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Abstract—We consider a multi-user mobile offloading network
with multiple computing access points (CAPs). Each user has
one task to be processed, and may choose to reduce the cost of
processing the task by offloading it to a CAP or to a remote cloud
server. Each user belongs to one of a fixed number of classes,
which determines the distribution of their task parameters. We
aim to produce an offloading decision that minimizes the expected
social cost of the system, while giving selfish users an incentive to
follow that decision. Towards that goal, we show that our system
can be formulated as a class-anonymous game, and we derive
the reduced form of this game to prove that a socially optimal
correlated equilibrium (CE) can be computed in polynomial
time and space with respect to the number of users. Like the
Nash Equilibrium, the CE maintains the necessary conditions for
stability in a system with rational and selfish users, while being
much easier to compute for non-potential finite games. Simulation
results demonstrate the superior results of our solution when
compared with random mapping and an alternate means of
computing a CE.

I. INTRODUCTION

With the continually increasing complexity of mobile ap-
plications, there is a growing demand for accessible com-
putational resources external to the mobile device. Mobile
Edge Computing (MEC) reduces the communication latency in
accessing these computational resources by positioning them
at the edge of the mobile network [1], [2], [3]. One common
MEC approach is to install servers into the wireless access
point or cellular base station, also known as a computing
access point (CAP). A CAP is thus responsible for providing
the users with the communication resources necessary to
access remote computational resources in the cloud, as well
as its own computing capability for possible task offloading.

In a three-tier offloading system with a CAP, studied in [4],
[5], and [6], mobile tasks may be processed at the local mobile
device, at the CAP, or at a remote cloud. These works study the
associated offloading problem—how to distribute individual
user tasks among these heterogeneous offloading sites. This
offloading problem is inevitably coupled with a resource
allocation one, as both the computational and communication
resources are limited and should be distributed judiciously.
Furthermore, a rational solution should account for strategic
behaviour among the users that may result if individual users

This work was support in part by a grant from the Natural Sciences and
Engineering Research Council (NSERC) of Canada.

have agency over their offloading decisions. By analysing the
offloading system as a strategic game, [6] used the existence
of a potential function to compute a pure-strategy Nash
Equilbrium (PSNE); a similar method was applied in [7] and
[8]. However, most strategic games do not have a potential
function, and in such cases do not necessarily possess a PSNE
[9]. This limits the applicability of those previous works to
a set of special cases. And while all finite games (games
with a finite set of strategy profiles) possess mixed-strategy
Nash Equilibria (MSNE) [9], computation of such equilibria
is a PPAD-complete problem that is likely hard to solve if
P 6= NP [10]. A preferable solution would be a more general
equilibrium condition that is more easily computed in a wider
range of systems, while maintaining the advantages of NE for
systems with selfish users.

In this work, we consider a three-tier offloading system with
multiple CAPs, each having their own available communica-
tion and computational resources. Each user has a single task,
which can be processed at the user’s local device, at a remote
cloud, or at one of the CAPs. Individual users seek to minimize
their expected cost, which is an unique convex function of
energy consumption and completion time. Meanwhile, the
system seeks to minimize the social cost, defined as a linear
function of individual costs.

The contributions of this work are as follows:
• We model the above system as a strategic game, where

individual users can strategically choose their offloading
decisions based on the actions of other users. Because
the PSNE and MSNE may be impossible or difficult
to compute, we instead choose to obtain a correlated
equilibrium (CE) of the system. A CE is an equilibrium
that ensures that no user has an incentive to deviate from
a given strategy (assigned by an external agent), assuming
that other users in the system are also acting according to
their assigned strategies [11]. The CE’s advantages over
the NE are that one can be computed by known methods
in all finite games, it can achieve a lower social cost over
the NE, and it still satisfies equilibrium requirements for
rational, selfish users [12].

• While finite games generally have a convex set of CE’s,
our objective is to find the CE that minimizes the social
cost (i.e. the socially optimal CE). We consider a general
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class-anonymous (CA) game, where the users within a
class are indistinguishable from each other in terms of
their task parameters and resource utilization. We prove
by deriving a reduced form of the game that as long as
the number of classes in the system is fixed, an optimal
CE can be found in polynomial time with respect to the
number of users. We then present a solution for doing so
through linear programming (LP).

• Simulation results show that our system performance is
superior to both a random mapping of the tasks as well
as a regret-based learning method used to compute a non-
optimal CE.

Our work is organized as follows. Section II reviews game-
theoretic approaches in mobile offloading systems. Section III
formulates the system model. Section IV defines the offloading
game, shows that it is an example of a CA game, discusses the
CE, and provides a proof that a socially optimal CE can be
found for CA games in polynomial time. Section V uses those
results to develop our solution method. Section VI presents our
simulation results. Finally, Section VII concludes the work.

II. RELATED WORKS

Game-theoretic solutions to the mobile network offloading
problem were presented previously in [6], [7], [8], [13], [14],
[15], [16], [17], [18], and [19]. Two works that stand apart
are [18] and [19], which consider Poisson generation of user
tasks and a queueing system for offloading, while all of the
remaining works listed consider systems with a single atomic
task per user, as does our work. Of those works, all except [6]
consider two-tier offloading systems, while our system and
that of [6] allow for three tiers of offloading.

Of the two tier models, [13] and [14] consider systems with
communication through one or multiple orthogonal wireless
channels respectively, which are shared between the users in
an interference model. In contrast, [7] considers a single wire-
less channel using time-division multiplexing, [15] considers
multiple wireless channels via different access points, with
the available bandwidth distributed equally between offloading
users, [16] considers task transmission through carrier sense
multiple access (CSMA) over multiple wireless channels, and
[8] and [17] consider multiple shared wireless channels with
a generic rate sharing mechanism. Our system follows the
communication model of [15], but does not require equal
distribution of bandwidth between the users. Furthermore, all
of these works except [7] assume the users optimize for a
weighted sum of energy and time consumption, while [7]
exclusively optimizes for energy and adds time requirements
as constraints. Our system allows the users to optimize for
any nondecreasing convex function of energy and time con-
sumption. More importantly, all of the above works except
[17] present methods that rely on the existence of a potential
function in their system to compute a PSNE. We note that
the potential function is hard to identify in general and may
not exist in practical systems, thus limiting the applicability
of this approach. Only [17] presents a system that is not a
potential game, but their solution method uses the fact that a

subgame within their system is a potential game. Furthermore,
none of their solution methods necessarily produce a socially
optimal NE. Our approach, by using the CE, does not require
the existence of a potential function, and we find the socially
optimal CE.

Similar to our system, [6] considers a three-tier system
with local, CAP, and cloud processing available, with CAP
bandwidth and processor rate allocation to each user. However,
our model includes multiple CAPs. More importantly, [6]
again seeks a PSNE based on the potential function approach.
As such, it specifically optimizes for a weighted sum of energy
consumption and total system run time, in order to ensure the
existence of a potential function in the game. As explained
above, our system in this work uses the CE and allows a more
general optimization objective.

III. SYSTEM MODEL

Consider a cloud access network consisting of one remote
cloud server, M CAPs denoted by the set M ∈ {1, . . . ,M},
and N mobile users denoted by the set N ∈ {1, . . . , N}.
Each user has a single task to be processed at time zero.
This model can be extended to the scenario where the users
have multiple tasks, if the tasks are processed in a round-robin
manner among the users.
A. Offloading Decision

Each user may process their task locally, or offload it to
one of the M CAPs. The tasks offloaded to the CAP may
be processed there or may be further offloaded to the remote
cloud server. Denote the offloading decision for each user as
the binary vector

xi = [xi0, xi1, . . . , xiM , xi(M+1), . . . , xi(2M)]
T , (1)

where xij = 1 for j = 0 if user i’s task is to be processed
locally, xij = 1 for 1 ≤ j ≤ M if the task is to be offloaded
and processed at CAP j, and xij = 1 for j > M if the task
is to be offloaded at CAP j −M and processed at the cloud.
The tasks are atomic and thus cannot be split between sites:

2M∑
j=0

xij = 1, ∀i ∈ N . (2)

Each user may also have a possibly empty set Li ∈
{0, . . . , 2M} of forbidden offloading decisions. These place-
ment constraints are expressed as

xil = 0, ∀l ∈ Li,∀i ∈ N . (3)
B. Local Processing and Task Parameters

The input data size, output data size, and required process-
ing cycles of user i’s task are denoted by Din(i), Dout(i), and
Y (i) respectively. The processing time required by the local
device is TLi , and the energy consumption is ELi , both of
which we assume are user-specific deterministic functions of
Din(i), Dout(i), and Y (i).
C. CAP Processing

CAP processing requires energy and time consumption for
both the uplink and downlink transmission of the task. The
energy consumption for CAP processing from user i at CAP
j can be expressed as

EAij = Etij + Erij , (4)



where Etij and Erij represent the uplink and downlink trans-
mission energy costs respectively, and are user-specific CAP-
specific deterministic functions of Din(i), Dout(i) and Y (i).

The time requirement depends on the bandwidth and pro-
cessing rate allocated to the user. Each CAP has its own
wireless channel for offloading. The uplink and downlink
transmission times for user i at CAP j are respectively

T tij =
Din(i)

ηuijc
u
ij

, T rij =
Dout(i)

ηdijc
d
ij

, (5)

where cuij and cdij are the assigned uplink and downlink band-
widths respectively, and ηuij and ηdij are the spectral efficiencies
of the uplink and downlink transmissions. The bandwidths cuij
and cdij are constrained by the bandwidth capacities CUL

j , CDL
j ,

and CTotal
j :

N∑
i=1

cuij ≤ CUL
j ,

N∑
i=1

cdij ≤ CDL
j , ∀j ∈M, (6)

N∑
i=1

(cuij + cdij) ≤ CTotal
j , ∀j ∈M. (7)

The processing time of task i at CAP j is

T aij =
Y (i)

faij
, (8)

where faij is the assigned processing rate for the task, con-
strained by the total processing rate available at the CAP fAj :

N∑
i=1

faij ≤ fAj , ∀j ∈M. (9)

D. Cloud Processing
In cloud processing, uplink/downlink transmission times

and energy costs are identical to the CAP processing case.
There is however a further transmission between the CAP
and the cloud T acij = (Din(i) + Dout(i))/rac, where rac is a
predetermined wired transmission rate between the CAP and
the cloud. The computation time is T ci = Y (i)/fCi , where fCi
is a predetermined processing rate assigned to each user at the
cloud. The total cloud processing time is then

TCij = T tij + T rij + T acij + T ci . (10)

For energy consumption, we add to the transmission re-
quirements a cloud utility cost CCi , weighted for each user by
βi: ECij = Etij + Erij + βiC

C
i . (11)

E. User Classes

In practical systems, users often share similar characteris-
tics. For example, in the Internet-of-Things (IoT) environment,
many sensors are of the same type. These similar users and
devices can be treated similarly in resource assignment. We
will see that this can substantially reduce the computational
complexity of the optimal CE.

To formalize this, we consider a partition of N into K
classes, K = {K1, . . . ,KK}. Among the users within a
class Kk all parameters Din(i), Dout(i), Y (i), ηuij , and ηdij
are random but independent and identically distributed, with
known distributions, and all users have the same function for
determining TLi , ELi , Etij , and Erij , and these functions are
known. The system responds accordingly to the users within

a class by assigning identical cloud processing rates fCi and
cloud utility costs and weights CCi and βi, and allocating
equal bandwidth and CAP processing rate to each user within
the same offloading site, thus ensuring symmetric expected
energy and time consumption between the users within each
offloading site. The amount of each resource allocated does
not vary based on the identity of the users at each site.

Given these assumptions, the users no longer need to
know the exact value of their system parameters—knowledge
of their class membership and their associated distributions
is sufficient for rational decision making. We assume the
system knows each user’s class membership and the associated
distributions, but not individual parameter values.

With the introduction of classes, we can now consider the
aggregate of offloading decisions by the users within classes.
This is denoted by a (2M + 1)-tuple of positive integers,

x̄k = [x̄k0, x̄k1, . . . , x̄kM , x̄k(M+1), . . . , x̄k(2M)]
T , (12)

where
x̄kj =

∑
i∈Kk

xij , ∀j ∈ {0, . . . , 2M}. (13)

Individual task parameters can now be expressed as expec-
tations conditional on class:

Dπ(k) = E[Dπ(i)|i ∈ Kk], π ∈ {in, out}, (14)
Y (k) = E[Y (i)|i ∈ Kk]. (15)

Similarly,

{ELk , TLk , TCk } = E[{ELi , TLi , TCi }|i ∈ Kk], (16)
Eπkj = E[Eπij |i ∈ Kk], π ∈ {t, r, A,C}, (17)

Tπkj = E[Tπij |i ∈ Kk], π ∈ {ac,A,C}. (18)
We express resource allocation in terms of classes as follows,
the couplet representing CAP and cloud processing respec-
tively: cπkj = (cπ

A

kj , c
πC

kj ), π ∈ {u, d},

=

( ∑
i∈Kk

cπijxij ,
∑
i∈Kk

cπijxi(j+M)

)
, (19)

fakj =
∑
i∈Kk

faijxij . (20)

Using the fact that resource allocation must be equal for
each user in the class, we re-express terms in (5) and (8) as
expectations,

Tπ
kj = (Tπ

A

kj , T
πC

kj ), π ∈ {t, r}, (21)

T t
A

kj =
Din(k)ηu∗kj x̄kj

cu
A

kj

, T t
C

kj =
Din(k)ηu∗kj x̄k(j+M)

cu
C

kj

, (22)

T r
A

kj =
Dout(k)ηd∗kj x̄kj

cd
A

kj

, T r
C

kj =
Dout(k)ηd∗kj x̄k(j+M)

cd
C

kj

, (23)

T akj =
Y (k)x̄kj
fakj

, (24)

where ηπ∗kj = E[1/ηπij |i ∈ Kk], π ∈ {u, d}. (25)

And we rewrite constraints (6), (7), and (9) as
K∑
k=1

cu
A

kj + cu
C

kj ≤ CUL
j ,

K∑
k=1

cd
A

kj + cd
C

kj ≤ CDL
j , (26)

K∑
k=1

cu
A

kj + cu
C

kj + cd
A

kj + cd
C

kj ≤ CTotal
j , (27)



K∑
k=1

fakj ≤ fAj , ∀j ∈M. (28)

The expected processing times TAkj and TCkj can now be
expressed as

TAkj = T t
A

kj + T r
A

kj + T akj , (29)

TCkj = T t
C

kj + T r
C

kj + T ackj + T ck , (30)
and the total expected class energy and time consumption as

Ēk = ELk xk0 +

M∑
j=1

EAkjxkj +

M∑
j=1

ECkjxk(j+M), (31)

T̄k = TLk xk0 +

M∑
j=1

TAkjxkj +

M∑
j=1

TCkjxk(j+M). (32)

F. Individual and Social Cost Functions

Each user aims to minimize their individual cost, which
can be any nondecreasing convex function of energy and
time consumption within the system, and is dependent on the
offloading decision of the other users.

The energy and time consumption for each user can be
expressed as

Ei = ELi xi0 +

M∑
j=1

EAijxij +

M∑
j=1

ECijxi(j+M), (33)

Ti = TLi xi0 +

M∑
j=1

TAij xij +

M∑
j=1

TCij xi(j+M). (34)

Our individual cost function can now be expressed as

ui(x1, . . . ,xN ) = fi(E1, . . . , EN , T1, . . . , TN ). (35)

While in many cases individual users will only optimize for
their own energy/time consumption, our system allows for the
more general case.

Given the class-based symmetry between the users within
class, we assume that the users do not distinguish between
other users within a single class to compute their individual
cost (but they may still however distinguish themselves apart
from the rest of their class). Furthermore, we assume the users
minimize over their expected individual cost given uncertain
task parameters. Thus, the cost function ui can now be
expressed in terms of user i’s offloading decision xi, and the
class-based offloading assignments x̄1 to x̄K . Let k(i) be the
class index of user i. Then, with slight abuse of notation, we
re-express ui as follows:

ui(x1, . . . ,xN ) = ui(xi, x̄1, . . . , x̄k(i) − xi, . . . , x̄K)

= fi(Ei, Ē1, . . . , Ēk(i) − Ei, . . . , ĒK ,
Ti, T̄1, . . . , T̄k(i) − Ti, . . . , T̄K). (36)

We note that Ēk’s and T̄k’s are equal for every strategy profile
whose x̄k’s are equal, given the system response to the class-
based structure of the users.

The social cost is a weighted linear sum of individual
objectives,

U(x1, . . . ,xN ) =

N∑
i=1

wiui, (37)

where wi > 0 is the weight for user i.
We aim to design an offloading system that minimizes the

social cost. However, the users in a practical system often

have agency over their offloading decisions xi, and they
rationally minimize their individual objective functions. Thus,
this offloading system can be analyzed as a finite game. This
game is not guaranteed to have a PSNE, and the computation
of an MSNE is usually too complex, as previously explained.
We therefore use the CE to derive a solution to the offloading
problem, so that rational users will not deviate from it.

IV. CLASS-ANONYMOUS OFFLOADING GAME

In this section, we first describe how our offloading system
can be analyzed as, a class-anonymous (CA) game. We then
present the CE for this game. Finally, we show that polynomial
time and space computation of the optimal CE is possible, by
expressing the game in a reduced form.

A. Offloading Game

Our system can be analyzed as a finite game G with
structure G = (N , {Xi}i∈N , {ui}i∈N ), (38)
where N is the player set consisting of N system users,
Xi ⊆ X is the strategy set of each user i, and ui is their
corresponding cost function the user seeks to minimize. The
strategy set Xi consists of all possible offloading decisions
available to the user—from Section III-A, this can be repre-
sented as the set {xi} subject to (2)-(3). We let S =

∏N
i=1Xi

denote the set of strategy profiles. The individual costs ui is
defined in (36).

Because of the class-based structure of the system, offload-
ing game (38) falls within the general category of CA games.
Definition 1 (Class-Anonymous Game). Consider a finite
game G defined in (38). G is a class-anonymous game of
order K if there exists a partition K of N into K classes,
K = {K1, . . . ,KK}, such that for any two users m and n in
the same class, if user m adopts strategy xm and user n xn,
then the cost experience by every other user is the same if m
and n switch strategies and no other changes are made.

We note that the special case of the CA game where K = 1
is termed an anonymous game [20]. An optimal CE solution
was given in [21] for this case, but it is not directly applicable
to a CA game with general K.

B. Correlated Equilibria

Given an arbitrary finite game G defined in (38), a CE is
defined as follows [11]:
Definition 2 (Correlated Equilibrium). Let σ be a distribution
on S, and let s = {x1, . . . ,xN} ∈ S be a strategy profile
drawn from σ. Then, σ is a correlated equilibrium if for all
players i ∈ N , the expected cost of playing strategy xi is no
larger than that of any other strategy x′i ∈ Xi:

Es∼σ[ui(xi,x−i)|xi] ≤ Es∼σ[ui(x
′
i,x−i)|xi],

∀i ∈ N ,xi,x′i ∈ Xi. (39)

Note that the users do not know the strategies of the other
users, only a respective conditional probability distribution.
The above condition can be expressed as the following set of
equations:∑

s∈S|xi

P (s)[ui(x
′
i,x−i)− ui(xi,x−i)] ≥ 0, (40)



∀i ∈ N ,xi,x′i ∈ Xi,

where P (s) denotes the probability of drawing strategy profile
s from σ. Note that the set {P (s)}s∈S forms the distribution
σ, and that the CE conditions are all linear with respect to
P (s). Thus, one means of computing the CE is solving a
linear feasibility program over variables P (s) with (40) as
constraints. There are

∑N
i=1

(|Xi|
2

)
such constraints, which is

polynomial in N and |Xi| [21]. Additionally, the following
constraints must be added, since σ must be a distribution:

P (s) ≥ 0, ∀s ∈ S, (41)∑
s∈S

P (s) = 1. (42)

Furthermore, from [11] we know that every finite game has a
CE. Thus, a solution to the feasibility program is guaranteed
to exist.

Since any distribution over S that satisfies (40)-(42) is a
CE, we can find an optimal CE by minimizing in expectation
a social cost function U over the constraints. This CE is
more easily computed than an MSNE, and satisfies rationality
conditions for selfish users, as the users have no incentive to
deviate from their assigned strategy so long as they expect
other users to do the same. We remark that the CE relies on
an assumption that the users do not know the strategies of
other users and thus cannot respond accordingly, unlike in an
MSNE. However, the users in a mobile offloading network
are unlikely to have or be able to obtain such information,
rendering the CE sufficiently stable.

C. Reduced Form of the Class-Anonymous Game

Even though (40) gives a polynomial number of constraints
in N and |Xi|, we still have |S| = O(|X |N ), which implies an
exponential time and space requirement to compute and store
P (s). Thus, we need a means to represent the strategy space
of the game in a reduced form, despite the size of its normal
form. In the following, we adopt the reduced form definition
from [21] to show that the optimal CE for the proposed CA
offloading game can be found in polynomial time and space
complexity.
Definition 3 (p-equivalence). Consider a finite game G de-
fined in (38). Let Qi = {q1

i , . . . , q
ri
i }, i ∈ N be a partition of

S−i into ri sets. For a player i, two strategy profiles (xi,x−i)
and (x′i,x

′
−i) ∈ S are p-equivalent if xi = x′i and x−i and

x′−i belong to the same partition set in Qi.
Definition 4 (Reduced Form). The set of partitions Q =⋃N
i=1Qi is a reduced form of G of size |Q| if ui(xi,x−i) =

ui(x
′
i,x
′
−i) for any p-equivalent pair of (xi,x−i) and

(x′i,x
′
−i).

With a reduced form of a game, the following theorem
from [21] provides sufficient conditions for polynomial time
computation of an optimal CE:

Definition 5 (Separation Problem). Let Q be the reduced form
of a game. The separation problem for Q is as follows: given
a mapping yi : (x, j) → Q,∀i ∈ N ,x ∈ Xi, j ∈ {1, . . . , ri},
decide whether there exists a strategy profile s ∈ S such that

∑
(i,x,j):s∈Si(x,j)

yi(x, j) < 0, (43)

where Si(x, j) is the set of all strategy profiles (xi,x−i) ∈ S
such that xi = x and x−i ∈ qji .
Theorem 1. Let Q be the reduced form of a game. If the
separation problem for Q has a polynomial time solution, a
CE that optimizes for a linear combination of individual player
cost (i.e. the optimal CE) can be computed in polynomial time
in the size of Q [21].

We now derive the reduced form of the CA game. Let
x−i ∈ S−i =

∏
i′ 6=iXi′ . Let X̄−i represent the matrix

form of (x̄1, . . . , x̄k(i) − xi, . . . , x̄K). Let ri be the total
number of possible X̄−i’s. Let Qi = {q1

i , . . . , q
ri
i } be a

partition of all possible x−i’s according to their associated
X̄−i class assignments. From the form of the individual cost
function in (36), any two p-equivalent strategy profiles will
experience the same individual cost ui. Thus, from Definition
4, QK =

⋃N
i=1Qi is a reduced form of G. The individual cost

function can now be expressed in terms of the reduced form,
again with slight abuse of notation,
ui(xi,x−i) = ui(xi, j) = fi(Ei, Ti,E−i(j),T−i(j)), (44)

where j indicates the set qji ∈ Qi that x−i belongs to, and
E−i(j) and T−i(j) represent their associated energy and time
costs.
Lemma 1. The size of QK , |QK | = O(N(N+X)KX), where
X = |X |, which is polynomial with respect to N .

This result can be obtained through the fact that |QK | =∑N
i=1 ri, and that ri is equal to the number of distinct

assignments of the |Kk| players in class k into the X strategies,
which equals O((N +X)KX). The detailed proof is omitted
due to space limitation.

Using these properties, we can now prove the following:
Theorem 2. The separation problem (see Definition 5) for
QK has a polynomial time solution.

This solution uses the class-based assignments qji to con-
struct a graph of strategy profiles, using yi(x, j) as edge
weights. The separation problem can then be shown to be
equivalent to a minimum cost flow problem which admits a
polynomial time solution. The detailed proof is omitted due
to space limitation.

From this result, the following is a direct consequence of
Theorem 1:
Theorem 3. Class-anonymous games of order K have a
polynomial time and space solution for the optimal CE.

V. OPTIMAL CORRELATED EQUILIBRIUM SOLUTION

In this section, we show that the optimal CE of a CA game
can be computed by linear programming. We use those results
to obtained the associated offloading decisions for our MEC
system.

To find the optimal CE, we must optimize the social cost in
(37) in expectation over a distribution over S, and represent
that distribution over the reduced form of the game to ensure
polynomial time and space complexity. Consider the objective
function N∑

i=1

wi

(
ri∑
j=1

∑
x∈X

Pi(x, j)ui(x, j)

)
, (45)



where the objective variables Pi(x, j) form a distribution over
Si(x, j) (defined in Definition 5), for each user i ∈ N . We
presume ui(x, j) is computed in advance ∀i ∈ N ,x ∈ Xi, j ∈
{1, . . . , ri}. Given the size of ri (see Lemma 1), there are
polynomial number of such calculations, and an equal number
of objective variables Pi(x, j), implying a polynomial space
representation.

The constraints (40)-(42) directly extend as follows:
ri∑
j=1

Pi(x, j)[ui(x
′, j)− ui(x, j)] ≥ 0, (46)

∀i ∈ N ,x,x′ ∈ X
Pi(x, j) ≥ 0, ∀x ∈ X , j ∈ {1, . . . , ri} (47)
ri∑
j=1

∑
x∈X

Pi(x, j) = 1, ∀i ∈ N . (48)

While {Pi} is not itself a CE (which is a distribution over
S), it may extend to a CE as follows [21]:
Lemma 2. Let σ = {P (s)}s∈S be a CE of G. Then, if

Pi(x, j) =
∑

s∈Si(x,j)

P (s), ∀i,x, j, (49)

then {Pi}i∈N satisfies constraints (46)-(48) and the objective
function (45) is equal to

N∑
i=1

wi
∑
s∈S

ūi(s)P (s), (50)

where ūi(s) = ui(x, j) such that s ∈ Si(x, j).
Note that (50) is the expected value of social cost of the

CE as defined in (37).
Definition 6. Let σ′ be a distribution on S. Then, {Pi}i∈N
extends to σ′ if {Pi} and σ′ satisfies (49). σ′ would then be
an extension of {Pi}.
Lemma 3. If {Pi} extends to some distribution σ′ on S and
satisfies (46)-(48), then σ′ is a CE with expected social cost
equal to (50).

However, as demonstrated by [21], a feasible solution to the
LP above does not necessarily extend to a distribution on S—
the above problem is thus a relaxed version of the optimal CE
problem. We therefore need additional constraints to ensure a
CE solution.

Let the set of X × K matrices Φ = {X̄ = [x̄1, . . . , x̄K]}
represent the set of all possible class-based assignments of
the users in X . The size of Φ is O((N +X)KX) like ri, for
analogous reasons. Note that X̄x,k equals the total number of
users in class k adopting strategy x. Let the binary X × K
matrix Zx,k be defined such that

Zx,k
m,n =

{
1, m = x and n = k

0, otherwise
.

Note that if X̄x,k > 0, then X̄−Zx,k corresponds to a possible
X̄−i,∀i ∈ Kk. Let Ji(X̄−Zx,k) = j such that the class-based
assignments in qji correspond to the assignments in X̄−i =
X̄− Zx,k

We add a polynomial number of decision variables p(X̄),
representing a distribution over X̄ ∈ Φ. We now add the
following constraints to our LP:

p(X̄) ≥ 0, ∀X̄ ∈ Φ, (51)∑
x:X̄x,k(i)>0

Pi(x, Ji(X̄− Zx,k(i))) = p(X̄), (52)

∀i ∈ N , X̄ ∈ Φ,∑
i∈Kk

Pi(x, Ji(X̄− Zx,k)) = X̄x,kp(X̄), (53)

∀Kk ∈ K, X̄ ∈ Φ,x ∈ X ,∑
X̄∈Φ

p(X̄) = 1. (54)

Finally, we add the placement constraints:
Pi(x, j) = 0, ∀i ∈ N ,x ∈ Li. (55)

The linear program for computing the CE is now as follows:

min
Pi,p

N∑
i=1

wi

(
ri∑
j=1

∑
x∈X

Pi(x, j)ui(x, j)

)
, (56)

s.t. (46)-(47), (51)-(55) ((48) is now redundant).
The following lemma suggests that no optimality is lost in
considering problem (56) to find the optimal CE.:

Lemma 4. Let σ = {P (s)}s∈S be a CE of G. Let S(X̄)
be the set of all strategy profiles in S where the users are
assigned according to X̄. Then, if (49) is satisfied, and

p(X̄) =
∑

s∈S(X̄)

P (s), (57)

then {Pi} and {p} satisfy constraints (51)-(54)—thus, all CE
are within the feasible set of (56).
Proof. Since {S(X̄)}X̄∈Φ is by definition a partition of S,
(51) and (54) hold from the fact that P (s) forms a distribution
over S. (52) and (53) are both direct results from the law of
total probability.

From this we now show how a CE can be achieved from
the distributions {p} and {Pi}.
Theorem 4. For any class-anonymous game of order K, a
feasible solution to (56) extends to a CE σ, and a strategy
profile from σ can be sampled in polynomial time.
Proof. To show this result, we develop an polynomial time
algorithm that produces randomly a strategy profile s ∈ S ,
whose resultant distribution σ = {P (s)} satisfies the results
in (56)— that is:

Pr[s ∈ S(X̄)] =
∑
s∈S

P (s) = p(X̄), ∀X̄ ∈ Φ, (58)

Pr[s ∈ Si(x, j)] =
∑

s∈Si(x,j)

P (s) = Pi(x, j), (59)

∀i ∈ N ,x ∈ Xi, j ∈ {1, . . . , ri}.
The implicit distribution that results from this algorithm, σ,
satisfies (49) and thus is an extension of {Pi} by Definition
6. Since {Pi} satisfies (46)-(48), Lemma 3 ensures that σ is
a CE, which must be optimal as per Lemma 2.

To generate a CE with such properties, we first sample X̄
from Φ via the distribution {p(X̄)}. From this, we construct
K complete bipartite graphs (V1, V2, E)k, one for each class
in K, where V1 consists of one vertex for each user i in class



Kk, and V2 contains X̄x,k vertices for each strategy x in X .
We assign to each edge (V1, V2) a weight corresponding to
their respective user i and strategy x, generating a fractional
perfect matching:

hk(i,x) =
Pi(x, Ji(X̄− Zx,k))

X̄x,kp(X̄)
. (60)

From (52), the sum of the weights incident to any user i is
1. Similarly, from (53), the sum of the weights for all vertices
in V2 is 1. Thus, the weights of the graph can be expressed as a
doubly stochastic matrix, which under Birkhoff’s theorem, can
be decomposed into a convex combination of O(V 2) perfect
matchings in polynomial time [24]. This decomposition then
represents a probability distribution over the perfect matchings,
each of which is a possible assignment of the users in the class
to the available strategies. When one such matching is sampled
over all classes, the result is a strategy profile in S.

The resultant implicit distribution σ clearly satisfies (58)
from the initial sampling. To show that (59) is satisfied,
we note that the solution method results in the following
probability of drawing a strategy profile s ∈ Si(x, j):

Pr[s ∈ Si(x, j)] = Pr[s ∈ X̄∗]X̄∗x,khk(i,x), (61)

= p(X̄∗)X̄∗x,k
Pi(x, j)

X̄∗x,kp(X̄
∗)
, (62)

= Pi(x, j), ∀i ∈ N , j ∈ {1, . . . , ri},x ∈ X , (63)

where X̄∗ is the single value of X̄ ∈ Φ such that S(X̄) ∩
Si(x, j) 6= ∅.

Following from these results, our solution method for com-
puting the optimal CE is as follows:

1) A central controller in the system obtains the cost
function for each user in the system, and determines
a respective weighting factor for the social objective.
Class information is also obtained, either directly from
the users or inferred through a clustering method.

2) The controller determines the distributions of all par-
titions in the reduced form Q of the system. Using
that, it determine the resource allocation to compute all
individual utilities ui(x, j),x ∈ Xi, for the users along
with the corresponding resource allocation values.

3) The controller solves the LP (56), and uses the result
to select probabilistically a single strategy profile using
the bipartite graph matching described under Theorem
4. This is sent to the users, who then offload their task
based on their given assignment, and by the properties
of the CE, have no incentive to deviate from their
assignment.

Regarding the resource allocation, we note that any resource
allocation scheme is allowed so long as the CA property of the
system is maintained. This is the case as long as the resource
allocation values are invariant for any set of strategy profiles
with identical class-based user assignments:

cπkj = cπkj(X̄), fakj = fakj(X̄), π ∈ {u, d}. (64)

As long as a resource allocation scheme satisfies this con-
dition, our solution method produces an optimal CE of the
system. For our simulations, we use an optimization method

to compute the resource allocation similar to that in [6], but
modified to maintain the CA property. The detailed approach
is omitted due to space limitation.

VI. SIMULATION RESULTS
In this section, we evaluate the performance of the proposed

optimal CE via simulation using real-world system parameters.
We present performance comparison with two alternatives:
Random Mapping, where offloading decisions are chosen ran-
domly for each user; and Learned CE, where a non-optimal CE
is computed using the regret-based learning method detailed
in [25].

We utilize the x264 CBR encoding application, which
requires 1900 cycles/byte [26]. We set by default the number
of users per class to 7, number of CAPs to 2, β = 1.7× 10−7

J/bit. The bandwidths at each CAP are CjUL = CjDL = 20
MHz, and CjTotal = 40MHz for each CAP. We use an iPhone
X mobile device with a CPU speed of 2.39 × 109 cycles/s,
leading to a local computation time of 9.93× 10−8 s/bit [27],
and adopt a CPU rate of 5 × 109 cycles/s at the CAPs, and
7.5×109 cycles/s at the cloud. The transmission and receiving
energy per bit at each mobile device are both 1.42 × 10−7

J/bit as indicated in Table 2 in [26]. For offloading a task to
the cloud, the transmission rate is Rac = 15 Mpbs. Also,
we set the cloud utility cost Cci to be the same as that
of the input data size Din(i). In each class, the input and
output data are normally distributed with a specified mean and
variance. Spectral efficiencies are uniformly distributed with
fixed minimum and maximum values. We scaled the cloud
utility cost Cci to the expected input data size Din(i). These
parameters are all listed for each class in Table I.

We consider a system of three classes, with seven users per
class, and two CAPs by default. Each user shares the same
individual cost function, defined as a weighted sum of energy
and time consumption:

ui(x1, . . . ,xN ) = Ei + αTi, (65)
where α has unit J/s, so that ui is measured in the unit of J.
We set α = 0.5 J/s by default. Our social cost function is a
simple sum of all user cost, with every user’s weight wi = 1.

Tables II, III, and IV show the expected social cost, averaged
over 40 trials, sweeping through the number of users per class
(from 6 to 8), α (from 0.1 to 0.9), and the number of CAPs (1
to 3) respectively. In each of these tables, the proposed optimal
CE achieves the best results, followed by the non-optimal
CE, and finally by random mapping. Tables II and III show
an approximately linearly increasing relationship between the
expected cost and the number of users and α, both of which
are to be expected from the system model. Table IV shows
a decreasing relationship between the expected cost and the
number of CAPs, which is due to the availability of additional
offloading sites.

Figure 1 shows the costs experience for each particular class
in the system against the number of users. We observe that
Class A has the highest cost, followed by Class B and Class C.
This is in accordance with Class A having the largest data size
and lowest spectral efficiency, Class B with improved spectral
efficiency, and Class C a smaller data size.



TABLE I: Class Parameter Values
Parameter Class A Class B Class C
E[Din(i)] 48 MB 48 MB 24 MB

Var[Din(i)] 6× 107 6× 107 3× 107

E[Dout(i)] 6 MB 6 MB 3 MB
Var[Dout(i)] 1× 107 1× 107 0.5× 107

Min ηuij , η
d
ij (b/s/Hz) 1 2 2

Max ηuij , η
d
ij (b/s/Hz) 2 4 4

TABLE II: Cost against number of users per class
Number of Users

Expected Cost (J) 6 7 8
Optimal CE 436 502 571
Learned CE 453 533 590

Random Mapping 536 598 659

TABLE III: Cost against α
α (J/s)

Expected Cost (J) 0.1 0.3 0.5 0.7 0.9
Optimal CE 375 427 488 544 614
Learned CE 422 479 547 605 671

Random Mapping 478 542 619 699 780

TABLE IV: Cost against number of CAPs
Number of CAPs

Expected Cost (J) 1 2 3
Optimal CE 645 503 379
Learned CE 668 536 454

Random Mapping 794 608 553
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Fig. 1: Class costs against number of users
VII. CONCLUSION

In this work, we study the CE for a three-tier mobile
offloading network. Unlike the NE, the CE is easily com-
putable through linear programming for all systems with a
finite offloading space, and does not require the existence
of a potential function for its computation. This enables a
more convenient solution for these systems, as opposed to
the restrictive application of previous works. In the class-
anonymous setting where user parameters are clustered, we
propose a method to compute the optimal CE in polynomial
time with respect to the number of users. Simulation results
further demonstrate the feasibility of our solution method,
and its performance advantage in comparison with common
alternatives. There remain several open problems for future
research, such as the price of anarchy and strategy-proofness.
It will also be interesting to further explore computation
techniques to find the CE in other forms of games relevant
to MEC systems, such as graphical games.

REFERENCES

[1] ETSI Group Specification, “Mobile edge computing (MEC); framework
and reference architecture,” ETSI GS MEC 003 V1.1.1, Mar. 2016.

[2] B. Liang, “Mobile edge computing,” in Key Technologies for 5G Wireless
Systems, V. Wong, R. Schober, D. Ng, and L. Wang, Eds. Cambridge
University Press, 2017.

[3] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey
on mobile edge computing: The communication perspective,” IEEE
Commun. Surveys Tuts., vol. 19, no. 4, pp. 2322–2358, Aug. 2017.

[4] M.-H. Chen, B. Liang, and M. Dong, “Joint offloading and resource
allocation for computation and communication in mobile cloud with
computing access point,” in Proc. IEEE Conference on Computer
Communications (INFOCOM), May 2017.

[5] ——, “Resource sharing of a computing access point for multi-user
mobile cloud offloading with delay constraints,” IEEE Transactions on
Mobile Computing, vol. 17, no. 12, pp. 2868–2881, Mar. 2018.

[6] M.-H. Chen, M. Dong, and B. Liang, “Multi-user mobile cloud offload-
ing game with computing access point,” in Proc. IEEE International
Conference on Cloud Networking (CLOUDNET), Oct. 2016.

[7] E. Meskar, T. Todd, D. Zhao, and G. Karakostas, “Energy efficient
offloading for competing users on a shared communication channel,” in
Proc. IEEE International Conference on Communications (ICC), Jun.
2015.

[8] S. Josilo and G. Dan, “Wireless and computing resource allocation
for selfish computation offloading in edge computing,” in Proc. IEEE
Conference on Computer Communications (INFOCOM), Apr. 2019.

[9] Q. D. La, Y. H. Chey, and B.-H. Soong, Potential Game Theory.
Springer International Publishing, 2016.

[10] C. Daskalakis, P. W. Goldberg, and Papadimitriou, “The complexity of
computing a nash equilibrium,” SIAM Journal on Computing, vol. 39,
no. 1, pp. 195–259, May 2009.

[11] R. J. Aumann, “Subjectivity and correlation in randomized strategies,”
Journal of Mathematical Economics, vol. 1, no. 1, pp. 67–96, Mar 1974.

[12] ——, “Correlated equilibrium as an expression of bayesian rationality,”
Econometrica, vol. 55, no. 1, pp. 1–18, Jan. 1987.

[13] X. Chen, “Decentralized computation offloading game for mobile cloud
computing,” IEEE Transactions on Parallel and Distributed Systems,
vol. 26, no. 4, pp. 974–983, Apr. 2015.

[14] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computation
offloading for mobile-edge cloud computing,” IEEE/ACM Transactions
on Networking, vol. 24, no. 5, pp. 2795–2808, Oct. 2015.

[15] X. Ma, C. Lin, X. Xiang, and C. Chen, “Game-theoretic analysis of
computation offloading for cloudlet-based mobile cloud computing,” in
Proc. of ACM MSWiM, Nov. 2015.

[16] H. Cao and J. Cai, “Distributed multi-user computation offloading for
cloudlet based mobile cloud computing: A game-theoretic machine
learning approach,” IEEE Transactions on Vehicular Technology, vol. 67,
no. 1, pp. 752–764, Aug. 2017.

[17] S. Josilo and G. Dan, “A game theoretic analysis of selfish mobile
computation offloading,” in Proc. IEEE Conference on Computer Com-
munications (INFOCOM), May 2017.

[18] Y. Wang, X. Lin, and M. Pedram, “A nested two stage game-based
optimization framework in mobile cloud computing system,” in Proc.
IEEE International Symposium on Service Oriented System Engineering
(SOSE), Mar. 2013.

[19] V. Cardellini, V. D. N. Persone, V. D. Valerio, F. Facchinei, V. Grassi,
F. L. Pressit, and V. Piccialli, “A game-theoretic approach to computation
offloading in mobile cloud computing,” Mathematical Programming, pp.
1–29, Apr. 2015.

[20] M. Blonski, “Characterization of pure-strategy equilibria in finite anony-
mous games,” Journal of Mathematical Economics, vol. 34, no. 2, pp.
225–233, Oct 2000.

[21] C. H. Papadimitriou and T. Roughgarden, “Computing correlated equi-
libria in multi-player games,” Journal of the ACM, vol. 55, no. 3, pp.
1–29, Jul. 2008.

[22] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows: Theory,
Algorithms, and Applications. Prentice-Hall Inc., 1993.

[23] B. Randol, “The ellipsoid method in linear programming,” Advances in
Applied Mathematics, vol. 1, no. 1, pp. 1–6, Mar. 1980.

[24] R. A. Brualdi, “Notes on the birkhoff algorithm for doubly stochastic
matrices,” Canadian Mathematical Bulletin, vol. 25, no. 2, pp. 191–199,
Jun. 1982.

[25] S. Hart and A. Mas-Collel, “A simple adaptive procedure leading to
correlated equilibrium,” Econometrica, vol. 68, no. 5, pp. 1127–1150,
Sep. 2000.

[26] A. P. Miettinen and J. K. Nurminen, “Energy efficiency of mobile clients
in cloud computing,” in Proc. USENIX Conference on Hot Topics in
Cloud Computing (HotCloud), Jun. 2010.

[27] ubergizmo.com, “Apple iphone x specifications,”
2017, accessed 2019-07-31. [Online]. Available:
https://www.ubergizmo.com/products/lang/en us/devices/iphone-x/


