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Abstract—This paper considers the caching design for coded
caching under nonuniform file popularity. We investigate the
optimal cache placement for the modified coded caching scheme
(MCCS) recently proposed with an improved delivery strategy for
rate reduction over the original coded caching scheme (CCS). We
use the optimization framework for the cache placement problem
to minimize the average delivery rate. Exploring several prop-
erties of the optimization problem and analyzing its structure,
we obtain the file grouping structure under the optimal cache
placement. We show that, regardless of file popularity, there are
at most three file groups under the optimal cache placement.
We further characterize the complete structure of the optimal
cache placement and obtain the closed-form placement solution in
these three possible file group cases. Following these, we develop
a simple algorithm to obtain the final optimal cache placement
solution, which only requires to compute a set of candidate
solutions in closed-form. Simulation verifies the optimal solution
produced by our algorithm. The optimal MCCS is shown to
outperform existing schemes for both MCCS and CCS.

I. I NTRODUCTION

Caching has recently emerged as a promising technology
for future networks [1]. By storing data in distributed network
storage resources near users, cache-aided systems alleviate
the increasingly intensive traffic in wireless networks to meet
low latency requirements. Conventional uncoded caching is
inefficient for systems with multiple caches [2]. ACoded
Caching Scheme(CCS) has recently been proposed [3] that
combines a cache placement scheme specifying the (uncoded)
cached contents and a coded multicasting delivery strategy. It
is shown to be able to explore both global and local caching
gain for substantial load reduction. As a result, coded caching
has drawn considerable attention, with designs and analyses
extended to various system models or network scenarios [4]–
[9]. The original CCS [3] is designed to minimize the peak
load in the worst-case scenario when users request distinct
files. For the general case where multiple users request the
same file, the CCS contains redundancy in the coded delivery.
To address this, a recent study [10] has proposed aModified
Coded Caching Scheme(MCCS) with a modified delivery
strategy to remove this redundancy, resulting in a reduced load
than the CCS. The MCCS is then also applied to the device-
to-device networks [11].

A key design issue in coded caching is the cache placement.
An effective cache placement scheme increases caching gain
and minimizes the load (rate) in the delivery phase. To study
the fundamental caching limit, many existing works (e.g.,[4]–
[11]) assume uniform file popularity. Under this assumption,
the optimal cache placement that minimizes the average rate

in data delivery is symmetric among files for both the CCS
[12], [13], and the MCCS [10], where the latter provides
the exact trade-off between the cache size and the rate.
For nonuniform file popularity, the cache placement may be
different among files, complicating both design and analysis.
There is a fundamental question on whether to distinguish
files of different popularities for cache placement and to what
extent. There may be a trade-off in design complexity and
performance in practical systems.

Existing works on caching design under nonuniform file
popularity are all based on the CCS [2], [12]–[16]. For
simplifying the problem, file grouping has first been proposed
in [2], where files are divided into groups with cache allo-
cated to different groups, and the decentralized CCS with
symmetric cache placement is applied for each file group.
File grouping has since been considered a tractable popular
method for cache placement design. For the CCS, through
heuristics, [2], [14]–[16] have proposed different file grouping
methods for cache placement (typically into two groups), and
different achievable rates and information-theoretical lower
bounds on the rate have been obtained. These strategies are
either suboptimal or designed only for certain file popularity
distributions. For the MCCS, despite the improvement it is
shown for uniform file popularity, there is no heuristic cache
placement design proposed for nonuniform file popularity. The
optimization framework is used to study the cache placement
for both CCS [12], [13], and MCCS [17] under nonuniform
file popularity. However, they focus on numerical methods in
solving the problem and are unable to provide insight into
the structure of the optimal cache placement. In particular, the
optimal cache placement and its connection to file grouping
remain unknown.

In this paper, we obtain the optimal cache placement for
the MCCS to minimize the delivery rate for arbitrary file
popularity distribution and cache size. Focusing on the place-
ment structure, we characterize the optimal scheme and its
connection to file grouping. Instead of constructing a caching
scheme as in many existing works, we use the optimization
framework for the cache placement problem to minimize
the delivery rate. We adopt structural simplifications for the
tractability of the problem, which have been numerically
justified to be without loss of optimality [17]. With further
exploration of the properties in the optimization problem,this
allows us to transform the problem into a linear programming
(LP) problem. By analyzing the problem structure, we identify
the file grouping structure under the optimal cache placement.
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We show that, regardless of file popularity, there are at most
three file groups under the optimal cache placement, each
with a unique placement pattern. We completely characterize
the structure of the optimal cache placement and obtain the
closed-form placement solution in these three possible file
group cases. Following this, we develop a simple and efficient
algorithm to obtain the final optimal cache placement solution,
which requires to compute a set of candidate solutions in
closed-form and in parallel. Insight into the somewhat sur-
prising file grouping result is also provided. The optimal cache
placement solution given by our algorithm is verified through
simulation. The optimal placement for the MCCS outperforms
other existing schemes either for MCCS or for CCS, where
the gap is more evident for a smaller cache size as a better
cache placement is more critical for caching gain.

II. SYSTEM MODEL

Consider a cache-aided transmission system with a server
andK users, each with a local cache, connected over a shared
error-free link. The server has a database consisting ofN
files {W1, . . . ,WN}. Each file Wn is of size F bits and
has probabilitypn for being requested. Letp , [p1, . . . , pN ]
denote the file popularity distribution, where

∑N

n=1
pn = 1.

Without loss the generality, we label files according to the
decreasing order of their popularities:p1 ≥ p2 ≥ · · · ≥ pN .
Each userk has a cache sizeM (normalized by the file size)
with capacityMF bits, whereM is arbitrary within the range
[0, N ]. Denote the file and user index sets byN , {1, . . . , N}
andK , {1, . . . ,K}, respectively.

The coded caching operates in the cache placement phase
and the content delivery phase. In the cache placement phase,
a portion of uncoded file contents are placed in each user’s
local cache, specified by a cache placement scheme. Assume
each userk independently requests a file with indexdk from
the server. Letd , [d1, . . . , dK ] denote the demand vector of
K users. In the content delivery phase, based on the demand
vectord and the cached contents at users, the server generates
coded messages containing uncached portions of requested
files and transmits to the users. Upon receiving the coded
messages, each userk reconstructs its requested fileWdk

from
the received coded messages and its cached content. Note that
for a valid coded caching scheme, each userk is able to
reconstruct its requested file for any demand vectord ∈ NK

over an error-free link.

III. T HE CODED CACHING PROBLEM SETUP

The cache placement is a key design issue in coded caching.
Among existing studies for the CCS, a common approach
is to propose a cache placement scheme, construct a lower
bound on the minimum data rate, and evaluate the proposed
scheme by comparing its performance with the lower bound.
Different from this, we use an optimization approach for the
cache placement design for the MCCS. Through construction,
we formulate the cache placement problem into a design
optimization problem.

1) Cache Placement:For K users, there are total2K user
subsets inK, with subset sizes ranging from0 to K. Among
them, there are

(
K
l

)
different user subsets with the same size

l, for l = 0, . . . ,K (size 0 for the empty subset∅). They
form a cache subgroup that contains all user subsets of sizel,
defined asAl , {S : |S| = l, S ⊆ K} with |Al| =

(
K
l

)
, for

l = 0, . . . ,K. Partition each fileWn into 2K non-overlapping
subfiles, one for each unique user subsetS ⊆ K, denoted by
Wn,S (it can be∅). Each user in user subsetS stores subfile
Wn,S in its local cache (subfileWn,∅ is not stored in any user’s
cache but only kept at the server). For any caching scheme,
each file should be able to be reconstructed by combining
all its subfiles. Thus, we have the file partitioning constraint∑K

l=0

∑
S∈Al |Wn,S | = F , for n ∈ N . This construction

through subfile and user subset partitioning is general to
represent any cache placement.

To reduce the number of variables and simplify the opti-
mization problem for its tractability, we impose the following
condition: for each fileWn, the size of its subfileWn,S only
depends on|S|, i.e., |Wn,S | is the same for anyS ∈ Al of the
same size. This condition is proven to be the property of the
optimal placement solution for the CCS [13]. Although the
same is difficult to prove for the MCCS, it is numerically
verified in [17] that imposing this condition results in no
loss of optimality. Based on this condition, the subfiles of
file Wn are grouped into file subgroups, each denoted by
W l

n = {Wn,S : S ∈ Al}, for l = 0, . . . ,K. As a result, there
are

(
K
l

)
subfiles of the same size inW l

n (intended for user
subsets in cache subgroupAl), and there are totalK + 1 file
subgroups. Following this, letan,l denote the size of subfiles in
W l

n, as a fraction of fileWn sizeF bits, i.e.,an,l , |Wn,S |/F
(for ∀S ∈ Al), l = 0, . . . ,K, n ∈ N . Note thatan,0 represents
the fraction of fileWn that is not stored at any user’s cache but
only remains at the server. Then, the file partition constraint
is simplified to

K∑

l=0

(
K

l

)
an,l = 1, n ∈ N . (1)

Recall that in file partitioning, each subfile is intended fora
unique user subset. During the cache placement, userk stores
all the subfiles inW l

n that are intended for user subsets that
contain the user,i.e., {Wn,S : k ∈ S andS ∈ Al} ⊆ W l

n,
for l = 1, . . . ,K. Note that in eachAl, there are total

(
K−1

l−1

)

different user subsets containing the same userk. Thus, there
are
∑K

l=1

(
K−1

l−1

)
subfiles in each fileWn that a user can store

in its local cache. With subfile sizean,l, this means that in
total, a fraction

∑K

l=1

(
K−1

l−1

)
an,l of file Wn is cached by a

user. Given cache sizeMat each user, we have the following
local cache constraint

N∑

n=1

K∑

l=1

(
K − 1

l − 1

)
an,l ≤ M. (2)

2) Content Delivery: During the content delivery phase,
the server multicasts coded messages to different user sub-
sets. Each coded message corresponds to a user subsetS,



formed by bitwise XOR operation of the subfiles asCS ,⊕
k∈SWdk,S\{k}. In the original CCS, the server simply

delivers the coded messages formed by all the user subsets, for
any file demandd. However, under random demands, the same
file may be requested by multiple users, causing redundant
coded messages. In the MCCS, this redundancy is removed by
the modified coded delivery strategy, resulting in the reduction
of the average rate. Consider the following two definitions:
Leader group: For demand vectord with Ñ(d) distinct
requests, the leader groupD is chosen from all the user
subsets, whereD ⊆ K satisfies|D| = Ñ(d) and users in
D have exactlyÑ(d) distinct requests.
Redundant group: Any user subsetS ⊆ K is called a redundant
group, if S ∩ D = ∅; otherwise, it is a non-redundant group.

The delivery scheme in the MCCS is to multicast coded
messages, formed by the non-redundant groups{CS : ∀S ⊆ K
andS∩D 6= ∅}, to both non-redundant and redundant groups.
Since subfiles in different files may be of different sizes, all
the subfiles in a coded message are zero-padded to the size of
the largest subfile among them. Thus, the size ofCS formed
by non-redundant groupS of size l+1, is determined by the
largest subfile formingCS : |CS | = maxk∈S adk,l.

IV. CACHE PLACEMENT OPTIMIZATION FORMULATION

Based on the size of coded messages, the average rateR̄ in
the delivery phase is given by

R̄ = Ed

[ ∑

S⊆K,S∩D6=∅

|CS |
]
= Ed

[ ∑

S⊆K,S∩D6=∅

max
k∈S

adk,l

]
(3)

whereEd[·] is taken w.r.t. demand vectord. From the defini-
tion of an,l, let an , [an,0, . . . , an,K ]T denote the(K+1)×1
cache placement vector for fileWn, n ∈ N . Our goal is
to optimize{an} to minimize the average ratēR in (3). To
simplify the expression in (3) for the optimization problem,
following the intuition that more cache is allocated to the
file with a higher popularity, we impose apopularity-first
condition: With file popularityp1 ≥ . . . ≥ pN , the following
holds for the cached subfiles

an,l ≥ an+1,l, l ∈ K, n ∈ N\{N}. (4)

This condition turns out to be the property of the optimal
placement for the CCS [13] under nonuniform file popularity.
It is adopted for the MCCS in [17] and is numerically shown
that there is no loss of optimality. Following this, we explicitly
imposing constraint (4) and formulate the cache placement
optimization problem as follows

P0 : min
{an}

R̄ s.t. (1), (2), (4), and

an < 0, n ∈ N . (5)

At the optimality, it is easy to show that the cache memory
is always fully utilized, and the local cache constraint (2)
is attained with equality. Therefore, constraint (2) can be
replaced by the equality constraint

N∑

n=1

K∑

l=1

(
K − 1

l − 1

)
an,l = M. (6)

Next, from the popularity-first condition (4), we conclude
that if the following two inequalities hold

a1,0 ≥ 0 and aN,l ≥ 0, l ∈ K, (7)

then (5) holds. To see this, note that ifaN,l ≥ 0, l ∈ K, by (4),
we havean,l ≥ 0, ∀l ∈ K, ∀n ∈ N . Recall thatan,0 represents
the fraction of subfiles in fileWn that are not stored at any
user’s cache. From (1), we have

an,0 = 1−
K∑

l=1

(
K

l

)
an,l, n ∈ N . (8)

Combining (4) and (8), we havea1,0 ≤ . . . ≤ aN,0. Thus, if
a1,0 ≥ 0 in (7) holds, thenan,0 ≥ 0, ∀n ∈ N . Combining the
above, we havean < 0, ∀n ∈ N . Thus, constraints (4) and
(5) can be equivalently replaced by constraints (4) and (7).

Finally, by the popularity-first condition (4), the averagerate
R̄ in (3) can be expressed by [17]

R̄ =

K−1
∑

l=0

(

K

l + 1

)

N
∑

n=1





(

N
∑

n′=n

pn′

)l+1

−





N
∑

n′=n+1

pn′





l+1

an,l

−

min{N,K}
∑

u=1

K−u−1
∑

l=0

(

K −u

l +1

)

K−u
∑

i=1

(

K− u− i

l

)

N
∑

n=1

P
′
i,u,nan,l (9)

whereP ′
i,u,n is the joint probability ofu distinct file requests,

and fileWn being thei-th least popular file requested by all
the users not in the leader group. The expression ofP ′

i,u,n is
lengthy and non-essential in developing our result. Therefore,
we omit it here, but only point out thatP ′

i,u,n is not a function
of an. Expression in (9) indicates that̄R is a weighted sum
of an,l’s. By (6)(7)(9), definegn , [gn,0, . . . , gn,K ]T, with

gn,l ,

(
K

l + 1

)


(

N∑

n′=n

pn′

)l+1

−

(
N∑

n′=n+1

pn′

)l+1




−

min{N,K}∑

u=1

(
K − u

l + 1

)K−u∑

i=1

(
K − u− i

l

)
P ′
i,u,n, (10)

b , [b0, . . . , bK ]T with bl ,
(
K
l

)
, and c , [c0, . . . , cK ]T

with cl ,
(
K−1

l−1

)
1. The cache placement problemP0 is then

reformulated into the following equivalent LP problem

P1: min
{an}

N∑

n=1

gT
nan s.t. (4), (7),

bTan = 1, n ∈ N , (11)
N∑

n=1

cTan = M. (12)

V. OPTIMAL CACHE PLACEMENT: SOLUTION STRUCTURE

In this section, we first present a structural property of the
optimal solution forP1. This property helps us identify several
possible optimal solution structures. Through further analysis,
we obtain the closed-form solution under each different struc-
ture. Finally, we develop a simple low-complexity algorithm

1We define
(

K

l

)

= 0, for l < 0 or l > K.



based on the closed-form candidate solutions to obtain the
optimal solution forP1. First, we definefile groupbelow.

Definition 1. File group: A file group is a subset ofN that
contains all files with the same cache placement vector,i.e.,
for any two filesWn andWn′ , if their placement vectorsan =
an′ , then they belong to the same file group.

For N files, there could be as many asN file groups (i.e.,
all an’s are different), making the design of optimal cache
placement a major challenge. For the CCS, file grouping has
been considered to simplify the cache placement design [2],
[14]–[16]. Having a fewer file groups reduces the complexity
in designing placement vectors{an}. However, how to form
file groups remains heuristic in existing works. File grouping
has not been considered for the MCCS. Our main result in
Theorem 1 below describes the structural property of the
optimal cache placement for the MCCS, in terms of file
groups.

Theorem 1. For N files with any file popularity distribution
p, any M ≤ N , andK, there are at most three file groups
under the optimal cache placement{an} for P1.

Proof: See Appendix A.
Theorem 1 states that, regardless ofN , p, andM , there are

only three possible file grouping structures under the optimal
cache placement. The result implies that there are at most three
unique vectors among the optimal cache placement vectors
{an}, one for each file group. This property drastically reduces
the complexity in solving the cache placement problem, and in
turn, it allows us to explore the structure and obtain the optimal
solution {an} analytically. In the following, we examine all
the three cases forP1 to obtain the solution. Note that the
result of at most three file groups, regardless of file popularity
distributionp is somewhat surprising. We will provide some
insight into this result in Section V-D, after the placement
structure and solution in each case is derived. We first define
the following notations:
1) Denoteān = [an,1, . . . , an,K ]Tas the sub-placement vector
in an. It specifies only the subfiles stored in the local cache,
andan,0 specifies the subfile kept at the server.
2) We use notation̄an <1 0 to indicate that there is at least
one positive element in̄an; otherwise,̄an = 0.
3) Notation ān1

<1 ān2
denotes that there is at least one

element inān1
greater than that of̄an2

, and the rest elements
of the same position in̄an1

and ān2
are equal.

For any two filesn1 andn2, it is easy to verify that

an1
= an2

⇔ ān1
= ān2

, (13)

an1
6= an2

⇔ ān1
<1 ān2

andan1,0 < an2,0, (14)

where “⇔” denotes being equivalent, and (14) is obtained by
(4) and (8). Below, we assume each of the three possible file
grouping cases under the optimal solution, and identify the
complete structure of the cache placement vector and obtain
the solution.

A. One File Group

In this case, the cache placement vectors are identical for all
files. Leta1 = · · · = aN = a. LetPu(ñ) denote the probability
of havingñ distinct requests ind, for ñ = 1, . . . ,min{N,K}.
We havePu(ñ) = S(K, ñ)

(
N
ñ

)
ñ!
NK , whereS(·, ·) is the Stirling

number of the second [18]. Definẽgl , [g̃0, . . . , g̃K ]T where
g̃l ,

(
K
l+1

)
−
∑min{N,K}

ñ=1 Pu(ñ)
(
K−ñ
l+1

)
, l = 0, . . . ,K. Then,

P1 in this case is simplified to the following problem

P2 : min
a

g̃Ta s.t. bTa = 1, cTa = M/N, a < 0.

ProblemP2 is identical to the cache placement optimization
problem for the uniform file popularity case (with the same
placementa for all files), of which the optimal solution has
been shown in [19] in closed-form. It shows that, the optimal
a for P2 is given as follows:

alo =
lo + 1− MK

N(
K
lo

) , alo+1=
MK
N

− lo(
K

lo+1

) , for lo=

⌊
MK

N

⌋
, (15)

and al = 0, for ∀l 6= lo, lo + 1. It is clear from (15) that,
the optimala has at most two nonzero elements which are
adjacent to each other: WhenMK/N is an integer,a has one
nonzero element,i.e.,each file is partitioned into equal subfiles
of sizealo ; otherwise,a has two nonzero adjacent elements,
i.e., each file is partitioned into subfiles of two different sizes
(alo , alo+1). Each subfile is cached into its intended user subset
(of size lo or lo + 1) as specified in Section III-1.

B. Two File Groups

For two file groups, there are only two unique placement
vectors in {an}. This implies that{an} has the following
structure:a1 = . . . = ano

6= ano+1 = . . . = aN , for some
no ∈ {1, . . . , N − 1}. By (13) and (14), this is equivalent to

{
ā1 = . . . = āno

<1 āno+1 = . . . = āN

a1,0 = . . . = ano,0 < ano+1,0 = · · · = aN,0.
(16)

It immediately follows thatano+1,0 = · · · = aN,0 > 0.
Based on (16), we useano

and ano+1 to represent the
two unique placement vectors for the first and the second file
group, respectively, for someno ∈ {1, . . . , N − 1}. We first
characterize the structure ofano+1 in the second file group.

Proposition 1. If there are two file groups under the opti-
mal cache placement{an}, the optimal sub-placement vector
āno+1 for the second file group has at most one nonzero
element.

Proof: The proof is similar to that of Theorem 1. We
use proof by contradiction. By exploring the KKT conditions
of P1 and by identifying and combining some conditions in
specific ways, we show that for two file groups, ifāno+1 has
two nonzero elements, the Lagrangian multipliers would not
have feasible solutions.

Proposition 1 indicates that̄ano+1 has either zero or one
nonzero element. Note that no existing studies have considered
two file grouping strategies for cache placement. For the CCS,
two-group placement strategies have been considered in [14]



Algorithm 1 The cache placement for the extended two-file-
group case with̄ano+1 = 0 (including the one-file group case)
Input: K, M , N , andp
Output: (R̄min, n∗

o)
1: for no = 1 to N do
2: Set lo = ⌊MK

no
⌋; Set āno+1 = 0.

3: Determineano
by (17).

4: ComputeR̄(no) by (9).
5: end for
6: Computen̄∗

o = argminno
R̄(no); R̄min = R̄(n∗

o).

and [15], where the second file group containing less popular
files remain at the server. These strategies correspond to the
case wherēano+1 = 0. However, the location ofno was only
proposed heuristically in different ways in these two works.
Except these, the case of allocating cache to the second file
group, i.e., āno+1 6= 0, has never been considered in the
existing literature.

Following Proposition 1, we discuss the optimal cache
placement in each of the two cases forāno+1 below:

1) āno+1 = 0: In this case, no cache is allocated to
the second file group; the entire cache is given to the first
file group. As a result,ano+1 is given by āno+1 = 0 and
ano+1,0 = 1. The cache placement problem forano

of the
first group is reduced to the one in the one-file-group case
in Section V-A. Specifically, leta1 = . . . = ano

= a. We
can simply treat the first file group as a new database with
the number of files beingno instead ofN . Following P2, the
cache placement optimization problem is given by

P3: min
a

g̃Ta s.t. bTa = 1, cTa = M/no, a < 0.

By the result in the one-file-group case, the optimal solution
a for P3 has at most two nonzero elements. The solution is
similar to (15), except thatN is replaced byno, given by

alo =
lo+1− MK

no(
K
lo

) , alo+1=
MK
no

− lo(
K

lo+1

) , for lo=

⌊
MK

no

⌋
, (17)

andal = 0, for ∀l 6= lo, lo + 1.
Combining (15) and (17), we can extend the two-file-group

case to include the one-file-group as a special case whereno =
N . In this case, the optimal cache placement solution is given
by (17) withno ∈ {1, . . . , N}. What remains is to obtain the
optimaln∗

o to determine{an} that minimizes the average rate
objective in P1. The optimaln∗

o depends on(N,p,M,K),
which is challenging to obtain analytically. Nonetheless,R̄
can be easily computed using (17) forno = 1, . . . , N , and we
can do a search forno to determinen∗

o that gives the minimum
R̄. The method in finding the placement solution{an} in this
case is summarized Algorithm 1. Since the algorithm uses a
1-D search forno ∈ N for the optimaln∗

o, it computesR̄
using the closed-form expression in (9) byN times.

2) āno+1 <1 0: In this case, for the second file group, by
Proposition 1,̄ano+1 has only one nonzero element. Assuming
it is the lo-th element, thenano+1,lo > 0, and ano+1,l =

>
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Fig. 1. An example of the optimal cache placement{an} in the case of
two file groups withāno+1 <1 0: ano+1,0 > ano,0 = 0. Betweenāno

and āno+1: 1) ano,l1 > ano+1,l1 = 0; 2) ano,lo = ano+1,lo > 0; 3)
ano,l = ano+1,l = 0, ∀l ∈ K, l 6= lo, l1.

0, ∀l 6= lo, l ∈ K. For the first file group, Proposition 2
characterizesano

, and Proposition 3 specifies the differences
of ano

and ano+1 for the two file groups. The proofs use
similar techniques as in that of Proposition 1 and are omitted.

Proposition 2. If there are two file groups under the optimal
cache placement{an} with āno+1 <1 0, thena1,0 = . . . =
ano,0 = 0.

Proposition 3. If there are two file groups under the optimal
cache placement{an} with āno+1 <1 0, thenāno

and āno+1

are different by only one element.

Proposition 2 indicates that each file in the first file group
has all its subfiles cached amongK users, and no subfile solely
remains in the server. Recall thatāno+1 has only one nonzero
elementano+1,lo > 0. By Proposition 3, the different element
betweenāno

and āno+1 can be either at indexlo or somel1,
for l1 6= lo. From the popularity-first condition (4), it follows
that either of the following two cases holds:2.i) ano,lo >
ano+1,lo > 0; or 2.ii) ano,l1 > ano+1,l1 = 0, for somel1 6= lo,
l1 ∈ K. The structure of{an} in Case 2.ii) is illustrated in
Fig. 1. We point out thatlo andl1 are not necessarily adjacent
to each other. Now we derive the solution(ano

, ano+1) in each
of these two cases:

Case 2.i) ano,lo > ano+1,lo > 0: In this case,̄ano
andāno+1

are only different at the nonzero element ināno+1. It follows
that ano,l = ano+1,l = 0, for ∀l 6= lo. By Proposition 2, we
conclude thatano,lo is the only nonzero element inano

. From
(11) and (12), we havebloano,lo = 1, andnocloano,lo +(N −
no)cloano+1,lo = M . Solving these two equations, we have

ano,lo =
1

blo
; ano+1,lo =

1

N − no

(
M

clo
−

no

blo

)
(18)

where the expressions ofblo andclo are given below (10).
Case 2.ii) ano,l1 > ano+1,l1 = 0, l1 6= lo: In this case,

āno
and āno+1 are different at one of the zero elements in

āno+1. It follows that ano,lo = ano+1,lo > 0. By Proposition
2, we conclude thatano

has two nonzero elements:ano,lo and
ano,l1 . Also recallano+1,0 > 0; thusano+1 has two nonzero
elements:ano+1,0 and ano+1,lo (shown in Fig. 1 as colored
elements). For the rest, we haveano,l = 0, ∀l 6= lo or l1, l ∈
K ∪ {0}, and ano+1,l = 0, ∀l 6= 0, lo, l ∈ K ∪ {0} (shown



in Fig. 1 as the uncolored elements). With the two nonzero
elements inano

andano+1, and from (11), we havebloano,lo+
bl1ano,l1 = 1, andb0ano+1,0+ bloano,lo = 1. Also, from (12),
we haveNcloano,lo + nocl1ano,l1 = M . Solving there three
questions, we obtain

ano,lo =
bl1M − nocl1

bl1Nclo−blonocl1
, ano,l1 =

bloM −Nclo
blonocl1−bl1Nclo

(19)

ano+1,0 = 1− bloan,lo . (20)

For given (no, lo, l1), (18) in Case 2.i) (whenl1 = lo),
or (19) and (20) in Case 2.ii) (whenl1 6= lo) completely
determinesano

andano+1, and thus all{an} by (16). As a
result, the average ratēR in P1 is a function of(no, lo, l1). We
can search over all possible values ofno ∈ {1, . . . , N−1} and
lo, l1 ∈ K for the best tuple(no, lo, l1) that gives minimum
R̄.

Algorithm 2 summarizes the steps to obtain the best solution
{an} in the two-file-group case with̄ano+1 <1 0. The
algorithm computesR̄ using a closed-form expression for
(N−1)K2 times with different(no, lo, l1), which can be done
in parallel. Thus, the complexity of the algorithm is very low.

C. Three File Groups

If there are three file groups under the optimal placement
vectors{an} , the relation amongan’s is given bya1 = . . . =
ano

6= ano+1 = . . . = an1
6= an1+1 = . . . = aN , for 1 ≤

no < n1 ≤ N−1. We useano
, an1

andan1+1 to represent the
three unique cache placement vectors for the 1st, 2nd, and 3rd
file group, respectively. We first present the cache placement
an1+1 in the 3rd file group below. The proof uses the similar
technique as outlined in Proposition 1 and is omitted.

Proposition 4. If there are three file groups under the optimal
cache placement{an}, the optimal placement vectoran1+1 for
the third file group is given bȳan1+1 = 0, andan1+1,0 = 1.

Proposition 4 indicates that when there are three file groups
under the optimal{an}, all the cache will be allocated to the
first two file groups, and the files in the 3rd file group are not
cached and remain in the server. Following this, we only need
to obtain the two unique cache placement vectors(ano

, an1
)

in the first two groups, respectively.
Note that sincean1

6= an1+1, similar to (16), we have
ān1

<1 ān1+1 = 0 and an1,0 < an1+1,0 = 1. Thus,
the cache placement(ano

, an1
) is the same as that of the

two-file-group case with̄an1
<1 0 for the 2nd group in

Section V-B2. For̄an1
<1 0, Propositions 1 and 3 indicate that

ān1
has one nonzero element, andāno

and ān1
are different

by one element. Assume for somelo ∈ K, an1,lo > 0.
Betweenāno

and ān1
, the different element can be either at

lo: ano,lo > an1,lo , or at l1 6= lo, l1 ∈ K: ano,l1 > an1,l1 (the
former is shown in Fig. 2). Detailed solution for(ano

, an1
)

can be obtained from Section V-B2.
Based on the above discussion, for the case of three file

groups, given (no, n1, lo, l1), the solution{an} can be deter-
mined, and the average ratēR in P1 can be computed, as
a function of (no, n1,lo, l1). Again, we can search over all

Algorithm 2 The cache placement for two file groups with
āno+1 <1 0

Input: K, M , N , andp
Output: (R̄min, n

∗
o, l

∗
o , l

∗
1)

1: For each (no, lo, l1), no ∈ [1, N − 1], lo, l1 ∈ [1,K]:
2: if l1 == lo, compute{an} by (18);
3: elsecompute{an} by (19) and (20).
4: ComputeR̄(no, lo, l1) by (9).
5: Compute(n∗

o, l
∗
o , l

∗
1) = argminno,lo,l1

R̄(no, lo, l1); R̄min =

R̄(n∗
o, l

∗
o , l

∗
1).

Algorithm 3 The cache placement for three file groups
Input: K, M , N , andp
Output: (R̄min, n∗

o, n∗
1, l∗o, l∗1)

1: for n1 = 2 to N − 1 do
2: R̄1(no, n1, lo, l1) =
3: Algorithm 2(K,M, n1, [p1, . . . , pn1

]T );
4: R̄2(n1) =

∑N

n=n1+1
gn,0;

5: ComputeR̄(no, n1, lo, l1) = R̄1 + R̄2

6: end for
7: Compute(n∗

o, n
∗
1, l

∗
o , l

∗
1) = argminno,n1,lo,l1

R̄(no, n1, lo, l1);
R̄min = R̄(n∗

o, n
∗
1, l

∗
o , l

∗
1).

possible values ofn1 ∈ {2, N−1}, no ∈ {1, . . . , n1−1}, and
lo, l1 ∈ K for the best tuple(no, n1,lo, l1) that gives minimum
R̄. Algorithm 3 summarizes the steps to obtain the best solu-
tion {an} in the three file groups. It uses Algorithm 2 to obtain
the best(no, lo, l1) in the two-file-group subproblem, for each
n1 ∈ {2, . . . , N − 1}. Thus, the algorithm simply computes
R̄ using a closed-form expression for(N − 1)(N − 2)K2/2
times with different(no, n1, lo, l1), which can be done very
efficiently.

D. The Optimal Cache Placement Solution

The results on the possible structure of the optimal cache
placement in Sections V-A to V-C lead to a simple method
to obtain the optimal solution forP1. By Theorem 1, the
optimal cache placement problemP1 is reduced to three
subproblems, assuming one to three file groups, respectively.
Each subproblem returns the candidate optimal solution{an}
with the minimumR̄ for this subproblem. The optimal{an}
can then be obtained by taking the one gives the minimumR̄
among the three subproblems. The algorithm calls Algorithms
1–3 and selects the one that returns the minimumR̄ as the
optimal solution. It requires minimum complexity and can be
done efficiently. Algorithms 1–3 each involves computing a
closed-form expression of̄R for multiple times. In total,R̄ is
computed for(N − 1)(3N − 4)K2/2 + N times, all can be
done in parallel.

Remark 1. We provide some insights on Theorem 1 based
on the results obtained. We can correspond three file groups
to groups of “most popular,” “moderately popular,” and “not
popular” files. Depending onp and relative cache sizeM to
N , files can be grouped into one of these three categories.
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Fig. 2. An example of the optimal cache placement{an} in the case of
three file groups. No cache is allocated to the 3rd file group:an1+1,0 = 1.
For ano ,ano+1 in the 1st and 2nd groups:1 > ano+1,0 > ano ,0 = 0;
ano,lo > ano+1,lo > 0, lo ∈ K; ano,l = ano+1,l = 0, ∀l ∈ K, l 6= lo.

Based on the structure of optimal{an}, the optimal caching
strategy is to cache all subfiles of the “most popular” files
(into K users); if there are “moderately popular” files, then a
portion of subfiles in these files are cached, and some are left
solely in the server; and if there are “not popular” files, they
are all stored in the server uncached.

Sections V-A to V-C provide the possible structure of the
optimal cache placement in three file grouping cases. However,
analytically determining the optimal file grouping (i.e., the
number of file groups and(no, n1)) is challenging, the same
for (lo, l1) for the nonzero element(s) inan. It depends on
the file popularityp, as well as the relative cache capacity
w.r.t. database (i.e.,M vs.N ). Nonetheless, using the obtained
file group structures, Algorithms 1–3 significantly simplify the
solving of P1, by providing a set of candidate solutions in
closed-form to compare.

VI. N UMERICAL RESULTS

We first verify the optimal cache placement solution struc-
ture of the MCCS. We generate file popularity using Zipf
distribution given bypn = n−θ/

∑N

i=1
i−θ. We obtain the

solution{an} produced by our proposed algorithm, and verify
that they match the optimal{an} obtained by solvingP1
numerically. As examples, forK = 5, N = 9, θ = 1.5,
Tables I and II show the optimal{an} (obtained numerically)
for M = 1 and 3.5, respectively. In Table I (M = 1), we
see two file groups{W1,W2} and {W3, . . . ,W9} under the
optimal{an}. It matches the case discussed in Section V-B1,
where the cache is entirely allocated to the 1st group of the
two most popular files, and the rest files are only stored at the
server (a3,0 = . . . = a9,0 = 1). The optimalan’s for the 1st
group are the same with two nonzero adjacent elements, and
files are split into subfiles of two different sizes cached by
users. This is the case with small cache size, and intuitively,
only a few popular files are cached, and the rest remain in
the server, and therefore there are two file groups under the
optimal cache placement. Table II (M = 3.5) shows a different
cache placement strategy, where the files are divided into
three file groups, resembling the example shown in Fig. 2
(Section V-B2), where no cache is allocated to the 3rd file
group{W6,W7,W8,W9}, a portion of the file is cached for

TABLE I
THE CACHE PLACEMENT{an} FORK = 5, N = 9, M = 1, θ = 1.2
(ONLY l = 0, 2, 3 ARE SHOWN. FOR l = 1, 4, 5, an,l = 0, ∀n ∈ N ).

l
Cache placement vectors of the files

a1 a2 a3 a4 a5 a6 a7 a8 a9

0 0 0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
2 0.0500 0.0500 0 0 0 0 0 0 0
3 0.0500 0.0500 0 0 0 0 0 0 0

TABLE II
THE CACHE PLACEMENT{an} FORK = 5, N = 9 ,M = 3.5, θ = 1.2

(ONLY l = 0, 4 ARE SHOWN. FOR l = 1, 2, 3, 5, an,l = 0, ∀n ∈ N ).

l
Cache placement vectors of the files

a1 a2 a3 a4 a5 a6 a7 a8 a9

0 0 0 0 0 0.6250 1.0000 1.0000 1.0000 1.0000
4 0.2000 0.2000 0.2000 0.2000 0.0750 0 0 0 0

W5 in the 2nd file group, and for the 1st file group, files,
split into subfiles of a single size, are all cached to users. This
echoes the intuition in Remark 1.

Next, we study the performance of the MCCS under
the optimal cache placement. For comparison, we consider
the multiple-file-group placement strategy proposed for the
CCS [2] and directly apply it to the MCCS (Multigroup
MCCS), centralized and decentralized single group sym-
metric placement for the MCCS [10] (one-group central-
ized/decentralized MCCS), and the existing strategies forthe
CCS, including the optimal CCS, a two-file-group scheme
named RLFU-GCC (two-group) [14], and the mixed caching
strategy in [15]. Fig. 3 shows the average rateR̄ vs. M by
the optimal cache placement for MCCS (optimal MCCS), for
Zipf distribution withθ = 1.5, N = 10, andK = 5. In Fig. 4,
we consider the case studied in [15] withN = 12, K = 5,
and a step-function file popularity distribution:p1 = 7/12,
pn = 1/18, n = 2, . . . , 7, and pn = 1/60, n = 8, . . . , 12.
Both Figs. 3 and 4 show that the optimal placement for the
MCCS gives the lowest̄R among all the strategies, for all
values ofM . In particular, the performance gap is large when
M is small, and the gap reduces asM becomes large. This
trend is because for small cache size, the performance is more
sensitive to the cache placement for better coded caching gain.

VII. C ONCLUSION

This paper aims at obtaining the optimal cache placement
and its structure for the MCCS under nonuniform file popu-
larity. Using an optimization approach, we characterized the
inherent file grouping structure under the optimal placement
and show there are at most three file groups regardless of
system configurations. We completely characterized the cache
placement solution in each file grouping case in closed-form,
and then developed a simple and efficient algorithm to obtain
the optimal cache placement solution via a set of candidate
solutions. Insights into the structure of the optimal solution
were also given. Simulation studies verified the optimal cache
placement solution structure and showed superior performance
over existing schemes for both MCCS and CCS.
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1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0.5

1

1.5

2

2.5

3

3.5

Fig. 4. R̄ vs. cache sizeM (N = 12,K = 5, step function popularity).

APPENDIX A
PROOF OFTHEOREM 1

Proof: The Lagrangian function ofP1 is given
by L =

∑N
n=1

gT
nan −

∑N−1

n=1

∑K
l=1

γn,l(an,l −

an+1,l) −
∑K

l=1
ρlaN,l − ρ0a1,0 + λ(

∑N

n=1
cTan − M) +∑N

n=1
νn(b

Tan−1), where we have the Lagrange multipliers
{γn,k} for (4), ρ0 and {ρk} for (7) , {νn} for (11), andλ
for (12). SinceP1 is an LP, the Karush-Kuhn-Tucker (KKT)
conditions forP1 hold. Due to space, we only list the KKT
conditions we need in the proof below:

γn,l(an,l−an+1,l)=0, γn,l ≥ 0, n ∈ N\{N}, l ∈ K, (21)
∂L

∂an,l
=gn,l−γn,l+γn−1,l+λcl+νnbl=0, n∈N\{1, N}, l ∈ K

(22)
∂L

∂a1,l
= g1,l − γ1,l + λcl + ν1bl = 0, l ∈ K (23)

∂L

∂an,0
= gn,0 + λc0 + νnb0 = 0, n ∈ N\{1}. (24)

From (22) and (23), we have
m∑

i=1

∂L

∂ai,l
=

m∑

i=1

gi,l − γm,l +mλcl +

m∑

i=1

νibl = 0. (25)

Using these KKT conditions, we prove Theorem 1 by
contradiction. Assume there is an optimal solution{an} that
divides the files into four file groups. The structure of the
sub-placement vectors̄an’s can be expressed as̄a1 = . . . =
āno

<1 āno+1 = . . . = ān1
<1 ān1+1 = . . . = ān2

<1

ān2+1 = . . . = āN , for 1 ≤ no < n1 < n2 ≤ N − 1.
By (4), we assumeano,lo > ano+1,lo , an1,l1 > an1+1,l1 and
an2,l2 > an2+1,l2 . From (21) and (24) withc0 = 0 andb0 = 1,
we have

γno,lo = γn1,l1 = γn2,l2 = 0; νn = −gn,0, n ∈ N\{1}. (26)

Based on (25), we have the following equation
nj∑

i=1

gi,lj − γnj ,lj + njλclj +

nj∑

i=1

νiblj = 0, j = 0, 1, 2. (27)

Substituting the values ofγno,lo , γn1,l1 , γn2,l2 andνn in (26)
into (27), we have

λnjclj + ν1blj = −

nj∑

i=2

gi,0blj −

nj∑

i=1

gi,lj , j = 0, 1, 2. (28)

We can stack (28) forj = 0, 1, 2 in matrix form Ax = b,
whereA is the coefficient matrix,x = [λ, ν1]

T , and consists
of right hand side of (28) forj = 0, 1, 2. Since[A,b] is full
rank, there is no feasible solution forλ, ν1, contradicting the
assumption that an optimal{an} with four file groups exists.
Similar argument follows for more than four file groups. Thus,
we have the result in Theorem 1.
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