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Abstract—We consider a wireless multiple access channel
(MAC) with N users. Associated with each user is their time-
varying channel state and a finite-length queue which varies
with time. In MAC, a receiver decodes the signals of each user
by treating the other users’ signals as noise. Each user decides
their transmit power and the queue-admission control variable
dynamically to maximize their expected throughput without any
knowledge of the states and actions of other users. This decision
problem is formulated as a Markov game for which we show
the existence of equilibrium and an algorithm to compute the
equilibrium policies. We show that, when the number of users
exceeds a given threshold, the expected throughput of all users
at all the equilibria points are the same. Furthermore, we show
that the equilibrium policies of the users are invariant as long as
the number of users remain above the latter threshold, which is
referred to as the infinitely invariant Nash equilibrium (IINE).
For the considered system, we prove that IINE exists and show
that each user can compute these policies using a sequence of
linear programs which does not depend upon the parameters
of the other users. We also provide the necessary and sufficient
conditions for the existence of IINE. Finally, we validate our
analysis using numerical simulations.

Index Terms—Multiple access channel, stochastic games, Nash
equilibrium, Markov games, best response algorithm, power
control, queue constraints, resource allocation.

I. INTRODUCTION

There has been a tremendous growth of wireless com-
munication systems over the last few years. The success of
wireless systems is primarily due to the efficient use of their
resources. The users are able to obtain their quality of service
efficiently in a time varying radio channel by adjusting their
own transmission powers. Distributed control of resources for
large number of users is an important area of study as it tries
to address the high system complexity.

Non-cooperative game theory serves as a natural tool to
design and analyze wireless systems with distributed control of
resources [1]. In [2], a distributed resource allocation problem
using game theory on the multiple access channel (MAC) is
considered. They derived the Nash equilibrium for the problem
where each user maximizes their own transmission rate in
a selfish manner, while knowing the channel gains of all
other users. Scutari et al., [3] [4] analyzed the competitive
maximization of mutual information in MAC subject to power
constraints. They provided sufficient conditions for the ex-
istence of unique Nash equilibrium. In a similar setup, [5]
showed that for maximizing the effective capacity of each user,
there exists a unique Nash equilibrium. Heikkinen [6] analyzed
distributed power control problems via potential games.

ISBN 978-3-903176-29-4 © 2020 IFIP

In [7], the authors consider a MAC model where each user
knows only their own channel gain and only the statistics of
the channel gains of other users. The problem is formulated
as a Bayesian game, for which they show the existence of
a unique Nash equilibrium. Altman et al., [8] studied the
problem of maximizing throughput of saturated users (i.e., user
who always has a packet to transmit) in a Markov channel
model and subject to power constraints. They derived the
Nash equilibrium for both the centralized scenario, where
the base station chooses the transmission power levels for
all users, as well as the decentralized scenario, where each
user chooses their own power level based on the condition of
its radio channel. In [9], the authors showed the convergence
of the iterative algorithm proposed in [8]. Altman et al.,
[10] considered the problem of maximizing the throughput
of competitive users in a distributed manner subject to both
power and buffer-queue constraints.

The works considered so far, compute equilibrium policies
for games with fixed number of users. As the number of
users increases, the corresponding equilibrium policies of users
change and the complexity of computing these policies also
increases. To overcome these problems, population games
[11] modeled the number of users present in the system
as being significantly large such that each user acts as a
selfish agent playing against a continuum of players. In this
model, techniques such as evolutionary dynamics to compute
the Nash equilibrium policy of a user can be employed.
Using the framework of population games, [12] modeled a
mobile cellular system, where users adjust their base station
associations and dynamically control their transmitter power to
adapt to their time varying radio channels. Another technique
to overcome the complexity problems was developed in [13],
[14]. Here each user interacts with other players only through
their average behavior called the mean field. Note that all the
users in these models are considered to be interchangeable
[11], [13], [14]. An application of mean field modeling in
resource allocation was considered in [15], where each user
maximizes their own signal to interference and noise ratio
(SINR). The authors showed that this problem, as the number
of users tends to infinity, can be modeled as a mean field
game. The authors in [9] considered a different approach for
large number of users. It was shown that when the number
of players in their game exceeds a certain fixed threshold, the
Nash equilibrium policies of each user gets fixed and can be
precomputed in linear time. The authors refer to such a policy
as an infinitely invariant Nash equilibrium (IINE) policy. It was
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also shown that each user requires no information or feedback
from other users to compute these policies.

However the model considered in the previous work does
not take into account the rate at which data packets arrive form
the higher layers. Hence, using policies which are optimal
in the saturated model may result in arbitrarily large waiting
times for transmission at each user’s transmitter. The long
delays produced by these policies can significantly reduce the
quality-of-service in the wireless network.

In this paper, to mitigate the effect of the above mentioned
problems, we consider a model with a finite buffer for each
user. Apart from average power constraints, we also consider
an average queue constraint for each user. Thus, we consider
the problem of dynamic power allocation and queue-control
at each user subject to average power as well as queue
constraints. Thus, unlike the previously considered models,
the current model is more practical as the user’s actions affect
their transmission waiting time as well. We model this problem
as a constrained Markov decision game with independent
state information [16]. A major contribution of this paper
is proving the existence of the IINE policies and providing
the necessary and sufficient conditions for the existence of
the IINE policies in the considered system model. We also
describe a method to compute IINE of this game, which has
relatively low computational complexity.

Notations: s; denote an element of the set S; which is
associated with the ithuser,7 = 1,--- ; N. The set S_; denotes
the setof all §;,5 = 1,--- ,i—1,i4+1,---, N. The expression
1;.y denotes the indicator function and ()" = max(z,0).

II. SYSTEM MODEL

We consider a wireless multiple access channel (MAC) with
N users and a discrete time system model, where n denotes
the index of the time slots. Let h;[n] denote the channel gain
of the ¢th user in the nth time slot. We assume a slow fading
model, i.e., the channel gains remain constant over each time
slot. Due to the quantization of the channel state information
[8], the channel gains belong to a finite, non-negative, ordered
set denoted by H; = {h?,hl,--- AT}, where |H;| = r + 1.
We also assume that the h;’s are stationary and ergodic random
process. In the nth time slot, the ¢th user transmits with power
pi[n] such that p;[n] € P;, where P; = {p?,p}, - ,p!} and
|P;| = 1+ 1. The set P is obtained by the quantization of the
transmit power levels [8] and p; = 0.

The packets to be transmitted by the ith user is generated
at the higher layers of the ¢th user’s transmitter. At every
time slot, w;[n] packets are sent by the higher layer to the
ith user for transmission; w;[n]’s are ii.d across time and
follow the distribution F;. The incoming packets are stored
in the user’s buffer until they are transmitted. The buffer size
is finite and given by @);. The incoming packets are dropped
when the buffer is full. In a time slot, each user’s buffer accepts
incoming packets depending on the value of the admission
control variable ¢;[n], i.e., packets are accepted into the buffer
when ¢;[n] = 1 and dropped when ¢;[n] = 0. We assume that,
in a given time slot, all arrivals from the upper layers occur

after the transmission in that time slot. In each time slot, a
user can transmit at most one packet from their buffer and g;
is the number of packets in the buffer, where ¢; € Q; and
Q; =1{q?,q},---,Q:}. The queue process g;[n] evolves as,

giln +1] = min ((gi[n] + es[n]wiln] — 1 pys0y) T, Qi) (D

We define the Cartesian product H; and Q; as the set of states
X; := H,; x Q; of the user i and the set of actions of user i as
A; :={0,1} x P;. Any element of these sets X; and A; are
represented as x; := (h;,¢;) and a; := (c¢;, p;), respectively,
where ¢; € {0, 1} is the admission control variable. Each user
has an average power and average queue constraints of P;
and Q;, respectively. We assume that each user knows their
instantaneous channel gain and queue state, but is not aware
of the channel gains, queue state and transmit power of other
users. The transmissions of each user is decoded at the receiver
by treating the signals of the other users as noise. Also, we
assume w;[n] is independent of all h;[n]. When Ny is the
receiver noise variance, the reward function associated with
user ¢ is given by,

Np {(I7,>0} > (2)
No + Zj:l,j;éi hjpj - 11g;>0

ti(x;,a;) £ log, (1 +

Given this system setup, we formulate a decision problem in
the next section.

III. PROBLEM FORMULATION

We try to address the following problem: identify the
optimal rule for each user to non-cooperatively choose an
action, i.e., choice of admission control variable and transmit
power, such that their average transmission rate (as defined
in (2)) is maximized in the MAC system setup described
in the previous section. This problem can be mathematically
formulated as follows.

The action taken by a user is given by their stationary policy
u;(a;|x;) [16], which represents the conditional probability of
using the action a; € A; at a state x; € X;. Let §; be initial
distribution of the states X;. The occupation measure [17] can
be defined on the set X; x A; as,

T

2i(Biy wi, T, ai) = Th_r}nOO % ;Pr(ml[n] = i, a;[n] = ai|Bi, us).

For convenience, we shall denote the occupation measure
as also z;(x;,a;) - dropping the stationary policy and initial
distribution from the notation. It can be verified that the
above Markov decision process (MDP) is unichain [17]. For
a unichain MDP, the occupation measure z;(3;, u;; x;, a;) is
well defined for a stationary policy w; and is independent of
the initial distribution 3; (Theorem. 4.1, [17]). The occupation
measure is related to the corresponding stationary policy as,

27(1177, ai)

ase; %i(@i, ai)

ui(ag|z;) = T , a; € Ay, m€ & 3)



In this work, we use occupation measures and stationary policy
interchangeably, as one can be obtained from another. Given
the policies z;, the average rate obtained by user 7 is given by

F(zi,2m) = > R (i, a0z, 44), )
Ti,Qq
where R;*(z;,a;) is the instantaneous rate defined as
Z- (24, a4) ZZt T,a Hz] Zj,a5). (@)

T_; a—;

Similarly, the average power and average queue length under
the policy z; can be defined as,

z) =Y pirzilws, a:), Qi)

Ti,Qq

= g zizi,a:) (6)

L, Qs

Any policy z; that satisfies the user’s queue and transmit power
constraints is called a feasible policy. We define the set of
feasible policies Z; as,

z £ Z zi(wi,a:) =1, (@)

(z,a3)

{Zi(xi’ai)» z; € Xi, a; € A;

Z (Lgy;=e;3 — Pr(yilas, zi)]zi(zi,ai) =0, Vy; € X,
(z4,a7)

Pi(z:1) < Pi, Qi(z:) < Qy, zi(wi,a:) >0, V (4, a:) € Xy X AL}

Each user selects a feasible policy to maximize their average
rate defined in (4). A feasible policy 27 € Z; of user 7 is
called a best response policy when

TZ(Z:, Z,i) — TZ(Z“ Z,i) > O,VZZ‘ € Z;. (8)

We represent the set of all best response policies as B;(z—;).
We formulate this as a non-cooperative Markov game (I'yr)
and show the existence of Nash equilibria for this game.
The e-Nash equilibrium is defined as in [9]. The existence
of Nash equilibria for this game has been proved in [10]
and the iterative best response algorithm can be computed as
described in [9]. The convergence of this the iterative best
response algorithm can be shown as in [9]. However, even
for moderate number of users, the iterative best response
algorithm becomes computationally unfeasible. In the next
section, we overcome this problem through infinitely invariant
Nash equilibrium (IINE).

IV. GAMES WITH LARGE NUMBER OF USERS.

The infinitely invariant Nash equilibrium is defined in [9].
The IINE is the equilibrium policy of each user which is
invariant, i.e., remains same, even as the number of users
in the system changes, as long as the number of users is
above the threshold N* [9]. In the following discussion,
we show the existence of an IINE under the assumption of
interchangeability of users [13], [14].

First, we define the set of kth sensitive policies [18] as

St ={z eS8 i(z) = max If(z)},

168 -

€))

where S? = Z;, SF

W(zi) = > ()" (hapi)F2i (s, a2).

Zi,Qq

C SF~1 and IF is defined as

(10)

The set of infinitely sensitive policies is defined as S, =

Zozle. That is, S; = lim_, o Sf. Now, we show that the set
of all IINE policies of user ¢ is indeed the set S;. We define two
users i and j to be interchangeable when P; = P;, Q, = Qj,
Hi = Hj, ’Pi = Pj, Ql = Qj and Fi = Fj.

Theorem 1 (Necessary and sufficient conditions for existence
of 1INE). If the set of all users can be be partitioned into
finite number of sets N1,Na,--- , N}, such that all users in a
set N are interchangeable and there exists a policy z; € Z;,
such that 1}(z;) > 0,Vi, then all the IINE policies of user i
belong to S;. Conversely, every policy of the set S; is an IINE
policy.

Proof. Refer Appendix A O

Note that we can ignore the users with max,, [} (z;) = 0,
from the system as they do not transmit. Thus, we have
shown that there exists an IINE policy when the set S; is
non-empty. However, to compute S;, we may have to solve
the linear program in (9) infinitely. Next, we show that S¥
converges after finite number of iterations and, hence, only
a finite number of iterations of solving linear programs is
required to compute an IINE policy.

Theorem 2 (Existence of IINE). When the conditions stated
in Theorem 1 are true, the set of infinitely sensitive policies
S; is nonempty. Further, S; = SiM , where M is the distinct
number of elements in {hipi’hi € Hi, p;i €Pi}.

Proof. Refer Appendix C O

Thus, Theorem 2 shows that we need to only solve M (<
00) linear programs to compute an IINE policy. The objective
functions in (10) are only functions of the users states and
actions, they do not depend upon any other parameters. Hence,
these policies can be precomputed by each user without know-
ing any information from other users. When the number of
users in the system crosses the threshold N*, the precomputed
policies become the Nash equilibrium policies. Thus, for large
number of users, the equilibria policies can be computed
easily. This avoids the use of algorithms with prohibitive
computational complexity such as the iterative best response
computation algorithm.

Remark: When N > N* and a new user joins the system,
the new user employs their IINE policy, while the existing
users continue to employ their previously computed IINE
policies. From the preceding discussion, we can see that these
policies continue to constitute an equilibrium for the resulting
game of N + 1 players. Thus, once again, the use of IINE
policies significantly reduces the computational complexity.

When the set S; contains multiple policies, we show that
the average rate achieved by all those policies are equal and
s0, the user can employ any of those policies interchangeably.



Theorem 3 (Interchangeability of IINE policies.). If z; and
z¥ are two IINE policies of the user i, then T;(z) = T;(z).

Proof. Refer Appendix C O

V. NUMERICAL RESULTS

In this section, we validate our theoretical results using
simulations. We denote the index of the largest transmit
power and the largest channel gain by [ and r, respectively.
We consider the set of channel states and power values for
each user i to be the same and is equal to {0, 1,2 ... 1}
and {0,1,--- 1}, respectively. We consider a Markov fading
model with channel state transition probabilities given by
P(hi[n] = 0|hs[n — 1] =0) =

P(hi[n] = 1|h n—l}_O)ZZ%,

P(hi[n] = =2 |hi[n — 1] = 1) = 3,

P(hi[n] = 1|h n—1]—1)=§,

P(hi[n] = =2 hyln —1] = 1) = 4,

P(h;[n] = J+1|h n—1]=12) =1 and

P(hiln] = Z|hi[n—1) = L) = 1, (1 < j <r —1). The noise

variance was fixed to be 1. The arrival distribution of packets
for all users is considered to be Poisson with parameter .
The power and queue constraint for each user is the same,
and is denoted by P and Q, respectively. We simulate seven

TABLE I
SIMULATION PARAMETERS
[Scenario[r[l[Q[ P [Q[A[M[N*]
1 2| 2| 1 | .50000 | .500 | .49 4 3
2 23] 1 | .95000 | .500 | .49 6 3
3 2| 3] 2 | 15500 | 1.00 | .90 6 3
4 313 ] 2 | 1.2800 | .650 | .60 7 3
5 313 ] 3 | 21000 | 1.60 | 1.5 7 4
6 2| 3] 2 | 15500 | .900 | 1.0 6 2
7 23] 2 | 17000 | .900 | 1.0 6 1

different scenarios with different system configurations. The
parameters considered in these scenarios are listed in Table
I. M denotes the number of linear programs required to be
solved to compute the IINE policy. The minimum number of
users at which the IINE policy becomes an equilibrium policy
is given by N*. We can see that there exists a scenario (e.g.,
scenario 7) where the value of N* can be even 1, i.e., the
IINE policy is an NE policy even for N > 1.

In Figure 1, we plot the /5 norm distance between the NE
policies and the IINE policy of user 1 as the number of users
varies. For each value of N, the best response algorithm is
used to compute an NE policy (z1(N)) of user 1 for each
scenario. In Figure (1), for different scenarios and values of
N, we plot ||z1(N) — z7||2. The invariant policy is calculated
by solving a sequence of linear programs as given in Theorem
(2). From Fig. 1, we observe that the NE policy of user 1
quickly converges to the IINE policy when the number of
users exceeds N*.

In Figure 2, for different number of users, we plot the
absolute difference between the time average of the rate of
user 1 when all the IV users use their NE policies and the time
average of the rate of user 1 when all the IV users use their
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Fig. 1. l2-norm distance between the NE policy and the IINE policy of the

first user for different system configurations and number of users (V).
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Fig. 2. Absolute difference between the reward of user 1 when all users use
their NE policies and the reward of user 1 when all users use their IINE
policies for different system configurations and number of users (V).

IINE policies. Once again, we can see that, when N > N*,
the equilibrium reward of user 1 is the same as the reward
obtained when all the users employ their IINE policy. Note
that, in all these scenarios, for N > N*, the NE policies have
become equal to the IINE policies and hence, their rewards
also converge.

In figure 3, we compare the IINE policy against a standard

IINE policy
= == = Policy from [10]

0.9

Average rate for the first user

[0} 10 20 30 40 50
Number of users

Fig. 3. Comparison of the average rate achieved by the first user for different
number of users when the IINE policy and the policy in [10] are employed.



policy proposed in [10], where each user transmits with a
probability p whenever there is a packet in the buffer. For
this simulation, we have set ) = 5, [ = 10, A\ = 25, and
p= % From Fig. 3, we can see that the rate of a user, when
all the users employ the IINE policy, outperforms the case
when all the users employs the standard policy.

Thus, from the above simulation results we can see that the
NE policies of a user converges to the IINE whenever N >
N*. Further, VN > N*, one need not use the computationally
expensive best response algorithm to compute the NE policy;
instead, the IINE policy can be precomputed and employed in
all these scenarios.

VI. CONCLUSIONS

In this paper, we analyzed the scenario where multiple users,
with power constraints and buffer constraints, simultaneously
communicate to a single receiver over the multiple access
channel. We modeled this problem as a constrained Markov
game with independent state information. We proved the
existence an infinitely invariant Nash equilibrium (IINE) in
this model. We also derived the necessary and sufficient
conditions for the existence of the same. We showed that,
for the computation of the IINE, the users require only the
information of their own states and actions, and does not
require any feedback or information from other users in the
system. We also showed that an IINE can be computed by
solving a finite sequence of Linear programs. Finally, we
provided numerical results to validate our analysis.

APPENDIX A
PROOF OF THEOREM 1

The following are some of the notations used in this proof:
for two real valued functions f(n) and g(n), the notations
f(n) = olg(n)), f(n) = O(g(n)) and f(n) = ©(g(n))
denotes that, there exist constants ¢; > 0, co > 0 and N
such that ¥n > Ny, f(n) > cig(n), f(n) < cag(n) or
c19(n) < f(n) < cag(n), respectively.

Let X; be a random variable which is defined as

Vhi,pi qi,Cq
st h,‘,pi:phjpj
and pu = ig%E(Xj). (12)
J=Z

It can be shown that x> 0 [19]. First, we prove the following
lemma which is required to prove Theorem 1.

Lemma 1. For a natural number k,

1 1 NF
o R S, ) R,
(ng; X; + No) (Z]_;; X; + No)
(13)

Proof: We know that X; < hgpf], where 1} = max; h’
and p} = max; p’. Hence, we have

E %k >E % :o<$>. (14)
(055! X5+ No) (N3Pl + No)

Also, for some constant ¢y, we have
1 +1
[ e T N <)
- k
N+1
<Zj2+2 X+ NO)

Z{V-HX.
P(*JZ; ! < u/2

E

1
(Z) x5+ N”)k}
< 2 1
(Nt N
2k 1 5 1
SW + Nf(I;CXP (—ClN# ) =0 (m) >
where the last inequality follows from Hoeffding’s inequality.
The bounds in (13) follow from the above relationships. H
Let 2] denote an IINE policy for user 4, we shall prove that
2} € &1 using induction. As 2z} is an IINE policy, we have
from definition [9] and (11) that for any policy 21 € Z; and
for all N > N*,k > 0,

hipilig; >0
k q1>0}
g |:]E |:N log2<1 + ZNH*

(21 (z1,a1)—21(x1,01)) | > 0
x1,aq i>2 X JrNO):|

(15)
For k = 1 and some constant ¢ > 0, by Taylor series
expansion, we get

hip1lq; >0}
E | N log, <1 +
[ S X+ No

Nhipi1 1
—E {W} +E[N-Of—nu-
Zj22 X; + No (Z?g:l X+ N())

1
(@) O(L)hipiliy, =0 +© (ﬁ) , (16)

where (a) follows from Lemma (1). Let ¢; > 0 and ¢; > O;
substituting (16) in (15), we get
c *

> <C1h1p11{q1>0} + NQ) (21 (z1,01) = 21(21,01)) > 0.
When N — oo, from the above, we get that 2 € 511.

Now, we shall assume that 2z € S7*, 1 <m <k —1 and
prove that 2z} € SF. From (2) and Taylor series expansion, we
have

hip1li4; >0}

k l
3 —hip1lig; >0}
E | N*log, (1 + 7”:& %N" S <7‘“
{ S X+ No S\ X+ N

1
N*O
k+1
( (355! % + No) )

k—1 l

—hipilg, >0} k1 k

=cE|-N">" <7“ +O) (=1 " hipilig, 50y ) +9,
|: ot Z;\I;Ql X, + No ( 4 )

+ cE

a7

where the last equality follows from Lemma 1 and ¢ =
O (%) Substituting (17) in (15), we get

T1,a1 ji>2

k—1 L
—hipil .
2 @ [Nk > (G ) } (Finm) = aalenen)
=1 J 0
(18)

k
-:gl(cl ((—1)k+1 hlpll{q1>0}) + %) (zr (z1,a1) — zl(xl,al)) > 0.
For z; € Sffl, from (9), we can see that the first term in (18)
is 0. Further, as before, when N — oo, we get that 2] € 8{“.
Hence, by induction, 2] € S;.



Now, we prove the converse. Without loss of generality we

consider user 1 and show that if 2] € &1, then 27 is an IINE
policy. We know that /1 (2}) > 0. Let 2; denote a feasible
policy of user 1 such that it is also a vertex/endpoint of Z;.
Case (i) z1 ¢ Si:
Here, we need to prove that there exists a positive number
Ni, such that VN > Ny, Ty (25, 2*1) — Ti(z1,2%) > 0. As
21 ¢ S, there exists a positive integer k such that z; ¢ SF
and z; € 7%, 1 < m < k — 1. Let k be the smallest such
integer. Now, we have

(Ta(27,27,) = Ta(z1,2%,)) N* (19)
. hip1lig, >0}
= § E | N*log, <1+7ql (21 (z1,a1) — z1(w1,a1))
xy1,a1 [ [ Ei\];—; Xj + No

For some constant ¢, using Taylor series expansion of the
logarithm term in (19), we get T (=}, 2*,) — T1(z1,2%,) =
B + B, where

k NF |: ) )
= BE|——— ST (=D (hapiligg 0y)°
i=1 (Z;\;Ql X; + No) r1,a1 '
'(21*(3517(11)—21(9017‘11))}, (20)
NF
8 :c]E|: k+1:|
(255" X5+ No)

: Z (-1)* (hlpll{q1>0})k+1 (2] (z1,a1) — z1(z1,a1)) . (2D

x],aq

Since 2, ¢ SF, z; € S7*, 1 < m < k—1 and from Lemma 1,
we can see that 8, = ©(1), which we denote by the constant
c1(> 0). Also, due to Lemma 1, 8 = O(3;), ie., 8 = £
for some constant ca(> 0). Thus, we have Tj(z],2*;) —
Ty (z1,27) > c1 — . Hence there exists a positive number
Np such that VN > Ny, Ty(2f, 25 ) — Ti(z1,5,2%,) > 0.
Similarly, there exists IV; for each user j. Let N{ = max; N;.
Therefore, VN > Ny, T1(2f,2%,) — Th(z;, 2%1) > 0.

Case (ii) z1 € Sq:

From (9), Vk,1¥(z}) = I¥(z1). From (11), we obtain two
distributions P, and P; corresponding to z] and z;, respec-
tively. From (10), we can see that same moments of the
random variables distributed as P, and P; are the same.
Hence, by the method of moments, we have P, = P;. Thus,
Ti(z1,27,) = Ti(z1,, 27).

Therefore, VN > Ny and Vz; € 2, we have T} (27, 2% ) >
Ty(z1,,2%1); hence, z; is an IINE policy. Generalizing this to
all users, we get N* = sup {N;}. The quantity N* exists
and is finite due to the assumption of interchangeability of
users. O

APPENDIX B
PROOF OF THEOREM 2

Given the conditions in Theorem 1, we can see that Z; is
non-empty. Therefore, by construction (9), we can see that S}
contains at least one element; in general, Si’“, for all k£, contains
at least one element as long as Z; is non-empty and S¥ is a
sequence of non-increasing sets, i.e. S¥ D SF™ D ;.

Now, we show that S; = STM , where M is the number
of distinct elements in the set {h;p;|h; € H;, p; € P;}. Let
z; and 2; be two distinct policies belonging to S¥ and S;,
respectively; hence, we have z;, 2; € Sf . We order the values
in the set {h;p;|h; € H;, p; € P} as {x1,29, -+ ,xp}, with
7; < @ip1, 71 = 0and x5, = hIpl. Using (11), we obtain two
distributions P and P corresponding to Z; and z;, respectively.

Let m; and My denote the dth moments of random vari-
ables distributed as P and 15, respectively. As z;,2; € Sf,
from (10), we have mg = mg, 1 < d < M. Now, we
define a matrix V of size (M — 1 x M — 1) with entries
Vap = (2a)?,2 <a < M—1and2 <b< M-—1.
Note that p? = 0,Vi. Let z and Z represent the vectors
containing the probability values of the policies z and 2,

respectively, i.e., 2 = [P(x3), P(x3),--- , P(za)]T and z =

[P(z2), P(x3), -+, P(xp)]T. Now, we have Vz — V2 = 0.
Since V is an invertible Vandermonde matrix, we have z = z.
Hence, from (10), we have I¥(z;) = I¥(2;) for all k, ie.,
z; € S; and, hence, SF C S;. Thus, Vk > M, SF = S,. O

APPENDIX C
PROOF OF THEOREM 3

This proof follows from the proof discussed in Case (i¢) of
Appendix A.
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