
Achieving Freshness in Single/Multi-User Caching
of Dynamic Content over the Wireless Edge

Bahman Abolhassani1, John Tadrous2, Atilla Eryilmaz1

1,2 Department of Electrical and Computer Engineering
1 The Ohio State University, Columbus, 43210. Email: abolhassani.2@osu.edu, eryilmaz.2@osu.edu

2 Gonzaga University, Spokane, WA 99202. Email: tadrous@gonzaga.edu

Abstract—Existing content caching mechanisms are predom-
inantly geared towards easy-access of content that is static
once created. However, numerous applications, such as news
and dynamic sources with time-varying states, generate ‘dy-
namic’ content where new updates replace previous versions.
This motivates us in this work to study the freshness-driven
caching algorithm for dynamic content, which accounts for the
changing nature of data content. In particular, we provide new
models and analyses of the average operational cost both for
the single-user and multi-user scenarios. In both scenarios, we
characterize the performance of the optimal solution and de-
velop algorithms to select the content and the update rate that
the user(s) must employ to have low-cost access to fresh content.
Moreover, our work reveals new and easy-to-calculate key
metrics for quantifying the caching value of dynamic content in
terms of their refresh rates, popularity, number of users in the
multi-user group, and the fetching and update costs associated
with the optimal decisions. We compare the proposed freshness-
driven caching strategies with benchmark caching strategies
like cache the most popular content. Results demonstrate that
freshness-driven caching strategies considerably enhance the
utilization of the edge caches with possibly orders-of-magnitude
cost reduction. Furthermore, our investigations reveals that
multi-user scenario, benefiting from the multicasting property
of wireless service to update the cache content, can be cost
effective compared to single user caching, as the number of
users increases.

Index Terms—Wireless Content Distribution, Caching, Dy-
namic Content.

I. INTRODUCTION

With the wide availability of content delivery networks,

many applications utilize edge cache at end-users to deliver

dynamic contents, reducing the network latency and system

congestion during the peak-traffic time. By caching a large

number of dynamic contents in the edge caches, the average

response time can be reduced, benefiting from higher cache

hit rates. However higher hit rates come at the expense of a

less fresh content, resulting in higher overall system cost.

Numerous works study the content delivery in caching

systems and effective strategies have been proposed. In [1],

[2] and [3], authors study the benefits of caching with the

focus being mainly on exploiting the history or statistics of

the user demand. These works are based on the promise that

the content stored in the cache will ultimately be used. An

This work was supported primarily by the ONR Grant N00014-19-1-
2621, and in part by the NSF grants: CNS-NeTS-1514260, CNS-NeTS-
1717045, CMMISMOR-1562065, CNS-ICN-WEN-1719371, and CNS-
SpecEES-18243; and the DTRA grant HDTRA1-18-1-0050.

important factor that may greatly affect the caching decision

is the content generation dynamics. However, these studies

fail to take into consideration the possibility of content

refreshment which renders the current version of the cached

content less relevant or possibly obsolete. These types of

dynamic contents include news and social network updates

where the users prefer to have the most fresh version of

the content while also making sure that the total cost of the

network remains low.

As the data gets updated in data sources, currently cached

version becomes out of date or stale since users are interested

in the latest version of data [4]. Most caching policies,

however, do not consider the content generation dynamics

and focus alternatively on the content popularity. It turns

out that the content generation rate plays a crucial role in

deciding which data to be cached and with what rate should

the cached data be updated to account for the dynamically

varying content at the data source. In [5], Candan, et al. pro-

pose a framework which enables dynamic content caching

for database-driven e-commerce sites by intelligently inval-

idating dynamically generated web pages in the caches. In

[6], authors mention that great benefits can be reached by

incorporating the freshness in caching but do not investigate

the case due to complexity of it. In [7], authors propose

a dynamic cache management policy based on the history

of requests and age of the content to update the existing

content of the cache. They show that the optimal policy for

minimizing the number of missed requests is to keep the

packets that have the highest instantaneous request value in

the cache. In [8], authors study a least recently used (LRU)

policy for cache management in a web browser but they

suggest that finding a good caching policy that is conscious

of document size and delay may be difficult. In [9], Chen

et al. propose LA2U and LAUD policies to implement the

update rate in caching. LA2U computes the access-to-update

ratio for the cached data items, and evicts the one with

the smallest ratio. Notably, LA2U is equivalent to least

frequently used (LFU), in the absence of content updates.

LAUD works in the same way as LA2U except that LAUD

uses popularity-to-update differences rather than access-to-

update ratios to decide which items to cache. In [10], Akon

et al., present OUR as a cache replacement scheme which

uses both update rates and content popularities to achieve

superior-guaranteed performance. They define a performance

Amogh Pandey
2020 18th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)

Amogh Pandey
 ISBN 978-3-903176-29-4 © 2020 IFIP

factor (PF) for each data item. If the newly requested item

has a higher PF than that of any cached item, the item with

the lowest PF is evicted, and the new item is stored in the

cache. Otherwise, the requested item is not cached. However,

having a closed form metric that also consider the freshness

and can be used to sort the items and achieve a close to

optimal solution is not fully investigated.

In this paper, we focus on the design of new caching

strategies in the presence of dynamically changing data

content and provide a design framework and performance

analysis of relevant efficient caching strategies. With dy-

namically changing data content, the older content versions

lose their value at different rates. A freshness-driven caching

paradigm must account for these dynamics so as to optimally

balance the costs of caching a content and the costs of

serving the content non-fresh.

In particular, we propose a freshness-driven caching al-

gorithm for dynamic content, which accounts for the update

rate of data content both for the single-user and multi-user

cases and provide an analysis of the average operational cost

for both cases. We aim to reveal the gains of freshness-

driven caching compared to other basic caching strategies.

Our contributions, along with the organization of the paper,

are as follows.

• In Section II, we present a tractable caching model for

serving dynamic content over wireless broadcast channels.

• In Section III, for a database of N data items with an

arbitrary popularity distribution that serves a single user

with a limited cache space, we propose a suboptimal

caching algorithm, Algorithm 1, that gives the cache

checking and update rate together with the set of items

to be cached in order to minimize the average system

cost. We prove that our proposed algorithm optimally

minimizes the average cost for any given cache check and

update rate, and always outperforms the traditional cache

the most popular items strategy, even with optimized cach

check and update rates.

• In Section IV, by distributing the cache capacity among

multiple local users, we develop an optimal caching algo-

rithm, Algorithm 2, that reveals the potential benefits of

the multicasting property in wireless networks for optimal

caching. We show that our proposed algorithm always

minimizes the aggregate average cost of the system.

Finally, we conclude the work in Section V.

II. SYSTEM MODEL

Consider the network setup shown in Fig. 1, with a

database hosting a set N of N data items and serving M
users. Each data item n ∈ N is dynamically refreshed with

a content refresh being sufficient for the user to consume

without the need for older content from the same data

item. Content refreshes arrive to data item n according to a

Poisson process with rate λn ≥ 0. We consider the vector

λ = (λn)
N
n=1 as the collection of the data items refresh

rates.

.

.

.

 Data Base

Refresh rate

.

.

.

.

.

.

User cache

Popularity Distribution

Request arrival rate

Fig. 1: Caching with freshness dynamics.

Each user m generates requests according to a Poisson

process with rate β ≥ 0. A generated request from any

user targets data item n with probability pn. That is, the

vector p = (pn)
N
n=1 captures the popularity profile of the

data items. Users are equipped with a limited-storage cache

that can hold K different items.

When a user generates a request to a data item that is

found in the cache of that user, the request is fulfilled

immediately from that user’s cache under a “freshness cost”.

The freshness cost is incurred due to the fact that the cached

content may not be the most fresh version. We associate a

freshness cost with such events which increases linearly with

the age of the cached content. In particular, we define the age
of a cached content from item n as the number of refreshes

that item n has received in the database and not reflected on

the content in the cache. If the user, thus, consumes a content

from the cache with age k, the user will incur a freshness

cost of k · C0, where C0 ≥ 0 is a constant showing the

freshness cost per stale version. If the requested data is not

in the cache, the user has to fetch the data from the database

and incur a constant fetching cost of Cf ≥ 0.

In this paper, we will study the caching strategies to

minimize the overall system cost in presence of dynamically

refreshing content which adversely impacts the caching

utility. We will investigate which items to cache and how

many items to cache for the single-user and multi-user

scenarios.

Single-user scenario concerns a user with a limited cache

space that keeps local copies of the dynamic content for

local-access. If the requested item is in the local cache, it is

directly served with the possible age-cost described above.

In order to prevent the age-cost from dominating the overall

cost, the local cache needs to check for updates of stored

content at appropriate rates. Therefore, in this scenario the

questions of interest are which data items are worth storing

and at what rate their updates must be checked to minimize

the overall cost. We will address this question in Section III.

Multi-user scenario, in contrast, concerns the distributed

caching setting whereby each user receives its independent

requests for the dynamic content for local consumption. The

key new component in this case is the broadcast nature of the

wireless medium whereby transmissions of content made to

one user can be received and used to opportunistically update

content in other users’ cache at no additional transmission

cost. This multicasting property non-trivially couples the

decisions across the distributed cache space for optimal

caching solution. In Section IV, we undertake this interesting

setting to provide optimal distributed allocation strategy for

minimum overall cost.

In both the single and multi-user cases, we prove the op-

timality characteristics of our proposed caching and update

strategies, and compare their gains over natural benchmarks

that do not account for the dynamic nature of the content. In

Section IV, we also compare the optimal solutions for the

single and multi-user scenarios for equal request rates and

equal total cache spaces in order to reveal the benefits of

distributed caching over common caching that emerge due

to the dynamic nature of the content.

III. OPTIMAL CACHING AND UPDATING FOR DYNAMIC

CONTENT: SINGLE-USER SCENARIO

In this scenario, the user requests are served individually

and no other user can benefit from such a service. Therefore,

we drop the dependence on the user index m, i.e., the user

generates requests with a rate of β. The cache size at the

user is K data items. To avoid excessive freshness cost, the

user employs a cache check and update mechanism through

which the user generates random cache check and update

requests to check the items in the cache and update them

from the database if they have been already refreshed in

the database. We assume that the cache check and update

requests are generated according to a Poisson process with

rate μ ≥ 0. Each checking request costs an amount Cch ≥ 0
which accounts for the communication overhead with the

database. If the content in the cache is found to be not the

most updated version, then the user will fetch the most fresh

version from the database at an additional caching cost of

Cca ≥ 0 which accounts for the resource consumption to

deliver the fresh content to the user’s cache. As discussed

earlier, if an older content with age k is served from cache,

the user will incur a freshness cost of k ·C0, where C0 ≥ 0 is

a constant. If the requested data is not in the cache, the user

has to urgently fetch the data from the back-end database at

a higher fetching cost of Cf ≥ 0. The checking, caching and

urgent fetching costs are constants and satisfy the relation

Cch ≤ Cca ≤ Cf .

A. Problem Formulation

Let IK ⊆ N be the set of items that are stored in the

user cache and let μ be the checking rate of cache content

for the freshness. Note that K is the caching capacity of

the user and due to the high refresh rate, the user may not

necessarily fill the cache. As such |IK | ≤ K.

Lemma 1: Let CS
IK

(μ) be the average system cost in the

Single-user scenario as the user caches the set of items IK
and checks the cache freshness with the Poisson process of

rate of μ. Then:

CS
IK (μ) = βCf + |IK |μCch + μCca

∑
i∈IK

λi

λi + μ

+β
∑
i∈IK

pi

(
λiC0

μ
− Cf

)
,

(1)

Proof. Let {Πi
μ(t), t ≥ 0}, ∀i ∈ IK be the Markov process

describing the freshness age of cached item i at time t under

a given checking rate μ. The evolution of this process is

shown in Fig. 2.

Fig. 2: Markov chain diagram for freshness {Πi
μ(t), t ≥ 0}

under checking rate μ.

As it can be seen in Fig. 2, every arriving content update to

the item i in the database that occurs with rate λi increases

the age of that item in the cache by one. Checking and

updating the cache content will occur with rate μ and

upon occurrence, it will move the system back to state

zero, the most fresh version. We are interested in the limit

of Πi
μ(t)

d−−−→
t→∞ Π̄i

μ, i.e., the steady state distribution of

Πi
μ(t). Let πi

k(μ) = P (Π̄i
μ = k), k ∈ {0, 1, 2, . . .} be the

probability of item i ∈ IK having the age of k under the

checking rate μ, then:

πi
k(μ) = πi

0(μ)

(
λi

λi + μ

)k

, ∀k ∈ {0, 1, 2, . . .}. (2)

Setting
∑∞

k=0 π
i
k(μ) = 1, gives πi

0(μ) =
μ

λi+μ . Hence, the

average age of any item i ∈ IK in the cache is given by:

E[Π̄i
μ] =

∞∑
k=0

kπi
k(μ) =

λi

μ
. (3)

The average system cost in the Single-user scenario as

the user caches the set of items IK and checks the cache

freshness with rate μ comprises four main terms as follows:

CS
IK

(μ) = |IK |μCch + βCf

(
1−

∑
i∈IK

pi

)

+μCca

∑
i∈IK

(
1− πi

0(μ)
)
+ βC0

∑
i∈IK

piE[Π̄
i
μ].

(4)

The first term in Equation (4) shows the average checking
cost for a cache capacity of K that caches the set of items

IK and updates the cache content with the rate of μ and

each checking process has a cost of Cch. The second term in

Equation (4) shows the average fetching cost for a cache set

of IK and the request arrival rate of β as a function of miss

rate β(1−∑i∈IK
). For any arrival request, 1−∑i∈IK

pi is

the probability that the requested content is not in the cache,

so the content should be fetched from the database which

incurs the cost of Cf .

The third term in Equation (4) shows the average caching
cost for a cache set of IK and checking rate of μ. For a

given μ, πi
0(μ), ∀i ∈ IK is the probability that item i in

the cache is the most updated version, i.e., has age 0. So

1−πi
0(μ) is the probability that item i existing in the cache

is not fresh. For every checking process that happens with

rate μ, if the content in the cache is not fresh, we cache the

most updated version from the database and put it in the

user cache which incurs the cost of Cca.

The fourth term in Equation (4) shows the average fresh-
ness cost for a cache set of IK and checking rate of μ. For

each item i ∈ IK existing in the cache, the arrival request

will be served from the cache. The arrival request of item i is

βpi and since the item with age k incurs the cost of k.C0, so

the average cost of freshness will be C0E[Π̄i
μ] which E[Π̄i

μ]
is the average age of cached item i given in (3).

Replacing the results of Equations (2) and (3) in the cost

function given in Equation (4) completes the proof.

The cost minimization problem for the single-user sce-

nario would thus be:

min
μ≥0,IK⊆N

CS
IK

(μ). (5)

A traditional (suboptimal) approach to tackle the caching

problem (5) is to cache the first K most popular items.

Definition 1 (Cache the Most Popular): Define the Ip
K ⊆

N to be the set of K most popular items. That is,

Ip
K := {i ∈ N : |Ip

K | = K, pi ≥ pn∀i ∈ Ip
K , n ∈ N\Ip

K} .
Then the cache the most popular strategy will assign the

cached set of items as IK = Ip
K and optimizes the cache

check and update rate as μ = μp, where

μp := argmin
μ≥0

CS
Ip
K
(μ) .

Since the cost in (1) is convex over μ, such μp exists.

The cache most popular strategy does not consider the

content refresh rate, and the associated freshness costs.

Hence it is a suboptimal strategy. We then note that, the

optimization (5) is computationally formidable to solve as it

necessitates a discrete search process which involves finding

the jointly optimal subset of items to be cached from a large

database of N items and the best cache check and update

rate. We, therefore, investigate the design of suboptimal,

yet simpler caching strategies that account for the dynamic

content refreshing and lead to more performance merits than

the traditional cache most popular strategy.

B. Proposed Algorithm

We propose an algorithm, Algorithm 1, with a selected

set of cached items ÎK and a cached check and update

rate μ̂, based on the refreshing rate of λ and other system

parameters to minimize the expected system cost.

In particular, and as used in Algorithm 1, for item i, we

define the metric δS(λi, pi, μ) = δSi (μ) as follows:

δSi (μ) := μCch +
μλi

λi + μ
Cca + βpi

[
C0

λi

μ
− Cf

]
, ∀i ∈ N

to capture the marginal cost of adding the item i to the cache

for a given μ.

Our proposed algorithm sorts the items based on δSi (μ)
and starts filling the cache with items that have the least

δSi (μ) and keeps adding until either all the items with

negative δSi (μ) are placed in the cache or the cache becomes

Algorithm 1 Single-user caching strategy

Input: P = (p1, ..., pN), λ = (λ1, ..., λN), μp, Ip
K

Initialization : ÎK = ∅, IOld
K = Ip

K

1: Set μ̂ = μp

2: Compute δSi (μ̂) = μ̂Cch + μ̂λi

λi+μ̂Cca +

βpi

[
C0

λi

μ̂ − Cf

]
, ∀i ∈ N

3: Update ÎK as follows:

ÎK = {i ∈ N : |ÎK | ≤ K, δSi (μ̂) < 0,

δSi (μ̂) ≤ δSn (μ̂), ∀i ∈ ÎK , n ∈ N\ÎK}.
4: while ÎK 	= IOld

K do
5: IOld

K = ÎK
6: μ̂ = argmin

μ≥0
CS

ÎK
(μ)

7: Update δSi (μ̂) from step 2.

8: Update ÎK from step 3.

9: end while
10: return μ̂, ÎK .

full, i.e., K items have been already cached. Then for

the new set of cached items, the algorithm computes the

corresponding optimal cache check and update rate μ̂ and

modifies the values of δSi (μ̂) based on new μ̂.

Notice that all data items with positive δSi (μ) can only

increase the average cost if cached. The metric δSi (μ) reveals

the effect of refresh rate alongside the popularity on gains

that can be achieved by caching an item. For example, if an

item has a high probability of being requested and a high

refresh rate, the high refresh rate will increase the values

of δSi (μ) and therefore renders that item less likely to be

cached even if there is available cache storage.

C. Performance Analysis

In the following, we provide a proof of optimality for the

proposed algorithm under a given cache check and update

rate μ and show that it always outperforms the cache most

popular content strategy.

Proposition 1: For a given cache check and update rate

μ, Algorithm 1 minimizes the average cost in (1).

Proof. For a given μ and the set of items IK in the cache,

if we add any item i to the cache such that i /∈ IK , then we

can write the resulting cost as:

CS
IK∪{i}(μ) = CS

IK
(μ) + δSi (μ) ∀i /∈ IK

By induction, if we set IK = {∅} and add the item i to the

cache, the cost will decrease by δSi (μ). If we keep adding

items i with δSi (μ) < 0, the average cost will continue to

decrease. Therefore:

CS
IK

(μ) = CS
{∅}(μ) +

∑
i∈IK

δSi (μ)

Since the proposed algorithm at each step chooses the items

with minimum negative δSi (μ) for a given μ, it results in the

optimal solution.

Proposition 2: The proposed algorithm, Algorithm 1,

always outperforms the cache most popular strategy, i.e.,

CS
ÎK

(μ̂) ≤ CS
Ip
K
(μp)

Proof. We prove this by showing that in each iteration of

the proposed algorithm, the resulting average cost decreases.

Proposition 1, suggests that for a given μ, our algorithm

gives the optimal solution. At any given iteration t, we have:

CS
ÎK(t)

(μ̂(t)) ≥ CS
ÎK(t+1)

(μ̂(t)).

Since at each step we choose μ̂(t + 1) to minimize the

average cost for a given ÎK(t+1), in other words, μ(t+1) =
argmin

μ
CIK(t+1)(μ), we have:

CS
ÎK(t+1)

(μ̂(t)) ≥ CS
ÎK(t+1)

(μ̂(t+ 1)).

Combining the two equations gives:

CS
ÎK(t)

(μ̂(t)) ≥ CS
ÎK(t+1)

(μ̂(t+ 1)),

which shows at each iteration, the proposed algorithm re-

duces the cost. Since we start the algorithm with μ̂(1) = μp

and ÎK(1) = Ip
K , so the proposed algorithm always outper-

forms cache the most popular strategy.

We next investigate the efficiency of our algorithm com-

pared to cache the most popular strategy.

D. Numerical Investigation

We let the total number of data items be N = 106, data

items’ popularity be pn = c/nα with α = 1.2 and content

refresh rates be λn = λ/nz , for some z ≥ 0. We consider the

normalized costs of fetching, checking, caching and fresh-

ness to be Cf = 1, Cca = 0.1, Cch = 0.05, C0 = 0.025.

Setting the cache size K to be 500, we compare the

average cost achieved by the proposed algorithm, Algorithm

1, and the average cost of cache the most popular items

strategy under the same system variables declared above.

We adopt the percentage cost reduction of our proposed

algorithm to the cache the most popular strategy’s cost as

our performance metric. Such a metric is defined as:

Cost Reduction(%) = 100×
CS

Ip
K
(μp)− CS

ÎK
(μ̂)

CS
Ip
K
(μp)

.

The percentage cost reduction is depicted in Fig. 3. The

figure shows substantial gains (between 50− 90% reduction

in the cost) compared to the predominant popularity-based

design, are achievable with our proposed preliminary design.

It also reveals that the gains become more substantial as the

refresh rate of different items becomes more non-uniform

(as the parameter z increases).

Note that adding cache capacity to users is not always an

effective way to reduce the average system cost, specially in

presence of highly dynamic content.

Fig. 3: Average cost reduction by the proposed algorithm

over the cache the most popular for the single-user scenario.

IV. OPTIMAL CACHING AND UPDATING FOR DYNAMIC

CONTENT: MULTI-USER SCENARIO

Consider the scenario shown in Fig. 1, with M users. To

gain a clear insight of the potential wireless multicasting
gain and how distributed caching can relate to the single-

user scenario with a cache of size K, we assume that each

user in the multi-user scenario has the capacity to cache only
one of the date items. However, the number of users is set

equal to the number of items that the user can cache in the

single-user scenario. That is, M = K. In other words, we

distribute the K caching capacity over the users with each

user can cache one item.

In this section, we investigate what items to be cached

and how should the cached items be replicated over the set

of users. In the multi-user scenario, due to the broadcast

capability of wireless service, it is not necessary to employ

a cache check and update mechanism as is the case in the

single-user scenario. Instead, users that have a certain item

in their cache can update it for free if another user that does

not have it, requests its most fresh version from the database.

Let r = (r1, ..., rN) be the vector of the number of times

each item has been cached among the K users. In other

words, ri is the number of replicas of item i that exist in

the users’ caches. Also recall that C0 is the freshness cost

per an age unit. As the age of a cached content increases, the

freshness cost grows linearly. The average cost of urgently

fetching a data item from the database is Cf and the the

freshness cost of consuming an item from the cache is k.C0

where k is the age of the cached content.

A. Problem Formulation

For K users, each equipped with one cache, let r =
(r1, ..., rN) be the vector of replication. Define the feasible

set of solutions as:

FK =

{
r = (r1, . . . , rN) |

n∑
i=1

ri ≤ K, ri ∈ {0, 1, 2 . . .}
}
.

Lemma 2: Let CM(β, r) be the average expected system

cost in the Multi-user scenario with K users and request

arrival rate of β under vector of replication r ∈ FK . Then:

CM(r) = KβCf +

N∑
i=1

ri

(
C0λi

K − ri
− βpiCf

)
. (6)

Proof. Let {Πi
ri(t), t ≥ 0}, ∀i ∈ N be the Markov

process describing the freshness age of cached item i at

time t under the number of replicas ri. The evolution of

this process is shown in Fig. 4. As discussed earlier, in

Fig. 4: Markov chain diagram for freshness {Πi
ri(t), t ≥ 0}

under the number of replicas ri.

the multi-user scenario, the broadcast capability of wireless

service acts as a natural update mechanism. In other words,

users update their cached content for free by overhearing

that content while being served to other users who do not

have it in their cache. For any item i in the cache, since

there are K users and ri of them have item i in their cache,

the service rate of item i is equal to βpi(K − ri). As it can

be seen in Fig. 4, every service of item i acts as an update

mechanism for the users that hold item i in their cache and

upon occurrence, the service of item i from the database will

move the system back to state zero, the most fresh version.

Every arriving content update to the item i in the database

that occurs with rate λi increases the age of that item in the

cache by one.

Letting Πi
ri(t)

d−−−→
t→∞ Π̄i

ri and using the steady state

distribution of Πi
ri(t) define πi

k(ri) = P (Π̄i
ri = k), k ∈

{0, 1, 2, . . .} be the probability of item i having the age of

k under the number of replicas ri, then the average age of

item i is given by:

E[Π̄i
ri] =

λi

βpi(K − ri)
. (7)

The average system cost in the Multi-user scenario as K
users cache according to the vector of replication r =
(r1, ..., rN) ∈ FK , comprises two main terms and is given

by:

CM(r) = βCf

(
K −

N∑
i=1

ripi

)
+βC0

n∑
i=1

piriE[Π̄
i
ri]. (8)

The first term in Equation (8), shows the average fetching
cost for any r ∈ FK and request arrival rate β as a function

of miss rate β
(
K −∑N

i=1 ripi

)
. For any of the K users, if

a requested item is in the user’s cache, it will be immediately

served from the cache with the freshness cost, otherwise it

will be fetched from the database and the urgent fetching

cost Cf is incurred. Since there are ri users that have item

i in their cache, the miss rate for item i is βri(1 − pi).
Summing over all the N items and remembering that r ∈
FK , gives the total miss rate as β

(
K −∑N

i=1 ripi

)
.

The second term in Equation (8), shows the average

freshness cost for any r ∈ FK and request arrival rate of

β. For each item i in the cache, the arrival request rate

is βpi and since the item with age k incurs the cost of

Algorithm 2 Multi-user caching strategy

Input: p = (p1, ..., pN), λ = (λ1, ..., λN),K
Initialization : r∗i = 0 ∀i ∈ N

1: Calculate δMi (r∗i) = KC0λi

(K−r∗i)(K−r∗i −1) − βpiCf ∀i ∈
N .

2: j = argmin
i∈N

δMi (r∗i)

3: while δMj (r∗j) < 0 and
∑N

i=1 r
∗
i < K do

4: r∗j = r∗j + 1
5: update δj(r

∗
j) from Step 1.

6: update j = argmin
i∈N

δMi (r∗i)

7: end while
8: return r∗ = (r∗1 , . . . , r

∗
N)

k · C0, so the average cost of freshness for item i will be

C0E[Π̄i
ri]. Since ri is the number of users having item i in

their cache, the total freshness cost incurred by item i is

given by βpiriC0E[Π̄i
ri]. Summing over all the items gives

the total freshness cost of the system. Substituting Equation

(7) in Equation (8) gives the average cost of system.

Our objective is thus to choose the content to be cached

at the users in order to minimize the average cost of system,

that is:
argmin
r∈FK

CM(r). (9)

The traditional cache the most popular strategy in this

context reduces to caching the K most popular items1 to

the users’ caches, one item per user cache.

Definition 2 (Cache the Most Popular): Define the Ip
K ⊆

N to be the set of K most popular items. Then cache the

most popular strategy for the K users, each with a unit

caching capacity, is given by:

rpi :=

{
1, i ∈ Ip

K ,
0, i ∈ N \ Ip

K ,

with rp := (rp1 , ..., r
p
N).

Such strategy does not consider the freshness of items, yet

we address the question of whether the system can achieve

better performance through lower cost.

B. Proposed Algorithm

We propose Algorithm 2 based on the data items refresh

rate λ to solve (9).

In particular, as it can be seen in Algorithm 2, for item i,
we define the metric δM(λi, pi, l) = δMi (l) as follows:

δMi (l) :=
KC0λi

(K − l)(K − l − 1)
− βpiCf ∀i ∈ N . (10)

The metric δMi (l) captures the marginal cost of adding

item i to the cache given that l of the users have already

cached item i. Our proposed algorithm, at each step, sorts the

1Note that caching the same item at all users (i.e., setting ri = K for
some i ∈ N , rj = 0 , ∀j �= i) can only result in an infinite cost due
to the fact that the item cached will never be requested from the database
yielding a freshness cost that grows indefinitely.

items based on δMi (l), caches the item with the minimum

δMi (l) and iterates until either all the items with negative

δi(l) are cached or there no more users are available to cache

more items (i.e., no available cache storage). Complexity of

proposed algorithm is similar to the sort algorithm.

Notice that items with positive δMi (l) can only increase

the average cost if cached. Similar to single user-scenario,

δMi (l) reveals the effect of refresh rate alongside the popu-

larity on gains that can be achieved by caching an item.

C. Performance Analysis

In the following, we provide a proof of optimality for the

proposed caching algorithm by showing that r∗ satisfies all

the necessary conditions for optimality.

Theorem 1: Algorithm 2 solves the problem (9) optimally.

Proof. We start the proof by first discussing the necessary

conditions for the optimal solution.

Lemma 3 (Necessary conditions for optimality): Any

optimal solution r̄ = (r̄1, . . . , r̄N) to the problem defined

in Equation (9) must satisfy all the following conditions.

δMi (r̄i − 1) ≤ 0 ∀i ∈ N , with r̄i > 0, (11)

δMi (r̄i − 1) ≤ δMj (r̄j) ∀j 	= i, with r̄i > 0, (12)

n∑
i=1

r̄i = K or δMi (r̄i) > 0 ∀i ∈ N . (13)

Proof. We use contradictions to prove that all the three

conditions are necessary for the optimal solution.

To prove that Equation (11) is necessary for optimality, we

use contradiction. Assume that Equation (11) does not hold,

so there exists j ∈ N with r̄j > 0 such that δMj (r̄j−1) > 0.

Then construct r = r̄− ej , where r ∈ FK and we have that

CM(r) = CM(r̄)− δMj (r̄j − 1). Since δMj (r̄j − 1) > 0, so

CM(r) < CM(r̄) which contradicts the fact that r̄ was the

optimal solution.

To prove that Equation (12) is necessary for optimality,

assume that there exist i, j ∈ N such that δMi (r̄i − 1) >
δMj (r̄j). Then construct r = r̄− ei+ ej , where r ∈ FK and

we have that CM(r) = CM(r̄)−δi(r̄i−1)+δj(r̄j). So there

exists r ∈ FK with CM(r) < CM(r̄) which contradicts the

fact that r̄ was the optimal solution.

To prove that Equation (12) is necessary for optimality,

assume that
∑N

i=1 r̄i < K and j ∈ N such that δMj (r̄j) < 0.

Construct r = r̄ − ej , where r ∈ FK and we have that

CM(r) = CM(r̄) + δMj (r̄j). Since δMj (r̄j) < 0, so there

exists r ∈ FK with CM(r) < CM(r̄) which contradicts the

fact that r̄ was the optimal solution.

Now we prove that any solution r ∈ FK to the opti-

mization problem defined in Equation (9) that satisfies all

the necessary conditions for optimality given in Lemma 3,

results in the same average cost.

Lemma 4: Any solution r ∈ FK satisfying the Equations

(11), (12) and (13) will result in the same average cost.

Proof. To prove the lemma, we show that for any r, r̄ ∈ FK

and arbitrary a = (a1, . . . , aN) such that r = r̄+a if both r

and r̄ satisfy the conditions of Lemma 3, then either a = 0
or CM(r) = CM(r̄). Assume a 	= 0, we consider two cases

separately.

Case 1: if δMi (r̄i) > 0 ∀i ∈ N , then if there exists j such

that aj > 0, we have that:

δMj (rj − 1) = δMj (r̄j + aj − 1) > δMj (r̄j)

So Equation (11) does not hold for r, which is a contradic-

tion. Hence ai ≤ 0 ∀i ∈ N . If ai = 0 ∀i then the problem

is solved, but if there exists j such that aj < 0, then we

have:
δMj (rj) = δMj (r̄j + aj) ≤ δj(r̄j − 1) ≤ 0. (14)

According to Equation (13),
∑n

i=1 ri = K should hold for r,

but
∑N

i=1 ri =
∑N

i=1 r̄i+
∑n

i=1 ai < K, since
∑N

i=1 r̄i ≤ K

and
∑N

i=1 ai < 0, which is a contradiction.

Case 2: If δMi (r̄i) > 0 does not hold for all i ∈ N , then

according to Equation (13),
∑N

i=1 r̄i = K should hold. Since∑N
i=1 ri =

∑N
i=1 r̄i +

∑N
i=1 ai ≤ K, then

∑N
i=1 ai ≤ 0. If

ai ≤ 0 for all i, then in order to have a 	= 0, there exists

j ∈ N with aj < 0 such that Equation (14) holds. Now, from

Equation (13),
∑N

i=1 ri = K should hold for r, but since∑N
i=1 ai < 0, it is not possible. So if there exists j ∈ N

with aj < 0, there must exist v ∈ N with av > 0 such

that
∑N

i=1 ai = 0 since we should have
∑N

i=1 ri = K as

shown before. Since r satisfies all the necessary conditions

of Lemma 3, Equation (12) holds for r over v and j.
δMv (r̄v) ≤ δMv (r̄v + av − 1) ≤ δMj (r̄j + aj) ≤ δMj (r̄j − 1).

Now if δMv (r̄v) < δMj (r̄j − 1), the condition of Equation

(12) does not hold for r̄ which is a contradiction and if

δMv (r̄v) = δj(r̄j − 1), construct the r = r̄ + ev − ej . Then

CM(r) = CM(r̄)+δMv (r̄v)−δMj (r̄j−1) = CM(r̄). which

completes the proof.

The solution reached by Algorithm 2 satisfies all the

necessary conditions in Lemma 3 and according to Lemma

4, such a solution is optimal.

It is worth noting that the cache allocation strategy for

the multi-user scenario supported with wireless multicasting

can lead to some users caching less popular items than

those cached at other users. Such a diversity in cached

iterms’ popularities empowers the need for requests from

the database which in turn brings the most recent version of

content to users for free, thanks to wireless multicasting.

Knowing that the proposed algorithm, Algorithm 2, gives

the optimal solution, we investigate its performance merits

compared to other basic caching strategies like cache the

most popular strategy.

D. Numerical Investigations

Using the same parameter values defined in Section III.D

with z = 1.2 and changing the number of users K, we set

the performance metric to be the percentage cost reduction

of our proposed algorithm, Algorithm 2, to cache the most

popular strategy’s cost. Define:

Cost Reduction(%) = 100× CM(rp)− CM(r∗)
CM(rp)

,

Fig. 5: Average cost reduction by the proposed algorithm

over the cache the most popular for the multi-user scenario.

The percentage cost reduction is depicted in Fig. 5. The fig-

ure shows considerable gains compared to the predominant

popularity-based design are achievable with our proposed

preliminary design. It also reveals that the gains become

more substantial as the number of users increases, reveling

that proposed algorithm, Algorithm 2, can more effectively

incorporate the broadcasting gain to reduce the cost. It also

reveals that the gain increases as the refresh rate of different

items decreases. Also as the refresh rate of different items

decreases, with less users we can achieve higher gains,

benefiting more from the multicasting gain.

We also compare the average cost of the single-user with

the multi-user scenario. Running the Algorithm 1 for the

single-user scenario and Algorithm 2 for the multi-user

scenario, with CS
ÎK

(μ̂) and CM(r∗)/K representing the

average cost per user for these two scenarios respectively.

Setting the performance metric to be the percentage cost

reduction per user for multi-user scenario compared to the

single-user scenario’s cost, we define:

Cost Reduction(%) = 100×
CS

ÎK
(μ̂)− CM(r∗)/K

CS
ÎK

(μ̂)
.

Fig. 6 shows the percentage cost reduction for different

caching costs of Cca. According to the figure, for small

cache size, single cache outperforms distributed caching in

the sense of average cost per user, but as the number of

users grows, the multi-user scenario, benefiting more through

the multicasting property, will outperform the single-user

scenario. In other words, through distributed caching aided

with multicast cache update, the per-user cost in the multi-

user system decreases as the number of users K grows,

while the single-user’s cost does not benefit from more

cache storage, K, because of the associated cache check and

update requests. Recall that the multi-user scenario, despite

the single-user scenario, does not employ any optimized

cache checking and updating mechanism.

V. CONCLUSION

In this work, we have proposed caching algorithms for

wireless content distribution networks serving dynamically

changing data content such as news updates, social network

stories, and any other system with time-varying states.

Fig. 6: Average cost reduction per user by distributing cache

space between multiple users.

We have developed a design framework together with the

performance analysis for efficient freshness-driven caching

strategies. We have characterized the average operational

cost both for the single-user and multi-user scenarios. Our

results have revealed that, in the presence of dynamic

content, adding more cache space to edge-users may solve

the system congestion problem at the expense of a high

freshness cost. In the multi-user scenario, as the number

of users increases, our proposed algorithm benefits more

from the multicasting property as a mechanism to update

the cache content and outperforms single-user caching. Our

results have also demonstrated that freshness-driven design

considerably reduces the average cost and optimizes the

cache space more effectively than the predominant existing

strategies such as cache the most popular content.

REFERENCES

[1] S. Borst, V. Gupta, and A. Walid, “Distributed caching algorithms for
content distribution networks,” in 2010 Proceedings IEEE INFOCOM.
IEEE, 2010, pp. 1–9.

[2] A. Meyerson, K. Munagala, and S. Plotkin, “Web caching using
access statistics,” in Proceedings of the twelfth annual ACM-SIAM
symposium on Discrete algorithms. Society for Industrial and
Applied Mathematics, 2001, pp. 354–363.

[3] M. R. Korupolu, C. G. Plaxton, and R. Rajaraman, “Placement algo-
rithms for hierarchical cooperative caching,” Journal of Algorithms,
vol. 38, no. 1, pp. 260–302, 2001.

[4] R. E. Craig, S. D. Ims, Y. Li, D. E. Poirier, S. Sarkar, Y.-s. Tan, and
M. R. Villari, “Caching dynamic content,” Jun. 29 2004, uS Patent
6,757,708.

[5] K. S. Candan, W.-S. Li, Q. Luo, W.-P. Hsiung, and D. Agrawal,
“Enabling dynamic content caching for database-driven web sites,”
in Proceedings of the 2001 ACM SIGMOD international conference
on Management of data, 2001, pp. 532–543.

[6] C. Yuan, Y. Chen, and Z. Zhang, “Evaluation of edge caching/off load-
ing for dynamic content delivery,” IEEE Transactions on Knowledge
and Data Engineering, vol. 16, no. 11, pp. 1411–1423, 2004.

[7] C. Kam, S. Kompella, G. D. Nguyen, J. E. Wieselthier, and
A. Ephremides, “Information freshness and popularity in mobile
caching,” in 2017 IEEE International Symposium on Information
Theory (ISIT). IEEE, 2017, pp. 136–140.

[8] V. S. Mookerjee and Y. Tan, “Analysis of a least recently used cache
management policy for web browsers,” Operations Research, vol. 50,
no. 2, pp. 345–357, 2002.

[9] H. Chen, Y. Xiao, and X. Shen, “Update-based cache access and
replacement in wireless data access,” IEEE Transactions on Mobile
Computing, vol. 5, no. 12, pp. 1734–1748, 2006.

[10] M. Akon, M. T. Islam, X. Shen, and A. Singh, “OUR: Optimal update-
based replacement policy for cache in wireless data access networks
with optimal effective hits and bandwidth requirements,” Wireless
Communications and Mobile Computing, vol. 13, no. 15, pp. 1337–
1352, 2013.

