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Abstract—This paper considers the caching design for coded in data delivery is symmetric among files for both the CCS
caching under nonuniform file popularity. We investigate the [12], [13], and the MCCS [10], where the latter provides
optimal cache placement for the modified coded caching schem the exact trade-off between the cache size and the rate.

(MCCS) recently proposed with an improved delivery strategy for . ) .
rate reduction over the original coded caching scheme (CCSYVe For nonuniform file popularity, the cache placement may be

use the optimization framework for the cache placement proem ~ different among files, complicating both design and analysi
to minimize the average delivery rate. Exploring several pop- There is a fundamental question on whether to distinguish

erties of the optimization problem and analyzing its structire, files of different popularities for cache placement and t@ivh

we obtain the file grouping structure under the optimal cache extent. There may be a trade-off in design complexity and
placement. We show that, regardless of file popularity, thex are . .
performance in practical systems.

at most three file groups under the optimal cache placement. o / ) ) )
We further characterize the complete structure of the optinal Existing works on caching design under nonuniform file
cache placement and obtain the closed-form placement solah in  popularity are all based on the CCS [2], [12]-[16]. For

these three possible file group cases. Following these, wevellop  simplifying the problem, file grouping has first been progbse
a simple algorithm to obtain the final optimal cache placemeh in [2], where files are divided into groups with cache allo-

solution, which only requires to compute a set of candidate . . .
solutions in closed-form. Simulation verifies the optimal slution cated to different groups, and the decentralized CCS with

produced by our algorithm. The optimal MCCS is shown to Symmetric cache placement is applied for each file group.
outperform existing schemes for both MCCS and CCS. File grouping has since been considered a tractable popular

method for cache placement design. For the CCS, through
heuristics, [2], [14]-[16] have proposed different file gping

Caching has recently emerged as a promising technolaggthods for cache placement (typically into two groupsyl an
for future networks [1]. By storing data in distributed netk  different achievable rates and information-theoreticaldr
storage resources near users, cache-aided systems tallebaunds on the rate have been obtained. These strategies are
the increasingly intensive traffic in wireless networks teen either suboptimal or designed only for certain file poptyari
low latency requirements. Conventional uncoded caching dsstributions. For the MCCS, despite the improvement it is
inefficient for systems with multiple caches [2]. Boded shown for uniform file popularity, there is no heuristic cach
Caching Schem¢CCS) has recently been proposed [3] thailacement design proposed for nonuniform file popularibe T
combines a cache placement scheme specifying the (uncodgat)mization framework is used to study the cache placement
cached contents and a coded multicasting delivery strategyfor both CCS [12], [13], and MCCS [17] under nonuniform
is shown to be able to explore both global and local cachitige popularity. However, they focus on numerical methods in
gain for substantial load reduction. As a result, coded icach solving the problem and are unable to provide insight into
has drawn considerable attention, with designs and argly#ige structure of the optimal cache placement. In partictier
extended to various system models or network scenarios [4Jptimal cache placement and its connection to file grouping
[9]. The original CCS [3] is designed to minimize the peakemain unknown.
load in the worst-case scenario when users request distincin this paper, we obtain the optimal cache placement for
files. For the general case where multiple users request the MCCS to minimize the delivery rate for arbitrary file
same file, the CCS contains redundancy in the coded delivgsgpularity distribution and cache size. Focusing on thegla
To address this, a recent study [10] has proposétbédified ment structure, we characterize the optimal scheme and its
Coded Caching Schem@ICCS) with a modified delivery connection to file grouping. Instead of constructing a caghi
strategy to remove this redundancy, resulting in a reduzad | scheme as in many existing works, we use the optimization
than the CCS. The MCCS is then also applied to the devideamework for the cache placement problem to minimize
to-device networks [11]. the delivery rate. We adopt structural simplifications fbe t

A key design issue in coded caching is the cache placemdractability of the problem, which have been numerically
An effective cache placement scheme increases caching gastified to be without loss of optimality [17]. With further
and minimizes the load (rate) in the delivery phase. To stuéyploration of the properties in the optimization probleahis
the fundamental caching limit, many existing worlesg(.,[4]- allows us to transform the problem into a linear programming
[11]) assume uniform file popularity. Under this assumptioflLP) problem. By analyzing the problem structure, we idgnti
the optimal cache placement that minimizes the average rdte file grouping structure under the optimal cache placémen

I. INTRODUCTION
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We show that, regardless of file popularity, there are at mostl) Cache PlacementFor K users, there are total* user
three file groups under the optimal cache placement, easbsets inC, with subset sizes ranging frothto K. Among
with a unique placement pattern. We completely charaeerithem, there are{fl() different user subsets with the same size
the structure of the optimal cache placement and obtain thefor [ = 0,..., K (size 0 for the empty subsef)). They
closed-form placement solution in these three possible filerm a cache subgroup that contains all user subsets of,size
group cases. Following this, we develop a simple and efficietefined asd’ 2 {S : S| =1, S C K} with |A!| = (¥), for
algorithm to obtain the final optimal cache placement soiyti [ = 0, ..., K. Partition each fildV,, into 2 non-overlapping
which requires to compute a set of candidate solutions subfiles, one for each unique user subSet /C, denoted by
closed-form and in parallel. Insight into the somewhat suW,, s (it can bef). Each user in user subsStstores subfile
prising file grouping result is also provided. The optimatloa W, s in its local cache (subfil&l/,, j is not stored in any user’s
placement solution given by our algorithm is verified thrbugcache but only kept at the server). For any caching scheme,
simulation. The optimal placement for the MCCS outperfornmeach file should be able to be reconstructed by combining
other existing schemes either for MCCS or for CCS, whe#dl its subfiles. Thus, we have the file partitioning consifrai

the gap is more evident for a smaller cache size as a beffief" Yosea [Wns| = F, for n € N. This construction
cache placement is more critical for caching gain. through subfile and user subset partitioning is general to
represent any cache placement.
Il. SYSTEM MODEL To reduce the number of variables and simplify the opti-

\r/réigation problem for its tractability, we impose the follmg
&1dition: for each filéV,,, the size of its subfiléV,, s only
epends onS|, i.e., |W,, s| is the same for ang € A’ of the
. . . . : same size. This condition is proven to be the property of the
files {Wl"'. '.’WN}' Ea.Ch file W, is of Slzée [ bits and optimal placement solution for the CCS [13]. Although the
has probabilityp,, for being requested. Lgh = [py,...,pn] RN o .

I e same is difficult to prove for the MCCS, it is numerically

denote the file popularity distribution, whede,_, p, = 1. P : . . o .
Without loss the generality, we label files according to th\éer'f'ed in [17] that imposing this condition results in no

decreasing order of their popularities; > ps > -+ > px. l0ss of optimality. Based on this condition, the subfiles of

Each usetk has a cache siz&/ (normalized by the file size) fllel Wy, are groupeo! into file subgroups, each denoted by
with capacityM F' bits, whereM is arbitrary within the range Wy ={Wns:S€A} forl=0,..., K. As aresult, there
: e (%) subfiles of the same size W), (intended for user

. . o )
z[aor;évl]c éDe{nlote th]e{l;ler:;selé;\(j;;;dex setshy={1,..., N} subsets in cache subgroufd), and there are totak + 1 file

. ; subgroups. Following this, | denote the size of subfiles in
The coded caching operates in the cache placement ph9\§ﬁgas apfraction of %d/V s?;nélF bits, i.€., an s 2 Wy 5|/ F
and the content delivery phase. In the cache placement ,phi &’ n Lo ™

l _
a portion of uncoded file contents are placed in each use Qrvs € A),1=0,...,K,n € N. Note that, o represents

Consider a cache-aided transmission system with a ser
and K users, each with a local cache, connected over a shaf
error-free link. The server has a database consistingvof

S . . . )
local cache, specified by a cache placement scheme. Assdpne fraction of filelV,, that is not stored at any user’s cache but

each usek independently requests a file with indéx from iosns)i/n:zm?elgstoat the server. Then, the file partition constrai

the server. Letl £ [dy, ..., dx| denote the demand vector of

K users. In the content delivery phase, based on the demand K /K

vectord and the cached contents at users, the server generates Z ( I )an,l =1, neN. 1)
coded messages containing uncached portions of requested =0

files and transmits to the users. Upon receiving the codedRecall that in file partitioning, each subfile is intended dor
messages, each usereconstructs its requested filg;, from unique user subset. During the cache placement, ustsres
the received coded messages and its cached content. NbtedHiahe subfiles in!, that are intended for user subsets that
for a valid coded caching scheme, each ukeis able to contain the user.e., {W, s : k € S andS € A'} C W!,

reconstruct its requested file for any demand vedtar V¥ for i =1,..., K. Note that in eachd, there are tota(’; ")
over an error-free link. different user subsets containing the same ésérhus, there
areri1 (lf:ll) subfiles in each filéV,, that a user can store
I1l. THE CODED CACHING PROBLEM SETUP in its local cache. With subfile size, ;, this means that in

Among existing studies for the CCS, a common approa er. Given cache siz&/at each user, we have the following

: K (K-1 ) ;
The cache placement is a key design issue in coded cachgg’i‘l* a fraction>,”, (' )an, of file W, is cached by a
is to propose a cache placement scheme, construct a Iov9é?|aI cache constraint

bound on the minimum data rate, and evaluate the proposed N K ok
scheme by comparing its performance with the lower bound. Z Z ( -1 )an,l <M. 2
Different from this, we use an optimization approach for the n=11=1

cache placement design for the MCCS. Through construction2) Content Delivery: During the content delivery phase,
we formulate the cache placement problem into a desigime server multicasts coded messages to different user sub-
optimization problem. sets. Each coded message corresponds to a user stipset



formed by bitwise XOR operation of the subfiles &s = Next, from the popularity-first condition (4), we conclude
DresWa,,s\(x}- In the original CCS, the server simplythat if the following two inequalities hold

delivers the coded messages formed by all the user subsets, f

any file demandl. Howeve?, under randgm demands, the same 1020 and an; 20, ek, (7)
file may be requested by multiple users, causing redundamén (5) holds. To see this, note thatif ; > 0,1 € K, by (4),
coded messages. In the MCCS, this redundancy is removedi®yhaveu,,; > 0, VI € K, Vn € N. Recall that,, o represents
the modified coded delivery strategy, resulting in the réiduc the fraction of subfiles in fild¥,, that are not stored at any
of the average rate. Consider the following two definitions: user’s cache. From (1), we have

Leader group For demand vectord with N(d) distinct K
requests, the leader group is chosen from all the user ano =1 _Z <K> ani, neN. (8)
subsets, wher® C K satisfies|D| = N(d) and users in " —~\! "

D have exactlyN (d) distinct requests.
Redundant groupAny user subsef C K is called a redundant
group, if S N D = (J; otherwise, it is a non-redundant group. @b

The delivery scheme in the MCCS is to multicast code : :
) can be equivalently replaced by constraints (4) and (7).
messages, formed by the non-redundant grgdps: VS € K Finally, by the popularity-first condition (4), the averag¢e

andSND # 0}, to both non-redundant and redundant groupg in (3) can be expressed by [17]
Since subfiles in different files may be of different sizes, al

+1
the subfiles in a coded message are zero-padded to the sizeéoi K Z Z o EN:
the largest subfile among them. Thus, the siz&gfformed r=Aa! Pot | Pt G

by non-redundant groug of sizel + 1, is determined by the v e

Combining (4) and (8), we havey o < ... < an,. Thus, if
0 > 0in (7) holds, theru,, o > 0, Vn € N Combining the
ove, we have,, = 0, Yn € N. Thus, constraints (4) and

largest subfile forming’s: |Cs| = maxscs aq, ;. _mm%K}Kil< > i(K— u— Z> g: Ploan (9)
l 1 l 1, u,n¥n,
IV. CACHE PLACEMENT OPTIMIZATION FORMULATION u=1 + 1 n=1
Based on the S|ze Of Coded messages the average nﬂte WherePl |S the JO|nt probablllty Of’LL diStinCt f||e reqUeStS
the delivery phase is given by and flleW being thei-th least popular file requested by all

_ the users not in the leader group. The expressioR/Qf,, is

R = Ed[ Z |CSH = Ed[ Z max adk,l} (3) lengthy and non-essential in developing our result. Thoeesf
SCK,SND#D SCK,SND#D we omit it here, but only point out that/ , ,, is not a function

whereEq[] is taken w.r.t. demand vectek. From the defini- 0f a,,. Expression in (9) indicates thdt is a weighted sum

tion of a,, ;, leta, 2 [ano,. .., an k|7 denote thg K +1)x1  Of any's. By (6)(7)(9), defineg, = [gn.0,---,9n.x]", with

cache placement vector for fil&/,, n € N. Our goal is N I4+1 N I+1

to optimize {a,} to minimize the average ratB in (3). To gny 2 ( K ) Z Dt _ Z Dt

simplify the expression in (3) for the optimization problem ™ I+1 " il "

following the intuition that more cache is allocated to the

n’'=n

file with a higher popularity, we impose popularity-first il K—u\ "= (K —u-— ,
condition: With file popularityp; > ... > py, the following N Z ( 141 ) Z ( l )PZ“ n (10)
holds for the cached subfiles

b £ [bo,....bg]T with b £ (%), ande £ [co, ..., cx]T

with ¢, 2 (7 ')1. The cache placement probleR® is then

an,l Z An+41,1, l S ’C, n e N\{N} (4)
-1
This condition turns out to be the property of the optimakformulated into the following equivalent LP problem
placement for the CCS [13] under nonuniform file popularity.

It is adopted for the MCCS in [17] and is numerically shown p1: in Z gla, st (4)(7)

that there is no loss of optimality. Following this, we exjily {an}
imposing constraint (4) and formulate the cache placement bTa, =1. neN (11)
optimization problem as follows ’
PO: %nn; R st (1)(2),(4), and > ca, =M. (12)
70, neN. () V. OPTIMAL CACHE PLACEMENT: SOLUTION STRUCTURE

At the optimality, it is easy to show that the cache memory In this section, we first present a structural property of the
is always fully utilized, and the local cache constraint (2)ptimal solution forP1. This property helps us identify several
is attained with equality. Therefore, constraint (2) can hsossible optimal solution structures. Through furtherysis,
replaced by the equality constraint we obtain the closed-form solution under each differentcstr

ture. Finally, we develop a simple low-complexity algonith

nl =M. 6
;§:<1_1> 4= (©) We define("f) =0, fori <0 orl > K.



based on the closed-form candidate solutions to obtain tAe One File Group

optimal solution forP1. First, we defindfile groupbelow. In this case, the cache placement vectors are identicallfor a

Definition 1. File group A file group is a subset afV’ that 1IIeS- Létar =--- = ay = a. Let,(n) denote the probability
of havingn distinct requests i, forn = 1,..., min{N, K}.

contains all files with the same cache placement vettr, ~ ~\ (N @l ; s
for any two filesiW,, andW,,, if their placement vectors,, = € haveR,(n) = S(K,7)(3;) 3. whereS(:, ) is the Stirling

a,/, then they belong to the same file group. Turzbe;{of the 5{52?}0‘1{518]- ~De§i{r?;é 90, - .-, x]" where
gl: (l+1)_zﬁ:1 ’ Pu(n)(l+1);l:O,-..,K. Then,

For IV files, there could be as many a5 file groups (€., P1in this case is simplified to the following problem
all a,,’'s are different), making the design of optimal cache

placement a major challenge. For the CCS, file grouping has P2: min gla st b’a=1 c'a=M/N, a>0.
been considered to simplify the cache placement design [2]

.[14(}_[:!'6]'. Havilng a fewer file group.;reduces ;he Cor?pIEXitEfroblem for the uniform file popularity case (with the same
in designing placement vectofs,, }. However, how to orm placementa for all files), of which the optimal solution has

file groups remains heuristic in existing works. File groupi been shown in [19] in closed-form. It shows that, the optimal
has not been considered for the MCCS. Our main result in PSR . '

. a for P2 is given as follows:

Theorem 1 below describes the structural property of the

optimal cache placement for the MCCS, in terms of file lo+1— —%K ME _

_ N o _ M
groups. al"_W’al“H_m’ for lo= LTJ’ (15)

Theorem 1. For N files with any file popularity distribution and a; = 0, for VI # I,,1, + 1. It is clear from (15) that,
p, any M < N, and K, there are at most three file groupshe optimala has at most two nonzero elements which are
under the optimal cache placemdnt, } for P1. adjacent to each other: Whéd K /N is an integera has one
nonzero element,e.,each file is partitioned into equal subfiles

Proof: See Appendix A. of size a;,; otherwise,a has two nonzero adjacent elements,
Theorem 1 states that, regardless\afp, andM, there are ; o each file is partitioned into subfiles of two different sizes

only three possible file grouping structures under the agitiny,,  ,, ). Each subfile is cached into its intended user subset
cache placement. The result implies that there are at m(mth(of sizel, or I, + 1) as specified in Section 111-1
o o :

unigue vectors among the optimal cache placement vectors

{a,}, one for each file group. This property drastically reducds Two File Groups

the complexity in solving the cache placement problem, and i For two file groups, there are only two unique placement
turn, it allows us to explore the structure and obtain théogt vectors in {a, }. This implies that{a,} has the following
solution {a,, } analytically. In the following, we examine all structure:a; = ... = a,, # ap,+1 = ... = ay, for some
the three cases fdP1 to obtain the solution. Note that they, {1,...,N —1}. By (13) and (14), this is equivalent to
result of at most three file groups, regardless of file pojitylar - - - -

distribution p is somewhat surprising. We will provide some ay=...=ap, 71ap,+1 = ... = aN (16)
insight into this result in Section V-D, after the placement 1,0 = ... =0ny0 < Any41,0 =" = AN,0-

structure and solution in each case is derived. We first dEﬁRelmmediatel follows that v >0
the following notations: y mo+1,0 N0 :

Based on (16), we use,_  and to represent the
1) Denotea,, = [ay.1,- - ., an k)T as the sub-placement vector : (16) "o Ano +1 P )
: e e . two unique placement vectors for the first and the second file
in a,. It specifies only the subfiles stored in the local cache

o , group, respectively, for some, € {1,...,N — 1}. We first
anda, o specifies the subfile kept at the server. . . .
2) We use notatiom,, =; 0 to indicate that there is at Ieastcharactenze the structure af, 1, in the second file group.

one positive element ia,,; otherwisea,, = 0. Proposition 1. If there are two file groups under the opti-
3) Notationa,, =1 a,, denotes that there is at least onenal cache placemerdt,, }, the optimal sub-placement vector
element ina,,, greater than that o4,,,, and the rest elementsa,,, 1 for the second file group has at most one nonzero
of the same position ia,,, anda,, are equal. element.

For any two filesn; andns, it is easy to verify that

ProblemP2is identical to the cache placement optimization

Proof: The proof is similar to that of Theorem 1. We
use proof by contradiction. By exploring the KKT conditions

Any = ap, & A, = an,, (13) of P1 and by identifying and combining some conditions in
Ay, # Apy, S Ap, =1 An, ANAay, 0 < Any 0, (14) specific ways, we show that for two file groupsaif, 1 has
two nonzero elements, the Lagrangian multipliers would not
where “=” denotes being equivalent, and (14) is obtained byave feasible solutions. |

(4) and (8). Below, we assume each of the three possible fileProposition 1 indicates that, ;1 has either zero or one
grouping cases under the optimal solution, and identify tl®nzero element. Note that no existing studies have coreside
complete structure of the cache placement vector and obtbim file grouping strategies for cache placement. For the, CCS
the solution. two-group placement strategies have been considered |n [14



Algorithm 1 The cache placement for the extended two-file- File 1 No no 41 N
group case witta,,, 11 = 0 (including the one-file group case) 21,0 o 0| <
Input: K, M, N, andp : D=

n .
Ooutput: (Ruin, 1) % (o1l | [ano.L|
1: for n, =1 to N do o |
2: Setl, = U\z—f{J- Seta,, 1 = 0. @ e Uy 1y| > |10, N1,
3: Determinea,,, by (17). 2 —
= =

4:  ComputeR(n,) by (9). : :
5 end fOI’ ) al,K Un, K (o1, K aN, K

6: Computen; = argmin, R(n); Rmin = R(n}). Tlst file groug‘ Tan file groupf

Fig. 1. An example of the optimal cache placemdat,} in the case of
) o two file groups witha,,+1 =1 0 an,+1,0 > an,,0 = 0. Betweena,,,
and [15], where the second file group containing less poputad a,,+1: 1) an, 1, > an,+1,0, = 0; 2) any 1y = Gnyt+1,1, > 0; 3)

files remain at the server. These strategies corresponceto thet = @no+1,0 = 0. VI € K, L # Lo, 1.

case whera,,, 1 = 0. However, the location ok, was only 0, VI # 1l,, I € K. For the first file group, Proposition 2

proposed heuristically in different ways in these two works . - . .
i haracterizes,, , and Proposition 3 specifies the differences
Except these, the case of allocating cache to the second file ° :
a,, anda,_ 11 for the two file groups. The proofs use

T . ; 0
group, 1.€., an, +1 7 0, has never been considered in th%imilar techniques as in that of Proposition 1 and are onhitte
existing literature.

Following Proposition 1, we discuss the optimal cacheroposition 2. If there are two file groups under the optimal
placement in each of the two cases 5y, 1 below: cache placementa, } with a,_y; =1 0, thena; o = ... =

1) a,,41 = 0: In this case, no cache is allocated ta,, o= 0.
the second file group; the entire cache is given to the fir|§

file group. As a resulta,, 41 is given bya,, ; = 0 and o _ _
© ° cache placemerita,, } with =1 0, then and
an,+10 = 1. The cache placement problem fay,_ of the > P rlla,} An,+1 ~1 &n, Anot1
ot © are different by only one element.

first group is reduced to the one in the one-file-group case
in Section V-A. Specifically, le; = ... = a,, = a. We Proposition 2 indicates that each file in the first file group
can simply treat the first file group as a new database witlas all its subfiles cached amoAgusers, and no subfile solely
the number of files being, instead of N. Following P2, the remains in the server. Recall th@t_; has only one nonzero
cache placement optimization problem is given by elementa,, 11, > 0. By Proposition 3, the different element
betweena, anda,, .1 can be either at indek or somel;,

for I; # 1,. From the popularity-first condition (4), it follows

By the result in the one-file-group case, the optimal sofutig"at €ither ‘_)f tge"followmg two cases hf0|d35') Ungl, >
a for P3 has at most two nonzero elements. The solution fgo+1.te > 0 OF 2:1) an, 1 > an,+10, = 0, for somely 7 I,

similar to (15), except thad is replaced byn,, given by ll_ € K. The _structure offa,} in Case 2.ii) is iIIu_strate_d in
Fig. 1. We point out that, and/; are not necessarily adjacent

troposition 3. If there are two file groups under the optimal

P3: min g’a st bla=1, c'a= M/n,, as=0.
a

o1 MK CEE—, tor 1| ME | 5y toeachother. Now we derive the solufian,,, an, +1) in each
Ao = ® Alo+1= (5 O te= =1 (17) " of these two cases:
o O+

Case2.) an, i, > an,+1,, > 0:Inthis casea,, A anda, i1
anda; = 0, for Vi # I, 1, + 1. are only different at the nonzero elementa ;. It follows
Combining (15) and (17), we can extend the two-file-groupat n, 1 = an, 111 = 0, for VI # 1,. By Proposition 2, we
case to include the one-file-group as a special case whete conclude thats,, ;, is the only nonzero element i,, . From
N. In this case, the optimal cache placement solution is givem) and (12), we havéy a,, ;. =1, andn,ci,an, 1, + (N —
by (17) with Ny € {1, ceey N} What remains is to obtain theno)cloanoJrl,lo = M. So|ving these two equa‘[ionS, we have
optimaln* to determine{a,, } that minimizes the average rate
objective inP1L The optimaln* depends on N, p, M, K), n, 1, = i; Uny41.0, = 1 (% _ E) (18)
which is challenging to obtain analytically. Nonetheless, b, N =no \a, b
can be easily computed using (17) fay = 1,..., N, and we where the expressions 6f, and¢;, are given below (10).
can do a search fot, to determine:}; that gives the minimum  Case 2.ii) an, 1, > an,+1,0, = 0, l1 # lo,: In this case,
R. The method in finding the placement solutifm, } in this a,,, anda, . are different at one of the zero elements in
case is summarized Algorithm 1. Since the algorithm usesag ;. It follows thata,_ ;. = an, 11, > 0. By Proposition
1-D search form, € A for the optimaln?, it computesR 2, we conclude thai, has two nonzero elements,_; and
using the closed-form expression in (9) by times. an, 1,- Also recalla,, 11,0 > 0; thusa,_ 4, has two nonzero
2) a,, 41 =1 0: In this case, for the second file group, byelements:a,,, 1,0 anday,+1,, (shown in Fig. 1 as colored
Proposition 1a,,,+1 has only one nonzero element. Assuminglements). For the rest, we hawg, ; =0, VI # I, or ly,[ €
it is the [,-th element, ther,, +1;, > 0, anda, +1; = KU{0}, anda,, 11, =0, VI # 0,1,, I € K U {0} (shown




in Fig. 1 as the uncolored elements). With the two nonzefggorithm 2 The cache placement for two file groups with
elements im,,, anda,,, 1, and from (11), we havé,_a,,, ;, + an.+1 710

biyan, 1, =1, andboan, 11,0+ b, an, 1, = 1. Also, from (12), Input: K, M, N, andp

we haveNc¢, ay, 1, + noci,an, 1, = M. Solving there three Output: (Rumin, n5, 15, 17)

guestions, we obtain 1: For each %o, 1o, 11), no € [1, N — 1], lp, 11 € [1, K]
b M =, _ b,M-Na, 2. if Iy ==1,, compute{a,,} by (18);
Unodo =3 N g » Onoh =7 N (19) s elsecompute{a,} by (19) and (20).
:11 ng oMol oMol — DL IV Cl 20 4:  ComputeR(n,,l,, 1) by (9). ) .
no+1,0 = 1 =01, n.1,- (20) 5. compute (n3,13,17) = argmin, ., R(no,lo,1); Ruin =
For given (n,,l,,11), (18) in Case 2.i) (wher; = 1,), R(ng,15,17).

or (19) and (20) in Case 2.i) (wheh # [,) completely
determinesa,,, anda,, 1, and thus all{a,} by (16). As a Algorithm 3 The cache placement for three file groups
result, the average rate in P1is a function of(n,, l,,11). We  |nput: K, M, N, andp

can search over all possible valuesigfe {1,...,N—1}and Output: (R, nt, nt, I, 1)
lo,l1 € K for the best tuplg(n,, l,,11) that gives minimum 1. for ny =2 to N — 1 do
R. 2: Rl(no,nl,lo,ll) =
Algorithm 2 summarizes the steps to obtain the best solutiog: Algorithm 2(K, M, ny, [p1, ..., pn,)");
{a,} in the two-file-group case witha,, 1 =1 0. The 4 Ra(ny) :Zﬁ[:nlJrlgnﬁ;
algorithm computesk using a closed-form expression for 5. ComputeR(ne, n1,lo, 1) = R1 + Ry

(N —1)K? times with different(n,, l,, 1), which can be done . end for
in parallel. Thus, the complexity of the algorithm is verwlo 7. Compute(nz, ni,15,15) = argmin, ., , R(no,n1, 1o, 11);
=~ 0 y Yoo 0sn1,lo,l1 0> 9 YOy 1

D, * * * *
Rumin = R(nm ny, lo7 ll)

C. Three File Groups
If there are three file groups under the optimal placement
vectors{a, } , the relation among,,’s is given bya; = ... = possible values ofi, € {2, N1}, n, € {1,...,n1—1}, and

ap, F A, 41 = ... = Ay, F Ap;41 = ... = apn, for 1 < L ; e
€ K for the best tuplén,, n1 l,,{1) that gives minimum
< —1. 0501 g - 09 Jbosy g
%Orefazlni_ujz calcrY(\e/ c ?;;ﬁé;"&eirt‘g;”grlt;%rfsptre;r?gt;;% . Algorithm 3 summarizes the steps to obtain the best solu-
. R = P : ' ' ion {a, } in the three file groups. It uses Algorithm 2 to obtain
file group, respectively. We first present the cache placem%r]\

an, +1 in the 3rd file group below. The proof uses the similar eebe{szl(no, l‘X]ll_) lln}th_?htl\:\éo-mz-%rlogﬁtil:r?r;ri(r)nblIemé(l;(r)nr euigz
technique as outlined in Proposition 1 and is omitted. " R ) ' 9 Py P

R using a closed-form expression faN — 1)(N — 2)K?/2
Proposition 4. If there are three file groups under the optimaimes with different(n,, n1,,,{1), which can be done very
cache placemedt,, }, the optimal placement vectar,, ;; for efficiently.

the third file group is given bw,,, 1 = 0, anda,, +1,0 = 1.

D. The Optimal Cache Placement Solution

Proposition 4 indicates that when there are three file groups, . .
. : he results on the possible structure of the optimal cache
under the optima{a,, }, all the cache will be allocated to the . . .
! : L : lacement in Sections V-A to V-C lead to a simple method
first two file groups, and the files in the 3rd file group are n(ﬁ : : .
T . : 0, obtain the optimal solution foP1l By Theorem 1, the
cached and remain in the server. Following this, we only need.. :
optimal cache placement problefl is reduced to three
subproblems, assuming one to three file groups, respectivel
Each subproblem returns the candidate optimal solution
with the minimumR for this subproblem. The optimdh,, }
. can then be obtained by taking the one gives the mininfum
the cache placemerfa,,, an,) is the same as that of theamong the three subproblems. The algorithm calls Algorithm

two-file-group case witha,,, :=; 0 for the 2nd group in .~ A
Section V-B2. Fo®,,, =1 0, Propositions 1 and 3 indicate thatl 3 and selects the one that rewrns the minimiiras the

a. has one nonzero element, aad anda, are different optimal solution. It requires minimum complexity and can be
m ' ° m done efficiently. Algorithms 1-3 each involves computing a
by one element. Assume for sonig € K, ap,;, > 0.

- _ . . losed-form expression af for multiple times. In total,R is

B(.etweenano anda,,, the different elgment can be either ac?:omputed for(N — 1)(3N — 4)K2/2 + N times, all can be
lo? Qny 1y > Gy, OF @tly # 1,11 € Ko ap, 1y > any g, (the done in parallel
former is shown in Fig. 2). Detailed solution fda,,,,a,,) '
can be obtained from Section V-B2. Remark 1. We provide some insights on Theorem 1 based

Based on the above discussion, for the case of three file the results obtained. We can correspond three file groups
groups, giveni,,n1,1l,,l1), the solution{a,,} can be deter- to groups of “most popular,” “moderately popular,” and “not
mined, and the average rafe in P1 can be computed, aspopular” files. Depending op and relative cache siz&/ to
a function of (n,,n1 l,,11). Again, we can search over allN, files can be grouped into one of these three categories.

to obtain the two unique cache placement vectars , a,,, )
in the first two groups, respectively.

Note that sincea,, # a,,+1, Similar to (16), we have
Ay, =1 Ap,41 = 0 and any,0 < Apy+1,0 = 1. Thus,



File 1 No ne + 1 ny ny+1 N TABLE |

ao oo | < [ R < [ora 10 0 THE CACHE PLACEMENT{a,} FORK =5, N =9, M = 1,0 = 1.2
Q . _ (ONLY 1 = 0,2, 3 ARE SHOWN. FOR! = 1,4, 5, a,,; = 0,Vn € N).
8 : - [ Cache placement vectors of the files |
> o L & | & | & | & | & | & | ar | & | & |
S [one ] . > oo Gl > fon 1t s o 0 0 [ £.0003 L0004 1.000q L.000q 10004 1.000q L.000d
(%)) - 2| 0.0500 0.0500 O 0 0 0 0 0 0
k) 3| 0.050Q 0.050Q O 0 0 0 0 0 0
o
ar K n, K Ang+1.K Any K @n1+1,K AN, K TABLE Il
. - “' THE CACHE PLACEMENT{a,} FORK =5 N =9 ,M =3.5,0 = 1.2
1st file group Tan file groupT T3rd file group ? (ONLY I = 0,4 ARE SHOWN. FORI = 1,2,3,5, a1 = 0,Vn € N).
‘ 1l Cache placement vectors of the files |
[ an [ a [ a3 [ as [ as [ as [ ar [ as [ ay |

Fig. 2. An example of the optimal cache placeméat,} in the case of
three file groups. No cache is allocated to the 3rd file grayp:y1,0 = 1. ‘ 2 ‘ 0(2)004 0(2)004 02004 0(2)004 8'8%3 1'8001 1'8007 1'8001 1'8003
For a,,,an, +1 in the 1st and 2nd groups: > ayn,+1,0 > an,,0 = 0; : : : : :

Angly > Ang+1,0, > 0,0, €K Anyl = Qpg+1,0 = 0, Vi e K,l# lo.

. . . W5 in the 2nd file group, and for the 1st file group, files,
Based on the structure of optima.,}, the optimal caching split into subfiles of a single size, are all cached to usemngs T

strategy is to cache all subfiles of the “most popular” files S
. o . e echoes the intuition in Remark 1.

(into K users); if there are “moderately popular” files, then a

portion of subfiles in these files are cached, and some are leflNéXt, we study the performance of the MCCS under

solely in the server: and if there are “not popular” files,ythethe optimal cache placement. For comparison, we consider

are all stored in the server uncached. the multiple-file-group placement strategy proposed far th

Sections V-A to V-C provide the possible structure of th&CS [2] and directly apply it to the MCCS (Multigroup

optimal cache placement in three file grouping cases. HoweJ4CCS), centralized and decentralized single group sym-
analytically determining the optimal file groupinge(, the Metric placement for the MCCS [10] (one-group central-

number of file groups anéh,,n.)) is challenging, the same ized/decentralized MCCS), and the existing strategiedter

for (I,,1;) for the nonzero element(s) ia,. It depends on CCS, including the optimal CCS, a two-file-group scheme

the file popularityp, as well as the relative cache capacitjf@med RLFU-GCC (two-group) [14], and the mixed caching
trategy in [15]. Fig. 3 shows the average ratevs. M by

w.r.t. databasei.€., M vs. N). Nonetheless, using the obtained ) i
file group structures, Algorithms 1-3 significantly simplthe the optimal cache placement for MCCS (optimal MCCS), for

solving of P1, by providing a set of candidate solutions irFiPf distribution with = 1.5, N' =10, and " = 5. In Fig. 4,
closed-form to compare. we consider the case studied in [15] with = 12, K = 5,

and a step-function file popularity distributiop; = 7/12,
VI. NUMERICAL RESULTS pn = 1/18, n = 2,...,7, andp,, = 1/60, n = §,...,12.

We first verify the optimal cache placement solution stru@°th Figs. 3 and 4 show that the optimal placement for the
MCCS gives the lowest: among all the strategies, for all

ture of the MCCS. We generate file popularity using Zip X ;
distribution given byp, — ”79/25‘\]:1 i—0. We obtain the values ofM. In particular, the performance gap is large when
solution{a,,} produced by our proposed algorithm, and verify/ iS Small, and the gap reduces & becomes large. This
that they match the optimafa,} obtained by solvingPl rend_ is because for small cache size, the performance_ i8 mor
numerically. As examples, folk — 5, N = 9, § = 1.5, sensitive to the cache placement for better coded caching ga
Tables | and Il show the optimgh,,} (obtained numerically)

for M = 1 and 3.5, respectively. In Table I1X/ = 1), we

see two file groupg Wy, Wy} and {Ws, ..., Wy} under the VIl. CoNcCLUSION

optimal {a,,}. It matches the case discussed in Section V-B1,

where the cache is entirely allocated to the 1st group of theThis paper aims at obtaining the optimal cache placement
two most popular files, and the rest files are only stored at thed its structure for the MCCS under nonuniform file popu-
server @30 = ... = ag,0 = 1). The optimala,,’s for the 1st larity. Using an optimization approach, we characterizesl t
group are the same with two nonzero adjacent elements, amiderent file grouping structure under the optimal placemen
files are split into subfiles of two different sizes cached bgnd show there are at most three file groups regardless of
users. This is the case with small cache size, and intujtivebystem configurations. We completely characterized thbecac
only a few popular files are cached, and the rest remain placement solution in each file grouping case in closed-form
the server, and therefore there are two file groups under thred then developed a simple and efficient algorithm to obtain
optimal cache placement. Table V(= 3.5) shows a different the optimal cache placement solution via a set of candidate
cache placement strategy, where the files are divided irgolutions. Insights into the structure of the optimal solut
three file groups, resembling the example shown in Fig.\2ere also given. Simulation studies verified the optimaheac
(Section V-B2), where no cache is allocated to the 3rd fildacement solution structure and showed superior perfocma
group {Ws, W, Wg, Wy}, a portion of the file is cached for over existing schemes for both MCCS and CCS.



—s—Proposed Optimal MCCS
—<— Multigroup MCCS
—e—One-group, decentralized MCCS

s : : : Based on (25), we have the following equation

T
Zgi,zj = Yny1; T njAer; + ZViblj =0, j=0,1,2. (27)

i~ —&— One-group, centralized MCCS
o Optimal CCS ‘
z ——Two-group (RLFU-GCC), CCS [14] 1=1 i=1
= —+— Mixed caching, CCS [15] T .
g Substituting the values of,,, 1., Vny.11+ VYno.l, @Ndu, in (26)
z into (27), we have
L — — B nj n;
o ‘ ‘ ‘ ‘ ‘ ‘ : )\njclj + Vlbl]. = — Zgi,oblj — Zgi’lj’ 7 =0,1,2. (28)
: PR mT P , = =
Fig. 3. R vs. cache size/ (N = 10, K = 5, Zipf distribution ¢ = 1.5). ~ We can stack (28) foj = 0,1,2 in matrix form Ax = b,

where A is the coefficient matrixx = [\, 1]7, and consists

—+— Proposed Optimal MCCS

—<— Multigroup MCCS

—o—One-group, decentralized MCCS

—es—One-group, centralized MCCS
Optimal CCS

——Two-group (RLFU-GCC), CCS [14]

—+—Mixed caching, CCS [15]

Average rate R

05 L L L L - ; - : ' [1]

1 15 2 25 3 35 4 45 5 55 6

M

Fig. 4. R vs. cache sizé// (N = 12,K = 5, step function popularity). [2]

(31
(4]
(5]
(6]

APPENDIXA
PROOF OFTHEOREM 1

Proof: The Lagrangian function ofP1 is given
by L 21]:[:1 gl an 21]:[:_11 Zf; Yo (@ng —
Ani11) — S, pany — poaro + AN cTa, — M) +
Zﬁ;l vn(bTa, —1), where we have the Lagrange multipliers
{Yn,x} for (4), po and {py} for (7) , {v,} for (11), andX
for (12). SinceP1 is an LP, the Karush-Kuhn-Tucker (KKT)
conditions forP1 hold. Due to space, we only list the KKT (8]
conditions we need in the proof below:

ne N\{N}, ek, (21)

(7]

'Yn,l(an,l_an+l,l)zoa'7n,l > 07 )

S = g 1= i+ it AR =0,n € N\{1,N},1 € K
| (22) [10]
oL _ A bp=0,le 23
Bars g1 — M, A+ =0,0€ (23) [11]
oL
Dano gn,0 + Aco +vnbo =0, n e N\{1}. (24) 2]
From (22) and (23), we have
m oL m m [13]
5o = D gid — Yma T mAc+ Y _vib =0. (25)
= Y4l 3 i=1 [14]

Using these KKT conditions, we prove Theorem 1 by
contradiction. Assume there is an optimal solutign, } that [15]
divides the files into four file groups. The structure of the
sub-placement vectois,’s can be expressed as = ... [16]
éno =1 glnOJrl = . = énl =1 glnlJrl = e = éng 71
Apytl = ... =an,forl <mn, <nig <nyg <N —1.
By (4), we assume,, ;, > an,+1,0,s Any,ly > Gnq+1,5; and
Uny iy > Gny+1.0,- From (21) and (24) witley = 0 andby = 1,
we have

[17]
(18]

[19]
Trnolo = Yna,ly = Tnala = 0; vn = —9n,0, N E N\{l} (26)

of right hand side of (28) foy = 0,1, 2. Since[A, b] is full

rank, there is no feasible solution far v, contradicting the
assumption that an optiméh,, } with four file groups exists.
Similar argument follows for more than four file groups. Thus
we have the result in Theorem 1.
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