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Abstract—As an emerging machine learning technique, fed-
erated learning has received significant attention recently due
to its promising performance in mitigating privacy risks and
costs. In federated learning, the model training is distributed
over users and coordinated by a central server. Users only need
to send the most updated learning model parameters to the server
without revealing their private data. While most of the existing
work of federated learning focused on designing the learning
algorithm to improve the training performance, the incentive
issue for encouraging users’ participation is still under-explored.
Such a fundamental issue can significantly affect the training
efficiency, effectiveness, and even the practical operability of
federated learning. This paper presents an analytical study on the
server’s optimal incentive mechanism design, in the presence of
users’ multi-dimensional private information including training
cost and communication delay. Specifically, we consider a multi-
dimensional contract-theoretic approach, with a key contribution
of summarizing users’ multi-dimensional private information into
a one-dimensional criterion that allows a complete order of users.
We further perform the analysis in three different information
scenarios to reveal the impact of the level of information
asymmetry on server’s optimal strategy and minimum cost. We
show that weakly incomplete information does not increase the
server’s cost. However, the optimal mechanism design under
strongly incomplete information is much more challenging, and
it is not always optimal for the server to incentivize the group
of users with the lowest training cost and delay to participate.

Index Terms—federated learning, incentive mechanism, multi-
dimensional contract, information asymmetry

I. INTRODUCTION

A. Background and Motivations

The unprecedented amount of data generated by users’
mobile devices has a great potential in powering intelligent
learning models in many aspects of our life. However, the
privacy concerns from users often make it risky (or even
illegal) to store all the users’ data in a centralized location.
This motivates the emergence of federated learning, which can
enable effective learning while protecting users’ privacy.

A typical federated learning application platform (e.g.,
Google Keyboard, or Gboard in short) usually consists of (i) a
population of users who use their local data to collaboratively
train a shared learning model and (ii) a central server who
coordinates the training. Specifically, each user computes the
updated parameters of the global learning model based on his
local data and sends the parameters to the server repeatedly;
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the server iteratively updates the global model based on the
users’ inputs and feeds the aggregated global model back to
users. Users and server repeat this process until a desirable
model accuracy is achieved, e.g., the training error is smaller
than a threshold [1]. Different from a traditional centralized
model training where the central server acquires and stores
users’ raw data, federated learning allows users to keep the
local data on their own devices and only share the intermediary
model parameters, which well protects users’ data privacy.

However, with all the promising benefits, federated learning
also comes with challenges to tackle. First, most existing
studies usually make an optimistic assumption that users are
willing to participate in the training process (e.g., [2]). That
may not be realistic without proper incentives, as users incur
various costs during the training process [3]. Second, the server
can selectively incentivize appropriate users’ participation to
enhance training efficiency as well as effectiveness (e.g., [4]).
However, this may not be easy to achieve if the server does not
know the information regarding users’ communication delay
and training costs. The communication delay depends on each
user’s device configuration and time availability, which are
often unknown to the server, especially when there are a
large number of heterogeneous users in federated learning.
Moreover, the training costs are also users’ private information
and will not be easily accessible by the server due users’
privacy concerns. The above two problems motivate our first
key question in this paper: How to incentivize users with multi-
dimensional private information to train the federated learning
model truthfully and efficiently?

Although the server may not know each user’s private
information, it may have the knowledge about statistics of
such information through market research [5]. For example,
the server may know the numbers of different types of users
(which is denoted as weakly incomplete information) or only
knows the user type distribution (which is denoted as strongly
incomplete information). Different levels of information asym-
metry require the server to design different optimal strategies
to achieve the highest possible model accuracy with the lowest
possible costs. This motives our second key question: How
does the server’s knowledge of users’ private information
influence its strategy and cost?

B. Contributions

We summarize our key contributions as follows:

o Incentive issue with multi-dimensional private information.

To the best of our knowledge, this is one of the first ana-
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lytical studies on a multi-dimensional incentive mechanism
design for federated learning, considering different levels
of information asymmetry. We model the server’s trade-off
between model accuracy and payment to users, and show
that such a trade-off eventually translates into the trade-off
between different dimensions of users’ private information.

o Multi-dimensional contract and server preference character-
ization. We analytically solve the server’s optimal contract
design problem, which is challenging in the presence of
users’ multi-dimensional private information. Specifically,
we are able to project two-dimensional information into a
one-dimensional criterion, which characterizes the server’s
complete ordered preference of different users.

o Investigation on effect of multiple information asymme-
try levels. We reveal the influence of information asym-
metry level on the optimal contract, and show that the
complexity of contract design increases with information
incompleteness. We demonstrate that: 1) comparing with
the complete information benchmark, weakly incomplete
information does not increase the server’s cost, but strongly
incomplete information does; 2) choosing the group of users
with lowest training cost and delay is not always optimal for
the server when information is strongly incomplete.

C. Related Work

Studies on federated learning started in 2016, and most
literature has focused on improving training efficiency and
effectiveness (e.g., [6]), enhancing security (e.g., [7]), and
preserving privacy (e.g., [8]). Most of the results are derived
under an optimistic assumption that users are willing to
participate in the federated learning, which may not be realistic
without proper incentives to the users.

A carefully designed incentive mechanism can elicit honest
behaviors of data owners and enhance training efficiency in
federated learning [4]. Although federated learning has been
increasingly widely implemented in practice, there are only
a few important earlier work on the incentive mechanism
design, with a few limitations. First, these existing work
usually modeled the server’s profit along one dimension,
e.g., time consumption (e.g., [2], [9]) or training data size
(e.g., [10]). Second, these literature did not consider various
possible information scenarios. Specifically, Kang et al. [2]
only considered the weakly incomplete information where the
server knows the number of different types of users, while
Sarikaya et al. [9] and Feng et al. [10] assumed a complete
information scenario where the server knows the private in-
formation of users (e.g., costs). Third, these studies assumed
that the server can only make one-dimension decision, which is
not flexible enough when users have multi-dimensional private
information. Building upon these earlier work, we consider
a more general and practical model of multi-dimensional
private information, provide a more comprehensive mechanism
design, and investigate the effect of information completeness.

II. SYSTEM MODEL

We consider a typical federated learning platform (e.g.,
the popular Gboard system) where the model training is dis-

tributed over N users and coordinated by a central server. To
simulate users’ participation under incomplete information, we
will propose a contract-based incentive mechanism where the
server provides a set of contract items for each user to choose.
In the following, we first introduce the federated learning
process, then formulate the contract, and finally specify the
users’ payoff and the server’s cost, respectively.

A. Federated Learning Process

As an illustrative example, Gboard is a Google keyboard
software which relies federated learning to help users predict
the next word (to be typed) based on the current word (that
has been just typed). Since the typing data from each mobile
user is limited, Gboard relies the data from millions of users
to achieve an effective prediction. It asks users to use their
local data about input behaviors to cooperatively train a
global learning model. Each user only needs to share model
parameters with the server without uploading his raw data.

Specifically, consider an example of data (z;,y;), where
x; is the input (e.g., a word entered by a user on the
keyboard) and y; is the label (e.g., the word entered by the user
following x;). The objective of learning is to find the proper
model parameter w that can predict the label y; based on the
input x;. Denote the prediction value as §(xz;;w). The gap
between the prediction §(z;;w) and the ground truth label y;
is characterized by the prediction loss function f;(w). If user
k uses a set Sy, of data with data size s to train the model,
the loss function of user k is the average prediction loss on
all data i € Sy, i.e., 1

Fi(w) = — 3 fi(w).
Sk 1€Sk

The optimal model parameter w* minimizes global loss func-
tion, which is a weighted average of all users’ loss functions:

N
. . Sk
* = = —F 1
w argn}il)nf(w) argngnkil . k(w), (1)

where s is the total data size of all users [1].

We consider the widely adopted synchronous update scheme
that proceeds in rounds of communication, i.e., all users enter
a new global training round simultaneously; the server sends
the global parameter to all users at the same time and waits
for all users’ updates. The key advantage of the synchronous
algorithms is that they have provable convergence (e.g., [4],
[11]). A typical synchronous federated learning algorithm with
one-step local update works as Algorithm 1 [1].

Users have to perform both communication and computation
in the federated learning. Communication usually takes time.
McMahan et al. [1] shows that mobile users usually have
a limited upload bandwidth and may even wait for some
time before uploading. Meanwhile, computation time becomes
shorter and shorter, as each user’s on-device dataset is small
compared to the total dataset size and modern mobile phones
have relatively fast processors. In this paper, we focus on the
synchronous federated learning that each user only conducts
one step of gradient update in each round, in which case we
can reasonably assume that communication time dominates in
each round of training. We will discuss the more general case



Algorithm 1: Synchronous federated learning

Input : Number of iterations D, learning rate 7,
number of users /N, and each user’s data.
Output: Model parameter wp
1 initialize wo
2 for round d=0; d < D; d+ + do

3 Server executes:

4 select a set IC of users

5 send current global parameter wy to users

6 Each user k € K executes:

7 compute local parameter: w4, | <wq—nV Fy, (wq)
8 return w{j 41 tO server

9 Server executes:

10 aggregate all users’ updates: wd+1<—zke,c%w§+1
11 end

of multiple-step local updates in Appendix XI of the technical
report [12]. Moreover, we assume that the powerful server has
a large enough bandwidth, so that the communications from
multiple users to the server do not interfere with each other.

Because users will suffer time/energy costs due to the
model training, the sever needs to properly incentivize users’
participation by providing rewards. An effective incentive
mechanism usually offers heterogeneous rewards for different
types of users.

B. User’s Types

We consider a population of N users on the federated
learning platform. Users are distinguished by two-dimensional
private information: the marginal data-usage cost 6 and the
communication time t. For the convenience of presentation,
we refer to a user with m; = (6;,t;) as a type-i user. We
consider all users belonging to a set Z = {1, ..., I} of I types.
Each type 7 € 7 has N; users, with ), ., N; = N. Though
each user could have data different from others, we assume
that the data is i.i.d. among all users and each user’s type does
not change in the entire training process.

In the presence of users’ private information, it is difficult
for the server to predict the users’ behaviors without complete
information. To this end, we propose to design a contract
mechanism to elicit the private information.

C. Contract Formulation

Contract theory is a promising and widely adopted theo-
retic tool for dealing with problems with private information.
Therefore, we propose a contract theoretic framework to tackle
the incentive mechanism design problem.

1) Server’s Contract: The server will propose a contract
that specifies the relationship among users’ communication
time, training data size, and reward for the entire training
process. Specifically, the contract C = (tmax, @) contains a
maximum communication time ¢, (for all user types) and [
contract items ¢ = {¢; };cz (one for each type). The term ¢,,,x
is the maximum communication time in each global round
set by the server for all users, i.e., users with ¢; < ¢, are
able to finish the transmission of the parameters in time. Each

contract item ¢; = (s;,r;) specifies the relationship between

each type-i user’s data size and reward. The term s; is the
required training data size for each type ¢ user in each global
round. The term r; is the reward (e.g., money) for each type
1 user in each global round, if the user completes the training
task with required time and data size'. The server offers a zero
contract item for any user type ¢ with ¢; > tax.

2) Users’ Choices: At the beginning of the training process,
each user decides whether to participate in the training and
(if yes) which contract item to choose. If a user chooses the
contract item ¢;, it needs to use s; data examples to train the
model and sends local updates to the server in time t,.x. In
return, it will get ; reward in this global round. Users will not
participate if their payoff (defined in Section II-D) is negative.

Under such a contract, we specify the users’ payoff in
Section II-D and the server’s cost in Section II-E.

D. Users’ Payoff

Each user’s payoff in each global round is the difference
between the reward offered by the server and the cost of data
usage in model training.

We assume that a user’s training cost (e.g., time and energy
costs) is proportional to the used data size, i.e., 8;s; [3]. Hence,
if a type-i user chooses the contract item ¢;, his payoff is’:

Ty — Hisiv if t; < tmax7
U(9i7 tis d)l) - 701'57;7 if £; > tmax. @

We assume that in each global iteration, every user locally
performs one step of mini-batch stochastic gradient decent
(SGD) to compute the model parameters. Thus from the global
perspective, it is equivalent to a mini-batch SGD with batch
size B =) ;.7 1t, <t Nisi, Where
]lt/-<t — 17 lf ti < tmaxa

i tmax 0, if t; > tmax,
means that only users with ¢; < %, are eligible to train
the model. Note that we are able to analyze the general case
where users perform multiple steps of local updates and the
results turn out to be similar to the one-step case. Due to space
limit, both analysis and results of the general case are given
in Appendix XI of the technical report [12].3

E. Server’s Cost

With a fixed training time, the server’s cost is determined
by the accuracy loss of global model and the total payment to
users.

The server is able to know each user’s training data size which is the
weight in parameter aggregation step (i.e., (1)) of federated learning [13].

2Since we consider synchronous federated learning, our model can be
applied to the case where users’ payoffs include an additional homogeneous
time cost term atmax. Such a time cost only makes the optimal rewards
increase by a constant. Thus, we normalize the time cost to zero.

3Considering one-step update is for the convenience of modeling the global
training accuracy in Section II-E, so that we can derive explicit solutions as
well as comprehensible insights. That is because there is no theoretical results
of the global accuracy of federated learning in the presence of users’ multiple
updates in each global iteration. However, this assumption is not restrictive.
First, if users perform multiple steps of local updates, we are able to derive
similar results by using a general accuracy function f(.S, E, K), where S is
the total training data size, F is the number of data passes, K is the number
of global iterations, and f(S, F, K) is a convex decreasing function [14],
[15]. Second, we will show in simulation (Fig. 5) that even if users perform
multiple steps of updates in each global iteration, our proposed mechanism
still has a good performance.



First, we characterize the expected accuracy loss of the
global model. We use 1" to denote the total training time. Thus,
the number of global iterations is denoted by D = T/t ax-
The model accuracy loss after D rounds is measured by the
difference between the prediction loss with parameter wp
and that with the optimal parameter w*, i.e., f(wp) — f(w*)
(defined in Section II-A). The expected difference is bounded
by O(1/v/BD + 1/D) when users use mini-batch SGD [15],
[16], where B is the batch size. Thus, server’s expected loss
in model accuracy decreases as the number of iterations D
and batch size B increase. Note that a smaller value means
less expected accuracy loss.

Next, we consider the server’s total payment to all users in
the entire training process. If all users choose the respective
contract items, the total payment is the product of the number
of global iterations and the payment to all users in each
iteration, i.e., D - ;7 Ly, <t Nivi.

To summarize, the server’s cost is:

i 1 tl‘ﬂ X
W (b, @) =71 min{(—= e
\/ T Diezlt; <tmadVisi
T
+72 m Z Lt <tyan Vit 3)
max leI

The first term on the right hand side of (3) characterizes
the server’s expected loss in accuracy, where v, indicates the
server’s valuation on accuracy loss. The second term on the
right hand side of (3) represents the server’s payment to users,
where 7y indicates the server’s valuation on payment. We use
C € (—A—+"ms=, 00) to characterize the server’s finite (and

tmax

possibly large) accuracy loss when there is no data for training
(i.e., ZiGI ]]-tiStmaxNiSi = O)
III. OPTIMAL MULTI-DIMENSIONAL CONTRACT DESIGN

In this section, we analyze the server’s optimal incentive
mechanism. To understand the impact of incomplete informa-
tion, we consider three information scenarios:

1) Complete information scenario (benchmark): The server
knows each user’s type. This provides a lower bound of
the server’s minimum cost for all information scenarios.

2) Weakly incomplete information scenario: The server knows
the total number of users as well as the specific number of
each user type, but does not know which user belongs to
which type.

3) Strongly incomplete information scenario: The server
knows the total number of users and the distribution of
user types, but does not know the specific number of each
user type.

In each scenario, we first derive the condition for a feasible

contract, and then characterize the optimal contract. Feasibility

and optimality of the contract are defined as follows:

Definition 1 (Contract Feasibility). A contract is feasible if
each user achieves the maximum payoff under the contract
item designed for his type.

Definition 2 (Contract Optimality). A contract is optimal if it
minimizes the server’s cost among all feasible contracts.

A. Complete Information Scenario

In this subsection, we study the server’s optimal contract in
the scenario where the server knows the type of each user. This
makes it possible for the server to monitor and make sure that
each type of users accepts will not accept any contract item
not designed for that type. Even in this case, the server still
needs to ensure that each user achieves a non-negative payoff,
so that the user will accept the corresponding contract item.
In other words, a contract is feasible if and only if it satisfies
Individual Rationality (IR) constraints:

Definition 3 (Individual Rationality). A contract is individu-

ally rational if each type-i user receives a non-negative payoff
by accepting the contract item ¢; intended for his type, i.e.,

U(bs,ti, 0;) > 0,Vi € T. 4)
Thus, in the complete information scenario, the optimal

contract Cgffnplete = (t% x> @) is the solution to the following

optimization problem:
Problem 1 (Contract Design under Complete Information).

W(tmaxa¢)
IR Constaints in (4).

min
max;

s.t.

&)

We will solve Problem 1 in two steps. First, for any given
data size s;, we derive the server’s optimal reward 7} (s;)
(Lemma 1). Second, we substitute the optimal reward 7} (s;)
into the server’s objective function and derive the optimal data
size s; as well as the optimal maximum communication time
(Theorem 1).

*
trnax

Lemma 1. For any given data size s; (even if it is not optimal),
it is optimal for the server to choose the reward as r}(s;) =

02'51‘, Vi e T.

Proof of Lemma 1 is given in Appendix I of the technical
report [12]. Lemma 1 shows that the server will design the
contract such that all users get a zero payoff in the complete
information scenario.

Based on Lemma 1, we can derive the optimal data size for
each type that minimizes the server’s cost. To illustrate the
impact of choosing each user based on the server’s cost, we
have the following lemma:

Lemma 2. The server’s cost of only choosing type i is

t; 1 _2 1 2.1
G(ei,ti)éWT +(2§+2 5)72371395,

(6)

Proof of Lemma 2 is given in Appendix II of the technical
report [12]. Lemma 2 characterizes the server’s trade-off
between users’ different dimensions of private information
(i.e., # and t). Thus, we can transform users’ two-dimensional
private information into a one-dimensional criterion, which
indicates the server’s preference on different user types:

Definition 4 (Preference). The server has a higher preference
on type j than type i (denoted by j > i) if and only if
G(0,,t;) < G(0;,t;).
Fig. 1 illustrates how the server’s preference on user types
changes over the parameter space of (#,t). More specifically,
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Fig. 1. Server’s preference order.
the server’s preference on users’ types decreases from the red

area (low cost and delay) to the blue area (high cost anq delay).

The server has the same preference on users whose (62 ,¢;) on
the same line G(6,t) = Y, where Y is an arbitrary constant.
Among all I user types, we will denote the set of user types
which have the same highest server preference as follows:

grrefer & argmlnG(GJ,t ).

For example, suppose that there are five user types A, B, C,
D, and FE with (0,t) shown in Fig 1. The server’s preference
orderis A= B> C = D = E and JPrefer = {A}.

Theorem 1 characterizes the optimal contract for the server
in the complete information scenario under different cases of
the set Jrrefer:

Theorem 1. In the complete information scenario,
1) if grrefer = {43, the server’s optimal contract is t¥,, =

i 9 max
. )
t]’ ¢j - ( 2720, 12> [2{,2%]

N; E[=H ]% N, L ) and(bi:O,V’L;éj,

71 Ity
2) if |\7p’“ef”| > 1, the server’s optimal contract is to
select any one type j € JPrefer with t* = t;

max J’
* 1 d * 0
?; (NJ z EETEANY z [2729]] 5 ), and ¢f = 0,Yi # j.

3) if |grres 67| > 1, oﬁ‘ermg the only positive contract to one
type j € TP I leads to the same minimum server cost.

Proof of Theorem 1 is given in Appendix III of the technical
report [12]. Theorem 1 shows that the server only provides a
positive contract item for the single most preferred user type
and offers the same zero contract item for all other user types.
Moreover, the optimal contact always exists but may not be
unique, as the most preferred type may not be unique. On
the other hand, it is never optimal to select (provide a positive
contract item) to multiple user types, even if they all belong to
the set JPrefer  ag this would increase the cost of the server.

Intuitively, having less information would lead to a different
behavior of the server. However, we will show in next section
that server’s optimal contract under weakly incomplete infor-
mation is the same as that in complete information scenario.

B. Weakly Incomplete Information Scenario

In this subsection, we study the server’s optimal contract in
the weakly incomplete information scenario. The server does
not know which user belongs to which type, but knows the
specific number of each user type (i.e., N;,Vi € 7).

Since the server cannot force a user to accept certain
contract item in this case, it needs to design the contract to
further ensure the Incentive Compatibility (IC) constraints:

Definition S (Incentive Compatibility). A contract is incentive
compatible if each type-i user maximizes his own payoff by
choosing the contract item ¢; intended for his type, i.e.,

The optimal contract C%’,’t_mcomplete = (tF axs @*) under

weakly incomplete information is the solution to Problem 2:

Problem 2 (Contract Design under Weakly Incomplete Infor-
mation).

min ~ W(tmax, @)
tmax,P (8)
s.t. IR Constaints in (4), IC Constaints in (7).

As the total number of IR and IC constraints is 12, it is
quite complex to solve Problem 2 directly. In the following,
we first transform IR and IC constraints into a smaller number
of equivalent constraints (Lemma 3). Then, for any given data
size s;, we derive the server’s optimal reward 7 (s;) (Lemma
4). Finally, we derive the optimal data size s and the optimal
maximum communication time ¢} .. (Theorem 2).

We use Z’ to denote the set of user types with commu-
nication time no larger than .y, i.e., Z' = {i|lt; < tmax]-
We denote I’ = |Z’| and reindex the user types in Z’ by
{iz'}ieq,...,ry in the ascending order of marginal cost 6,
because as long as the communication time ¢ is no larger
than £,,,«, it does not matter anymore. Lemma 3 characterizes
contract feasibility:

Lemma 3. Under weakly incomplete information, a contract
C = (tmax, @) is feasible if and only if the followings are true:

a) for user types in T', the contract items satisfy the following
three conditions:

(11) ’I"]/I/ —(9[/1/8]/1/ > 0,

a2) ri, >..2rp >0and s1, > ... > s1, >0,

al) rigi, + 0, (s, — siv1,) < ri, < Tip1,, +
9i+11/(5i1/ — 5i+11/)r 1€ {1, ...,I’}.

b) for any user type i ¢ ', s; = r; = 0.

Proof of Lemma 3 is given in Appendix IV of the technical
report [12].

Constraint (a.1) ensures that each type of users can get
a non-negative payoff by accepting the contract item of
type-I7, users (with maximum marginal cost 91/1, in 7') as
T]/I/ — 91'1, — 01/1/51/1/ > 0,Vi € {1,...,[’}. This
corresponds to the IR constraints. Both constraints (a.2) and
(a.3) are related to IC constraints. Constraint (a.2) shows that
the server should request more data from a user type with
a lower marginal cost and provide more reward in return.
Constraint (a.3) characterizes the relationship between any
two neighbor contract items. The results in (b) mean that users
with ¢; > tnax cannot finish the communication in time, so
the required data size and reward in contract are zero.

Based on Lemma 3, Lemma 4 characterizes the optimal
rewards for any feasible data size:

s, 2 Tr,

Lemma 4. For any given data size 8 = {s;}icz (even if it is
not optimal), it is optimal to choose reward satisfy:
e for any user type 1 € T',



0;si, if i=1L;
ri(s)= o

0, 51+Z] Z+II/(€]‘_€]‘—1)S]" ifi= 17/, ...,
e for any user type i ¢ T', r¥(s) = 0.

Proof of Lemma 4 is given in Appendix V of the technical
report [12]. Based on Lemma 3 and Lemma 4, we can
significantly simplify Problem 2. The following theorem char-
acterizes the server’s optimal contract in weakly incomplete
information scenario:

(-1,

Theorem 2. Under weakly incomplete information, the

server’s optimal contract Cy is the same as that in
opt
complete®

W —incomplete
complete information scenario in Theorem 1, i.e., C
Proof of Theorem 2 is given in Appendix VI of the technical
report [12]. Here we discuss some intuitions about Theorem 2.
Recall that in the complete information scenario, the server’s
optimal contract is to only choose the most preferred user type.
Under weakly incomplete information, the server knows the
exact number of each user type. Thus, the server can focus
on designing a contract to only attract the most preferred
type, so that it achieves the same minimum cost as complete
information scenario. Next, we will show that when the server
does not know the number of each type, it needs to design a
more complex contract to deal with all possible situations.

C. Strongly Incomplete Information Scenario

In this section, we consider a scenario where the information
about users’ types is strongly incomplete. The server does not
know the specific number of each user type, but only knows
the total number of users N and the distribution of users’
types, i.e., the probability of a user being type 4 (6;,t;) as p;.

Due to the uncertainty, the server needs to minimize its
expected cost in this information scenario. Consider the case
where N; = n; for each user type ¢ with ZieI n; = N. The
probability for this case is

Nt py 3 py
n1‘ MNr—_1: (N Z i=1 nl) ’
and the server’s corresponding cost (if all users choose the
respective contract items) is T
W(tma)m ¢7 ny, ..., Tl]) =%Y2— Z ]]-tjﬁtmaxniri“i’
tmax .
1€L
. 1 tmax
71 min{( +=5).C}
\/ = Yier Lo <t iSi

Then, the optimal contract Cg"* incomplete = (o> @) 1s the
solution to the following optimization problem:

I—-1
=iy i

P(nh "'7”]) =

Problem 3 (Contract Design under Strongly Incomplete In-

formation).
Z P ’I’L1 yeees

(n1,...,n1)
s.t. IR Constaints in (4), IC Constaints in (7).

It is very challenging to directly solve Problem 3 analyti-
cally. First, we can show that even after simplifying Problem
3 based on Lemma 3 and Lemma 4, the new optimization
problem is not necessarily convex. Second, even the problem is
convex in some special cases, there is no closed-form optimal

mlIlE[ W(tmax7¢;n17~-~7n1)

max7 ¢
max )¢

solution due to the high order polynomial equations in KKT
conditions. This motivates us to consider a more tractable
approach to compute a suboptimal contract.

If the server adopts the previously derived optimal con-
tracts (under complete and weakly incomplete information) in
strongly incomplete information scenario, it will have no data
for training with a probability of (1 — p;) when the user
type j with positive contract item turns out to have n; = 0.
The server would be very likely to get the no data training
cost when p; and N are not large enough. Inspired by the
structure of the previously derived optimal contracts that only
choose the most preferred user type, we consider a simplified
contract where the server only offers two kinds of contract
items, one is positive for a group x C Z of user types and the
other is zero for the rest user types in Z\ x. We name such a
contract structure as Two-Part Uniform (TPU) contract.

The optimal TPU contract Cgfgbff;pzete is the solution to
the following problem:

Problem 4 (TPU Contract Design under Strongly Incomplete
Information).

max7¢ ZP ni,...,n
(n1,...,nr)
s.t. IR Constaints in (4), IC Constaints in (7),
¢; = ¢j >0,Vi,5 € x;0, =0,Vk € I\X.

The performance of the optimal TPU contract turns out to be
close to the optimal contract C¢ mwmplete (i.e., the optimal
solution of Problem 3), which can be shown through both
analytical performance bounds and simulation results.

We denote by x.,,, an arbitrary subset of user types in Z, and
we denote x* as the type set that leads to the minimum server
cost under the optimal TPU contract. In the following, we will
first show the optimal TPU contract given an arbitrary type set

Xm» 1.€., cIPU.opt tete(Xm) in Lemma 5, then evaluate the

S— zncomﬁ
performance of Cg" glff;plete(xm) in Theorem 3, and finally

provide the guideline for finding the optimal type set x*.
First, we characterize the optimal TPU contract under type

set Xom, 1.€., Cgpgbfffwl ete(Xm). The probability of having

N, users belonging to the types in xp, is:

N My, —n
Pl = (2 )P =Py e )
Xm
where Py, = >_,c. p;is the probability that a user belongs

to a type in x.,. We denote by T, = max{t;};cy,, the maxi-
mum communication time of user types in x,,, and we denote
by O,,, = max{6;}icy,, the maximum marginal cost of user

: T PU,opt
types in X, Lemma 5 presents the Cg” ;00 1o (Xm):

W(tmaxa d); ni, ...,’fl[)

min E[W
tmax,P,X

m

Lemma 5. The optimal TPU contract given an arbitrary

type set X, under strongly incomplete information (i.e.,
TPU,opt + T
S— zncomplete(xm-)) Is: max — *Xm’

o for all user types in Xm:

1
¢* _( 1 ( nXm.:l (nxm) Vv Mxom, )%
T 12720, 12 N )
m[%} 3 anzl P(ny,,)ny,,
N 1
Oy.. Znszl P(ny,,) s
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Fig. 2. Server’s bounds of cost difference AW (X ).

e for all user types not in X, ¢* = 0.

We use AW(xm,) to denote the cost gap between
the one achieved under optimal TPU contract given X,
Cgi%gf;plete(xm) and the minimum cost achieved under the
optimal contract with complete information Cgffnplete(xm) (as
in Theorem 1). Such a gap is due to two reasons: (i) the
strongly incomplete information, and (ii) the simplification of

TPU contract. Theorem 3 shows the bounds of AW (x;,):

Theorem 3. In the strongly incomplete information scenario,
the cost difference AW (x,,) has the following bounds:

o lower bound: T
LB (=P (0= T )

o upper bound: T 2
vB= (23 123 b b |(Loss YN P ) Ly | pp
( )% 727 ' e0.02P 2 N

Proof of Theorem 3 is given in Appendix VII of the
technical report [12].

Note that the gap between the minimum cost achieved under
Cg’fi{igop:rlplete(xm) and the one under Cg’zitincomplete is no
larger than AW (x,,). Theorem 3 shows that if the server
adopts the optimal TPU contract, it will have a bounded cost
difference compared with the complete information scenario.
First, both the lower and upper bounds decrease in the number
of users N. When N becomes very large (i.e., goes to infinity),
the lower bound approaches 0 and the upper bound approaches
the constant (23 +2§)71%72%6Xm%[(1.05)% — 1]. Moreover,
the server can decrease the upper bound by choosing a type
set X, with a lower marginal cost O, as illustrated in Fig. 2.
Especially, when N is large, the upper bound approaches to
the constant, which is dominated by the ©,.,  and not related
to other parameters of x,,. This provides the guideline for us
to find the optimal type set x* under the optimal TPU contract.

Next, we derive the optimal type set x*. Since there is
a large number of users on federated learning platform like
Gboard, we first study the asymptotic behavior under a large
user population:

Proposition 1. As the number of users N approaches infinity,
the server will only set a positive contract item for a most

. STPU,opt : . .
preferred type in Cg” ;0 ., (i.e, x* = {j} where type j
can be any type in JP"¢1") which achieves zero cost gap

(i.e, lim AW(x*)=0).
N —o00

Proof of Proposition 1 is given in Appendix VIII of the
technical report [12]. By the law of large numbers, the empir-
ical value of the number of a particular type users approaches

the expected value computed based on the distribution when
N becomes large. Thus, the server will not encounter the
situation of having no training data when it only chooses the
most preferred type.

Next, we present the insight about which types are in the
optimal type set x* under any value of N*. We may naturally
presume that the server would prefer types with higher prefer-
ence (based on Definition 4). However, the following results
show that choosing some user types with lower preference
(while excluding other user types with higher preferences) may
minimize the server’s cost, which is counter-intuitive.

Proposition 2. Under the optimal TPU contract in the strongly
incomplete information scenario Cgi%gf;plete, it is possible
to exist user types i and j such that i € x*, j & x*, and
G(0;,t;) > G(6,,t)).

Proof of Proposition 2 is given in Appendix IX of the
technical report [12]. The insights behind Proposition 2 are
1) selecting a user type with higher preference may not be
optimal when the existence probability of this user type is
small; 2) the server’s cost is determined by the maximum
communication time and maximum marginal cost of user
types in the type set. Thus, the combination of several high-
preference types may not have a good overall performance.

IV. NUMERICAL EXPERIMENTS

In this section, we perform numerical experiments to eval-
uate the performance of the proposed contracts and validate
our analytical results. We first present the good performance of
the contracts in three information scenarios, compared with a
uniform contract benchmark defined as follows (Fig. 3). Then,
we show that the server does not always choose user types
with higher preference under strongly incomplete information
(Fig. 4). Finally, we train a federated learning model based on
a realistic dataset with users’ multiple local updates, to verify
the robustness of our contracts’ performance (Fig. 5).

Regarding the system parameters, we choose T' = 10,
v1 = 6751.269, v = 1, and C' = 6.2. There are five user types

with parameters (0, t4) = (2.6,15), (03,,t5) = (2.1,4),
(02,tc) = (7.1,1.3), (8},tp) = (3.6,7.5), and (0},tp) =
(5.6,8.5). The preference orderis A = B > C = D > E.The
fractions (distribution, respectively) of each type in complete
and weakly incomplete (strongly incomplete, respectively)
information scenario are p4 = pp = pc = pp = pg = 0.2.
We consider a uniform contract benchmark, which contains
a single uniform contract item for all users. Specifically,

* _ * 1 Oc
lhax = LB, ¢ 7(NL[M]%’NL[M %)

In Fig. 3, we comptaEre the server’gEcosg ‘under three different
information scenarios and the uniform contract: 1) comparing
with complete information, weakly incomplete information
does not increase server cost, but strongly incomplete infor-
mation does; 2) the performance of the optimal TPU contract
is very close to that of the optimal contract under strongly

incomplete information, especially when the number of users

“Due to space limit, we provide detailed analysis regarding how to choose
type set x* when N is finite in Appendix XII of the technical report [12].
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Fig. 3. Cost comparison.
information scenario.

is large; 3) all designed contracts in the three information
scenarios achieve up to 73.72% cost reduction of uniform
contract when N is large.

In Fig. 4, we verify our insights in Proposition 2 about the
types in the optimal type set x* under strongly incomplete
information. Interestingly, when the number of users is 3, the
server chooses type A, B, D, E instead of A, B, C, D, though
A, B, C, D rank top four in the order of preference. Moreover,
when the total number of users decreases, the number of
chosen user types increases. The server needs to ensure a high
enough existence probability of chosen user types to avoid the
cost of no training data, especially when N is small.

In Fig. 5, we show that the performance of our contract is ro-
bust when each user executes multiple local updates per round.
Specifically, we train a federated learning model on CIFAR-10
dataset in complete/weakly incomplete information scenario’
with T = 750, 71 = 4.394 x 10'2, and N = 500. Other
parameters remain unchanged as before. Our convolutional
neural network (CNN) model consists of six 3 x 3 convolution
layers (with 64, 64, 128, 128, 256, 256 channels, respectively,
and every two followed with 2 x 2 max pooling), a Drop-out
layer (0.5), a fully-connected layer with 10 units and ReLU
activation, and a final softmax output layer. The server’s cost
in Fig. 5 consists of the accuracy loss in experiment and the
total payment to users. Even if users perform multiple updates
in each global iteration, the proposed contracts have a better
performance than that of the uniform contract, up to 45.69%
(37.37%, respectively) cost reduction for 10 (50, respectively)
local updates per global iteration.

V. CONCLUSION

This paper has focused on the important issue of incentive
mechanism design in federated learning. To the best of our
knowledge, this is one of the first papers that deal with
multi-dimensional private information for federated learning,
considering different levels of information asymmetry. One of
our key contributions is to identify a way to project users’
two-dimensional private information into a one-dimensional
criterion. It characterizes the server’s complete ordered pref-
erence of different users and helps reduce the complexity
of the incentive mechanism design. We have also revealed
some interesting insights: First, incomplete information does

5The performance of strongly incomplete information is almost the same,
because the number of users NV is very large in this case (Proposition 1).

Number of users
Fig. 4. Server’s type set x* in strongly incomplete Fig. 5.
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Server’s cost when users perform mul-
tiple updates in each global iteration under com-
plete/weakly incomplete information.

not always increase the server’s cost. Second, choosing user
types with lower preferences (while excluding users types
with higher preferences) may be optimal for the server when
information is strongly incomplete.
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