the

regret of a meta-policy as compared to an optimal over a given
time horizon τ . The regret for the meta-policy π stems from
two reasons: (i) playing suboptimal arms (schedulers), and (ii)
interrupting ongoing cycles. To formally define the regret, we
follow a similar approach as in [8]. First, note that the number
of cycles within a time horizon τ is a random variable, which
can be viewed as a counting process.

Definition 2 (Counting Process). Consider a meta-policy π
that is admissible. The total time of the first n-th cycle can be
written as

Sπn =

n∑
i=1

∑
(k,l)∈A×Z+

1{πs=(k,l)}Ĉ(k,l)(i).

Define a counting process (Nπ[τ ])τ≥1 as follows.

Nπ[τ ] = max{n : Sπn ≤ τ}.
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Fig. 1: Illustration of a meta-policy selecting arms from A = {k, k′}. At the start of the process, the meta-scheduler makes
decision π1 = (k, l1), and receives feedback Z1 after the system experiences a full cycle. Then the meta-scheduler decides
π2 = (k′, l2), but has to interrupt the cycle as the system does not return idle before the cycle time reaches l2. The meta-
scheduler then collects feedback Z2 and starts a new cycle with π3 = (k, l3).

Note that Nπ[τ ] indicates the number of completed cycles
within time horizon τ .

Definition 3 (Cumulative Reward). Given a time horizon τ ,
the cumulative reward for an admissible meta-policy π is a
random variable given as follows. (Denote Ñ := Nπ[τ ] for
notation simplicity.)

Rewπ[τ ] =

Ñ∑
i=1

∑
(k,l)

1{πi=(k,l)}Û (k,l)(i)

+
∑
(k,l)

1{πÑ+1=(k,l)}

τ−Sπ
Ñ∑

j=1

U (k)(Ñ+1, j).

(5)

The cumulative reward is the sum of (observed) cycle rewards
from the first Nπ[τ ] completed cycles and the reward from the
next uncompleted cycle up to time τ .

We call a meta-policy simple-static if the meta-scheduler
consistently selects an arm with no cycle interruption. Let
π(k) be the simple-static meta-policy selecting arm k, i.e.,
π
(k)
n = (k,+∞),∀n ≥ 1. In this paper, we define the regret

with respect to the best simple-static meta-policy πopt that is
stable and generates the most rewards (in expectation) within a
given time. By the renewal theorem, limτ→∞Rewπ(k) [τ ]/τ =
r(k) a.s. for all k ∈ As(λ). This implies that πopt = π(k∗)

where k∗ = argmaxk∈As(λ) r
(k). The regret is formally

defined as follows.

Definition 4 (Cumulative Regret). Let πopt be the optimal
simple-static meta-policy, i.e.

πopt
n = (k∗,∞), ∀n ≥ 1 (6)

where k∗ = argmaxk∈As(λ) r
(k). The regret of meta-policy π

with respect to πopt over any time horizon τ is defined as

Regπ[τ ] = E[Rewπopt [τ ]− Rewπ[τ ]]. (7)

In the remaining sections, we will simply refer to k∗ as the
optimal arm (assumed to be unique). For notation simplicity,
we suppress k∗ as a single asterisk in the superscript when
there is no ambiguity (e.g., r(∗) := r(k

∗)).

III. A UCB META-SCHEDULER WITH INTERRUPTION

To guarantee negligible throughput loss and a sub-linear
regret as discussed in Section II, the meta-scheduler should
wisely select the arms and interruption thresholds such that
the optimal arm is being applied at most of the time, and
the packet discard hardly occurs. This implies the following
guidelines when designing the algorithm: 1) the number of
times a suboptimal arm (either unstable or stable) gets selected
should be sub-linear in time; and 2) the unstable arms’
(possibly infinitely) long cycles must be stopped, while the
cycles of the optimal arm should be preserved with little
interruption.

Motivated by these guidelines, we propose a UCB-type
meta-scheduler with a properly-designed interruption rule.
Before presenting the meta-scheduler, let us first introduce
several parameters to be used in our algorithm in the following
assumption.

Assumption 3. We assume the following parameters are given
a priori with respect to some A0, a subset of arms satisfying:
{k∗} ⊆ A0 ⊆ As(λ).

(1) µmin and µmax such that µmin ≤ E[C(k)(1)] ≤ µmax

for all k ∈ A0.
(2) rmax such that E[U (k)(1)|C(k)(1) = l] ≤ rmax l for all

l ≥ 1 and all k ∈ A0. Note that rmax exists by Assumption 1,
and rmax ≥ r(∗).

5



(3) Parameters (ν2, α) such that for all k ∈ A0,
C(k)(1), U (k)(1) are both (ν2, α)-sub-exponential random
variables as described in Assumption 2. In addition, we
assume that the l-interrupted cycle reward Û (k,l)(1) is (ν2, α)-
sub-exponential for all l ≥ 2E[C(k)(1)].

In the algorithm, these parameters serve as hyper-parameters
that need to be further tuned. To remove ambiguity, for a
given set of hyper-parameters used in implementation, we will
refer to A0 as the largest set of arms for which those hyper-
parameters suffice the conditions. We assume k∗ ∈ A0 (as the
weakest notion) to achieve sub-linear packet loss and regret.

Remark 3: For technical reasons, we also require Û (k,l)(1)
to be sub-exponential under the same parameters4 (ν2, α) as
those of U (k)(1) when l is large enough. This does not make
the assumption significantly stronger, since one can always
pick the parameters large enough to satisfy this condition. The
condition l ≥ 2E[C(k)(1)] is chosen for simplicity. Indeed, the
condition can be replaced by l ≥ (1 + γ)E[C(k)(1)] for any
γ > 0 (the algorithm parameters will be changed accordingly).

To simplify notation and avoid ambiguity, let C(k)
s and

Ĉ
(k,l)
s (U (k)

s and Û (k,l)
s ) be the full and observed cycle length

(reward) of arm k when it is selected the s-th time (we call it
s-th sample of k). Denote by T (k)

n as the number of times arm
k has been chosen in the first n decisions. Thus, if An = k,
(C

(k)

T
(k)
n

, U
(k)

T
(k)
n

) = (C(k)(n), U (k)(n)).
Not unlike the classical UCB algorithm, the meta-scheduler

learns the arm statistics by keeping track of the empirical
averages of cycle lengths and rewards. We formally define
the empirical rate of arm k after s samples as R̂(k)

s . For all
s ≥ 1,

R̂(k)
s =

s∑
i=1

Û
(k,F

(k)
i )

i

s∑
i=1

Ĉ
(k,F

(k)
i )

i

, (8)

where F (k)
i denotes the threshold level for arm k’s i-th sample.

As a convention, the empirical rate equals 0 when s = 0. Let
R̂(k)(n) := R̂

(k)

T
(k)
n

be the empirical rates for the k-th arm after
n-th cycle in the system.

Our meta-scheduler is formally presented in Algorithm 1.
We will discuss the mathematical design in a more rigorous
manner in the next section. Before that, let us first give some
intuition as follows.

First we observe that to avoid constantly interrupting a sta-
ble arm, it is necessary (and sufficient) to apply an interruption
rule where the threshold of each arm is set to slowly grow with
the number of samples (note that a fixed threshold will always
result in linear throughput loss). We define a threshold function
as in (10), where fs denotes the threshold for the s-th sample
of any arm k (i.e., F (k)

s = fs). With this design, the expected
number of interruptions imposed on the optimal arm can be
bounded by a constant π2/6 if β and κ are large enough.

4Note that Û(k,l)(1) is sub-exponential (indeed bounded). However, the
fact that U(k)(1) is (ν2, α)-sub-exponential does not imply the same param-
eters suffice Û(k,l)(1).

Algorithm 1 UCB Meta-Scheduler with Interruptions

1: Input: Set of scheduling policies A.
2: Hyper-parameters: µmin, rmax, α, ν

2, β, κ (κ > 4α,
β > 2(µmax + ν2/α))

3:
∆(ε, ε′) :=

ε(1 + rmax) + ε′

µmin + ε
. (9)

4: fs := β + κ log s. (10)

5: for n = 1, · · · , |A| do
6: Run every arm k ∈ A once (with interruption thresh-

old β), then initialize R̂(k)
1

7: for n = |A|+ 1, |A|+ 2, . . . do
[Before a cycle]

8: ∀k ∈ A, compute
9:

ε(k)n =


√

6ν2 logn

T
(k)
n−1

√
6ν2 logn

T
(k)
n−1

≤ ν2

α ,

6α logn

T
(k)
n−1

otherwise,
(11)

10:

ε′(k)n =
1

T
(k)
n−1

T
(k)
n−1∑
i=1

rmax

iκ/2α
e−β/4α(β+2α+κ log i+1),

(12)

11: B(k)
n = R̂(k)(n−1) + ∆(ε(k)n , ε′(k)n ), (13)

12:

I(k)n =

1 if
T

(k)
n−1∑
i=1

1{C(k)
i >fi}< π2

6 +
√

2T
(k)
n−1logn,

0 otherwise.
(14)

13: An = argmax
k∈A

B(k)
n I(k)n . (15)

14: Ln = f
T

(An)
n

. (16)

15: Choose πn = (An, Ln).
[After a cycle]

16: Observe Û (An,Ln)(n) and Ĉ(An,Ln)(n).
17: Update R̂(An)(n).

The meta-scheduler starts with running each policy once
with an initial interruption level β and initializing the em-
pirical rate R̂

(k)
1 for any k ∈ A. After this initialization

phase, before each decision, the meta-scheduler will compare
a “score” of each arm at decisions, which equals the sum
of its empirical reward rate and an upper confidence bound
(see (13)). The UCB term, defined in (9) and (11)(12), is
used to compensate the possibly under-performing empirical
rate in order to ensure adequate exploration before finding
the truly optimal arm eventually. We will show that w.h.p.,
R̂(∗)(n−1) + ∆(ε

(∗)
n , ε

′(∗)
n ) > r(∗) for any n ≥ |A| + 1.

Meanwhile, the score of a suboptimal stable arm will be below
r(∗) after it is sufficiently explored.

Moreover, we design a “stability indicator” to eliminate
unstable arms by utilizing interruption as a signal indi-
cating whether an arm frequently induce long cycles. The
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Bernoulli random variable 1{C(k)
s >fs} denotes whether the s-

th sample for arm k is clipped by its threshold. The value
E[
∑s
i=11{C

(k)
i >fi}] is bounded by π2/6 for the optimal arm,

but grows linearly for the unstable arms (since they are
frequently clipped). This motivates us to use the value of∑s
i=11{C

(k)
i >fi} to eliminate unstable arms. The stability

indicator is defined as in (14). When
∑s
i=11{C

(k)
i >fi} is larger

than π2/6 plus a concentration bound, the indicator will rule
out arm k in this round.

After computing the UCB term and the stability indicator,
the meta-scheduler will pick the arm with the best score B(k)

n

and a positive value of I(k)n , and the threshold of that cycle is
determined by the threshold function. A new cycle then starts
according to this decision. When the cycle is finished, the
meta-scheduler observes the (possibly clipped) cycle length
and reward before updating the empirical rate for the selected
arm. The updated statistics will be used to determine the next
decision. We present the main result below, which shows that
the meta-scheduler results in negligible packet loss and a sub-
linear expected regret. Complete details are available in [21].

Theorem 1. Provided that the hyper-parameters used in Al-
gorithm 1 satisfy Assumption 3 when A0 = As(λ), the meta-
policy π induced by Algorithm 1 has the following properties:

(1) E[Dπ[τ ]] = O(log2 τ) where Dπ[τ ] denotes the number
of packets discarded over any time horizon τ ,

(2) The regret Regπ[τ ] = O(log2 τ).
Further, when the hyper-parameters suffice only for A0 =
{k∗}, E[Dπ[τ ]] = O(log2+δ τ) and Regπ[τ ] = O(log2+δ τ)
for any δ > 0.
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