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Abstract—We consider information networks whereby multiple
biased-information-providers (BIPs), e.g., media outlets/social
network users/sensors, share reports of events with rational-
information-consumers (RICs). Making the reasonable abstrac-
tion that an event can be reported as an answer to a logical
statement, we model the input-output behavior of each BIP as
a binary channel. For various reasons, some BIPs might share
incorrect reports of the event. Moreover, each BIP is: ‘biased’ if
it favors one of the two outcomes while reporting, or ‘unbiased’ if
it favors neither outcome. Such biases occur in information/social
networks due to differences in users’ characteristics/worldviews.

We study the impact of the BIPs’ biases on an RIC’s choices
while deducing the true information. Our work reveals that a
“graph-blind” RIC looking for n BIPs among its neighbors,
acts peculiarly in order to minimize its probability of making an
error while deducing the true information. First, we establish the
counter-intuitive fact that the RIC’s expected error is minimized
by choosing BIPs that are fully-biased against the a-priori likely
event. Then, we study the gains that fully-biased BIPs provide
over unbiased BIPs when the error rates of their binary channels
are equalized, for fair comparison, at some r > 0. Specifically, the
unbiased-to-fully-biased ratio of the RIC’s expected error proba-
bilities grows exponentially with the exponent n
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4ρ20

(
1
r
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,

where ρ0 is the event’s prior probability of being 0. This shows
not only that fully-biased BIPs are preferable to unbiased or
heterogeneously-biased BIPs, but also that the gains can be
substantial for small r.

Index Terms—Information networks, data fusion, bias, infor-
mation transfer, rational decision-making, error minimization

I. INTRODUCTION

We consider an information network connecting users
that may be devices with limited resources or human,
and are biased-information-providers (BIPs) and/or rational-
information-consumers (RICs). We assume that reports of a
single event that occurred outside this network are propagated
as a true(1) or false(0) answer to a logical statement. While our
network model and analysis are applicable to any information
network, we were primarily motivated by the unique qualities
and constraints presented by modern-day social networks.

That is, a single bit of 0/1 information from a source is
being transferred via BIPs to the RICs. However, the BIPs may
report incorrectly for a variety of reasons; we model a BIP’s
reporting behavior as a binary channel to depict the errors in its
reporting of the input bit. In particular, each BIP can possess a
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bias favoring either the 0 bit or the 1 bit in its reporting. Since
RICs (e.g. low-memory devices, humans) might not know the
network graph except for a list of their own neighbors, we
can reasonably assume that they are graph-blind. Therefore,
when trying to minimize its consumption of false information,
a “graph-blind” RIC will have to assume that all of its BIPs
are acting independently. This assumption of independence is
a reasonable approximation of the typical behavior of RICs
that are either human or low-memory devices.

The goal of this work is to perform a careful study of the
impact of the information providers’ biases on the choices
of an RIC that is attempting to accurately detect the original
information. Given that BIPs are inevitably unreliable and
biased, we are especially interested in unearthing “how” the
BIPs’ biases impact the RIC, and by “how much”. In online
social networks (OSNs), 0/1 might represent contradicting
depictions/viewpoints of a current event. For a particular
social network user, its trusted media outlets and friends are
the BIPs.A BIP’s favorable opinion of arguments/evidence
supporting one viewpoint as opposed to the other, might color
its reports of the original/source information.

Even though the design is inspired and constrained by
the particular nature of interactions on OSNs, this setting
finds application in other information networks. For example,
sensor networks where the devices have unequal false alarm
and misdetection probabilities. Herein, the 0/1 information at
the source can represent the absence/occurrence of a sensor-
triggering event. Akin to the OSN users described earlier,
the sensors might be graph-blind, unreliable, and might also
have asymmetric sensitivities to the 0/1 triggering event (i.e.,
causing more false alarms than misdetections and vice versa).

Our problem statement bears comparison to these topics in
literature: Containment of Misinformation, Information The-
ory, Social Sensing, and Information Fusion.

Influence maximization and containment of misinformation
on social networks, by placing influential and protector nodes
strategically, is studied in literature (e.g., [1], [2]). Our ap-
proach differs from these works in that we are not interested
in the NP-hard problem of finding the most influential nodes
to target, in a network. Instead, we are interested in the
decisions of any rational-information-consumer choosing from
a (possibly, large) selection of biased-information-providers.

Reliable transfer of information over unreliable binary
channels is widely studied in information theory (e.g. [3]–
[6]). Wherein, unlike the problem statement of this paper,
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the BIPs might choose to encode the information or transmit
information about a block of ne events at the same time, to
increase the rate of reliable information transfer (a.k.a. channel
capacity). However, in OSNs and some sensor networks, the
BIPs lack accountability and it is more practical to transmit
information about each event separately and without delay.
Here, BIPs are error-prone, biased, abundantly available and
act promptly. This requires methods for reliable information
transfer when only one event is processed at a time.

Social sensing literature studied the problem of the true
value of a solitary binary quantity based on data arriving from
multiple data sources of unknown credibility (e.g., [7]–[11]).
These works, however, are focused on identifying duplicates
and dependencies in incoming datasets and estimating the
credibility of sources to maximize the probability of discover-
ing the ground truth. As such, they do not consider the impact
of information-providers’ biases.

Information fusion studies the detection of ground truth
in information (mostly, sensor) networks (e.g. [12]–[20]).
These algorithms assume channel and noise characteristics,
and may process signals sequentially, in the order of a sensor’s
reliability, accounting for channel fading, sensor’s distance to
its measuring target, etc. Our investigation contributes to these
efforts, with a unique perspective on how, from abundantly
many BIPs, a graph-blind RIC will choose BIPs that are
optimally-biased, given their individual error rate.

While intuition might dictate that an unbiased BIP is a better
choice than a biased one, we find that a rational-information-
consumer will choose the opposite. Our main contributions
can be listed as follows:
• When choosing independent BIPs to report a 0/1 event:

we find that an RIC is best served by the BIPs that are fully
biased against the a-priori likely event. Using this optimal
choice of BIPs, the RIC will deduce that the a-priori likely
event is true unless all BIPs report that the a-priori unlikely
event is true (cf. Corollary 1). Further, if it is not possible to
obtain BIPs that are fully-biased against the a-priori likely
event, then the set of n BIPs that will best serve the RIC are
still guaranteed to be maximally-biased (cf. Theorem 1).
• Our analysis shows that when a system of unbiased BIPs

(that do not favor either outcome) is replaced by a system of
fully-biased BIPs (favoring the same outcome), the gain (in
terms of probability of error) rises as an exponential func-
tion of a positive exponent (cf. Theorem 2) that decreases
with the BIPs’ error rate and increases linearly with n.

We establish that an RIC acts according to a counter-intuitive,
but very tractable rule. As such, we consider RICs with limited
knowledge of the network, model their surprising behav-
iors and their perceived benefits of fully-biased information-
providers. In future work, we aim to model RICs that exhibit
more network awareness and, thus, enable novel RIC-centric
frameworks with mechanisms to reduce misinformation.

The rest of the paper is organized as follows. In Section II,
we introduce the model of the multi-BIP system of interest.
In Section III, we discuss the characteristics of the optimal
decision rule and state the main results from our analysis

(a) A graph-blind RIC’s
perspective of the net-
work. (b) Network of BIPs and RICs.

Fig. 1: Information Transfer in a Network.

(a) System of n independent BIPs modeled
as n parallel channels connecting a source
s and destination d.

(b) Input-output behavior
of the i-th BIP modeled
by channel Ci.

Fig. 2: Information Transfer through n independent BIPs.

of biases and their impact on a graph-blind RIC’s choices.
In Section IV, we provide the proofs of the results stated in
Section III. Finally, in Section V, we numerically support our
findings on the gains that an RIC expects to obtain by choosing
BIPs that are fully-biased against the a-priori likely outcome.

II. SYSTEM MODEL

Network of Information Providers and Consumers: In this
work, we are interested in understanding how the notion of
bias (Defn 1) affects the behaviors of a “graph-blind” RIC
whose perspective of the graph is limited (cf. Fig 1a). Usually,
information networks are more sophisticated, and connect
users that are either RICs or BIPs or both (cf. Fig 1b).

It is natural to assume that an RIC would have limited
knowledge of the global network and, therefore, will perceive
its neighboring BIPs as independent agents who are directly
accessing the ground truth. We also reason that an RIC
can easily quantify the biases of its information-providers
(by using the information-provider’s history of reporting, for
example). Our goal is to identify an RIC’s perceived-best
strategy for choosing n BIPs from a potentially large set of
BIPs, assuming the RIC is “graph-blind” Fig. 1a.
Multi-Channel Communication Model: The system in
Fig (1a) can be modeled as shown in Fig (2a), where the
information from a source s arrives at an RIC at destination d
through n BIPs, whose reporting behavior can be modeled as n
parallel, independent binary channels. In the rest of the paper,
we will use the terms ‘BIP’ and ‘channel” interchangeably.

Let {X(t)}t be an information stream, where X(t) ∈ {0, 1}
is a binary random variable representing the information
available at the source s at time t. We assume that X(t) is in-
dependent of X(t′),∀t′ 6= t and can be examined individually.
We will fix the time instant t and fix X := X(t).



We assume that the prior probability distribution of X is
given by ρ = (ρ0, ρ1) such that ρ0 = P (X = 0) and ρ1 =
P (X = 1). Without loss of generality, we assume ρ0 ≥ ρ1.

Given X , we denote the information received by an RIC
through its BIPs’ channels, using the binary random vector
Y(n) = {Yi}ni=1. The random variable Yi corresponds to the
channel Ci, ∀i ∈ {1, · · · , n}. We represent the behavior of
the BIP represented by the binary channel Ci in Fig. 2b,
where αi = P (Yi = 1|X = 0) ∈ [0, 1] and βi = P (Yi =
0|X = 1) ∈ [0, 1]. Let the properties of the channel Ci be
given by Ci := (αi, βi) (cf. Fig. 2b). We denote the parameters
of the n independent channels and their collective system as
Cn := {n,α(n),β(n)} and Sn := {n, ρ0,α

(n),β(n)}, respec-
tively. Here, α(n) = {αi}ni=1 and β(n) = {βi}ni=1.
Decision Policy: We are interested in the value of X ∈ {0, 1}
that is more likely to generate y(n) = {yi}ni=1 ∈ {0, 1}n,
as a realization of the random vector Y(n), when applied to
n independent BIPs. In other words, we are interested in a
decision policy π: {0, 1}n 7→ {0, 1} that achieves the smallest
probability of error on Sn. We denote the expected probability
of error of decision policy π in the system Sn by Pπe (Sn) and
define it as follows.

Pπe (Sn) =
∑

x∈{0,1}

ρxP
{
π
(
Y(n)

)
6= X|X = x

}
. (1)

Let Π∗ (Sn) be the set of error-optimal decision policies in
a system with parameters Sn. Therefore, for an error-optimal
decision policy π∗ ∈ Π∗ (Sn) ,

π∗
(
y(n)

)
= arg max

x∈{0,1}
P
{
X = x;Y(n) = y(n)

∣∣∣Sn} ,
Pπ

∗

e (Sn) =
∑
y(n)

min
x∈{0,1}

ρxP
{
Y(n) = y(n)

∣∣∣X = x
}
. (2)

Channel Bias: The parameters (αi, βi) capture the bias of the
BIP modeled by Ci (see Fig. 2b). So, αi > βi implies that Ci
changes a 0 input to a 1 output more readily than it changes
a 1 input to a 0 output. And if αi < βi, the opposite holds
true. We are interested in the effect of the biases (α(n),β(n))
on the least probability of error that the RIC hopes to achieve
while assuming its n BIPs to be independent. Definition 1
clarifies the concepts of unbiased, biased, and fully-biased (S,
Z) BIPs/channels.

Definition 1 (Unbiased/Biased Channels). Channel Ci is said
to be unbiased if αi = βi, and biased if αi 6= βi. Fully-biased
channels are special cases of biased channels: an S-channel
with βi = 0 (Fig. 3a); a Z-channel with αi = 0 (Fig. 3b).

(a) S-Channel (b) Z-Channel

Fig. 3: S- and Z-Channels

Channel Error Rate: Given the priors ρ = (ρ0, ρ1), the
average rate at which an erroneous output is received at d
from channel Ci is given by

r
(ρ)
i := ρ0αi + ρ1βi. (3)

Also, in vector form, we use r(n) = {r(ρ)
i }ni=1.

In the next section, we will first characterize the optimal
decision rule for an RIC receiving information from inde-
pendent BIPs. Then, we will reveal the impact of the biases
(α(n),β(n)), the priors ρ, and the error rates r(n) on the RIC’s
behavior and the least probability of error it hopes to achieve.

III. MAIN RESULTS

In this section, we will present our main findings on how
bias (Defn. 1) affects the set of n BIPs that a graph-blind RIC
expects to be its optimal choice. This set of n BIPs is modeled
by Sn, a system of n parallel, independent binary channels. In
particular, after characterizing the optimal decision policy, we
will first expand on the counter-intuitive fact that an RIC will
choose the most biased BIPs to minimize its probability of
consuming false information (cf. Theorem 1). Then, we will
discuss the exponentially growing gains that the RIC expects
to obtain by choosing fully-biased BIPs over unbiased ones (cf.
Theorem 2). The proofs of these results follow in Section IV.

A. Characterization and Discussion of the Decision Rule

We start by describing the nature of the decision rule that
forms the optimal decision policy for Sn. We define

P̃α := P̃α

(
y(n)

)
:= P (y(n)|X = 0) =

n∏
i=1

αyii (1− αi)1−yi ,

P̃β := P̃β

(
y(n)

)
:= P (y(n)|X = 1) =

n∏
i=1

(1− βi)yi β1−yi
i .

The classical hypothesis testing framework [21] yields the
optimal decision rule π∗(y(n)) for a given y(n) as follows:

ρ0P̃α

(
y(n)

) π∗(y(n))=1

≶
π∗(y(n))=0

ρ1P̃β

(
y(n)

)
, ∀y(n). (4)

This decision rule can be further simplified into a Log-
Likelihood-Ratio (LLR) with an additive structure. However, it
is easy to see that this test is a highly nonlinear function of the
bias parameters: (α(n),β(n)). This nonlinearity significantly
complicates the RIC’s error analysis of the decision rule w.r.t.
bias, which is the main objective of this work. To that end,
consider the impact of a change in αi on the terms in (4):

∂ log
(
P̃α/P̃β

)
∂αi

=
(ρ1 − r(ρ)

i )yi
ρ1αi(1− βi)

+
(ρ0 − r(ρ)

i )(1− yi)
ρ1βi(1− αi)

.

In particular, note that: The value of yi
(
not r(ρ)

i

)
decides if

P̃α, P̃β are both increasing (decreasing) in αi. So, even when
P̃α

P̃β
is monotonic in αi, ∀i for all y(n), the impact of α(n) on

Pπ
∗

e (Sn) =
∑

y(n) min
{
P̃α, P̃β

}
might not be monotonic.

Fig. 4 illustrates this non-trivial nature of the RIC’s (perceived)



Fig. 4: Minimum error probability for 2 independent channels
with fixed error rate, but varying bias reveals a complex form.

probability of error as a function of biases, for n as small as
2, calling for a comprehensive analysis of the RIC’s choices.

B. Impact of Channel Biases on Optimal Performance

Realizing the difficulty in the direct analysis of the optimal
decision rule on Sn, we are motivated to seek a uniform lower
bound on an RIC’s anticipated error probability. By proving
that the RIC’s anticipated error probability, from the optimal
decision rule, is coordinate-wise concave in α(n), Theorem 1
leads us to the fact that: an RIC anticipates to maximize its
probability of detecting the ground truth, by choosing BIPs
that are fully-biased against the a-priori likely outcome.

Theorem 1 (Performance of the optimal decision policy is
coordinate-wise concave in bias).

Without loss of generality, assume that ρ0 ≥ ρ1. Consider a
system of n independent, parallel binary channels described by
Sn =

(
n, ρ0,α

(n),β(n)
)

, where ρ0α
(n) +ρ1β

(n) = r(n). As-

sume that r(n) is fixed to be a constant, and1 r
(ρ)
k ∈

[
0, 1

2

]
∀k.

For every such Sn, there is an optimal decision policy π∗

chosen from Π∗ (Sn) and an average probability of error
Pπ

∗

e (Sn). This error function, Pπ
∗

e (Sn), is concave in αk for
any k ∈ {1, 2, · · · , n}, when αi is fixed ∀ i 6= k.

Theorem 1 leads us to the conclusion that: while holding
the r(n) fixed, the error function Pπ

∗

e (Sn) will achieve its least
value for a system Sn such that αk ∈ {αk,min, αk,max} ∀k.

Here, αk,min ≥
(
r
(ρ)
k −ρ1

)+

ρ0
and αk,max ≤

r
(ρ)
k

ρ0
. We will refine

the 2n possible combinations of extreme bias to find the one
that achieves the lower bound on the probability of error.

Corollary 1 (Similarly and fully-biased BIPs are optimal). As-

sume that ρ0 ≥ ρ1, r(n) ∈
[
0, 1

2

]n
is fixed, and ρ0

n∏
i=1

r
(ρ)
i

ρ0
≤

ρ1. Then the least probability of error is achieved by an
optimal policy on n parallel, binary channels when Sn is a
system of n S-channels (Fig. 3a). That is, β(n) = 0(n).

Pπ
∗

e (Sn) ≥ ρ0

n∏
i=1

r
(ρ)
i

ρ0
. (5)

1If ∃k such that r(ρ)k > 1
2

, then we can map (1−Yk, 1−r
(ρ)
k , 1−αk, 1−

βk) 7→ (Yk, r
(ρ)
k , αk, βk).

Since ρ0 ≥ ρ1, the optimal decision policy for a system of
S-channels is π∗

(
Y(n)

)
= Y1 · Y2 · · · · · Yn.

Corollary 1 strongly reveals that an RIC prefers systems
with n independent BIPs that are fully-biased against the
a-priori likely outcome (i.e., BIPs with S or Z-channels,
depending on the priors) to all other BIPs with the same
individual error rates. An RIC with such BIPs will assume
that it has identified the ground truth without making an error,
unless all n BIPs communicate the a-priori unlikely value.

This result provides an insight that may be counter-intuitive:
RICs looking for n independent information-providers with
prefixed error rates r(n), find that it is not optimal to choose
the diversely-biased or unbiased BIPs! In fact, the RIC finds
it is best to select all similarly and fully-biased BIPs, but pay
extra attention if one of them reports against their bias.

We note that this finding greatly extends a loosely related
result in [5], which proves that only among channels of very
low and equal capacity, a maximally asymmetric channel with
a noiseless symbol has the least probability of error.

C. Gains of Fully-Biased Channels over Unbiased Channels
Motivated by the optimality of full bias when BIPs are

independent, we also studied the gains the RIC anticipates
after replacing unbiased BIPs with a set of similarly and fully-
biased BIPs. For fair comparison, we assume that the average
error rates r

(ρ)
i of the BIPs are all equal to r(ρ) in both

scenarios. Therefore, the BIPs are equivalent in their average
rate of sending erroneous bits, but differ in their biases.

Theorem 2 obtains the upper and lower bounds on the RIC’s
anticipated gains, and shows that these bounds become tight
as n (the number of BIPs sought by the RIC) increases.

Theorem 2 (Gains of Fully-Biased BIPs vs Unbiased BIPs).
Fix r(ρ) ∈

(
0, 1

2

]
to be the common error rate for all the

BIPs’ channels. Then, let Sun =
{
n, ρ0, r

(ρ)1(n), r(ρ)1(n)
}

and Sfn =
{
n, ρ0,

r(ρ)

ρ0
1(n),0(n)

}
, respectively, describe the

unbiased and fully-biased systems, each containing a set of
n independent BIPs. Correspondingly, let the error-optimal
decision policies for Sun and Sfn be denoted as π∗u and π∗f ,
respectively2. Then, for any n ∈ N, we have

ln

 P
π∗
u

e (Sun)

P
π∗
f

e

(
Sfn
)
 ≤ m ln

(
4ρ2

0

(
1

r(ρ)
− 1

))
+ ln

2(m+ 1)

ρ0

ln

 P
π∗
u

e (Sun)

P
π∗
f

e

(
Sfn
)
 ≥ m ln

(
4ρ2

0

(
1

r(ρ)
− 1

))
− ln

4m

ρ1
,

where m =
⌊
n
2

⌋
. Moreover, asymptotically, these bounds

converge to get

lim
n→∞

1

n
ln

 P
π∗
u

e (Sun)

P
π∗
f

e

(
Sfn
)
 =

1

2
ln

(
4ρ2

0

(
1

r(ρ)
− 1

))
. (6)

2Note that π∗
f is the policy described in Corollary 1.



This theorem reveals that the RIC expects the proportional
gains, of using n fully-biased BIPs rather than n unbiased
BIPs, to increase exponentially with n and the factor that is ex-
plicitly characterized in (6) (in terms of the average error rates
r(ρ) of the channels). This shows that the RIC’s anticipated
gains are particularly high when the average error rates r(ρ)

are closer to zero. It is expected that the (anticipated) gains
will be relatively small when r → 1

2 , since the probability of
error approaches 1

2 in both scenarios.
This result is quite useful in characterizing the conditions

under which the RIC would prefer to use fully-biased BIPs
as opposed to unbiased ones, and the conditions under which
using unbiased BIPs may be acceptable to the RIC. Moreover,
the upper and lower bounds on the RIC’s anticipated gains
can be reverse engineered to determine the number of BIPs n
that the RIC will choose to guarantee a desired limit on the
probability of error.

IV. LOWER BOUND ON ERROR PROBABILITY

In this section, our objective is to fix the channel error rates
r(n) and select the biases (α(n),β(n)) which minimize the
error probability achieved by an optimal decision policy π∗ ∈
Π∗ (Sn). For ease of presentation in the proofs, we define:

Pα−β := Pα−β

(
Y(n)

)
:= P̃α

(
Y(n)

)
− P̃β

(
Y(n)

)
,

Pα/β := Pα/β

(
Y(n)

)
:= P̃α

(
Y(n)

)
/P̃β

(
Y(n)

)
.

We also identify sets of outcomes, Y(n), which elicit identical
decisions from a decision policy π. Here, π need not be an
optimal decision policy for a given Sn =

(
n, ρ0,α

(n),β(n)
)

.

Γπa :=
{
Y(n) ∈ {0, 1}n | π

(
Y(n)

)
= a

}
,

Γπa,Yk=b :=
{
Y

(n)
−k ∈ {0, 1}

n−1 | π
(
Y

(n)
−k , b

)
= a

}
,

where a, b ∈ {0, 1}, Y(n)
−k = [Y1, · · · , Yk−1, Yk+1, · · · , Yn]

T .

A. Coordinate-wise concavity of the probability of error

Here, we will prove that when the individual error rates are
prefixed at r(n) and the biases are varying, the probability of
error, Pπ

∗

e (Sn), is coordinate-wise concave in each BIP’s bias.

Proof of Theorem 1. The probability of error achieved by an
optimal decision policy π∗ ∈ Π∗ (Sn) in (2) is restated as:

Pπ
∗

e (Sn) =
∑
Γπ

∗
0

ρ1P̃β(Y(n)) +
∑

Γπ
∗

1 =(Γπ
∗

0 )
C

ρ0P̃α(Y(n))

= ρ1 +
∑
Γπ

∗
1

(
ρ0P̃α(Y(n))− ρ1P̃β(Y(n))

)
.

For a decision policy π to be an optimal on Sn, we need:

Pα/β < ρ1/ρ0 =⇒ Y(n) ∈ Γπ1 =⇒ Pα/β ≤ ρ1/ρ0. (7)

In order to prove this theorem, we will proceed by fixing the
values of k and α

(n)
−k and then obtaining the partial derivative

Pπ
∗

e (Sn) with respect to αk for some arbitrary k.

The function Pπ
∗

e (Sn) is continuous and piecewise-linear,
but non-differentiable at those values of αk for which
∃Y(n) : Pα/β

(
Y(n)

)
= ρ1/ρ0. So, for a given k and fixed

α
(n)
−k , consider some interval

αk ∈
[
αLk , α

R
k

]
s.t.

{
Y(n) : Pα/β =

ρ1

ρ0

}
= φ. (8)

So, in each such interval, Pπ
∗

e (Sn) is always differentiable
and the optimal policy π∗ is constant. In such an interval, the
partial derivative of Pπ

∗

e (Sn) w.r.t. αk is:

∂Pπ
∗

e (Sn)

ρ0 · ∂αk
=

∑
Γπ

∗
1,Yk=1

Pα−β

(
Y

(n)
−k

)
−

∑
Γπ

∗
1,Yk=0

Pα−β

(
Y

(n)
−k

)
.

Here, ∂βk
∂αk

= −ρ0ρ1 since ρ0αk + ρ1βk is a constant.
Now, it remains for us to determine whether the partial

derivative ∂Pπ
∗

e (Sn)
ρ0·∂αk is a monotonic non-increasing function

on αk, regardless of our choice of k and α
(n)
−k .

The partial derivative depends on the sets Γπ
∗

1,Yk=0, Γπ
∗

1,Yk=1

and the value of Pα−β on these sets. The subsets of outcomes,
Γπ

∗

1,Yk=1 and Γπ
∗

1,Yk=0, relate to each other as follows:

Γπ
∗

1,Yk=0 ⊆
⊃

Γπ
∗

1,Yk=1 ⇐⇒ αk + βk Q 1. (9)

Since, αk + βk Q 1 ⇐⇒ ρ1βk
ρ0(1− αk)

Q
ρ1(1− βk)

ρ0αk
. (10)

Given (7), (9), and (10), we can now proceed as follows.
a) WHEN r

(ρ)
k ≤ ρ1: The condition αk + βk ≤ 1

always holds when r(ρ)
k ≤ ρ1. Using (9),

∂Pπ
∗

e (Sn)

ρ0 · ∂αk
=

∑
Γπ

∗
1,Yk=1\Γπ

∗
1,Yk=0

Pα−β

(
Y

(n)
−k

)
. (11)

In addition, for a channel Ck with r(ρ)
k ≤ ρ1, the following

is true regardless of the bias (αk, βk):(
1 +

ρ0−r(ρ)
k

ρ1βk

)−1

= ρ1βk
ρ0(1−αk) ≤ 1 ≤ ρ1(1−βk)

ρ0αk
= 1 +

ρ1−r(ρ)
k

ρ0αk
.

Moreover, in this case, if Y(n)
−k ∈ Γπ

∗

1,Yk=1 \ Γπ
∗

1,Yk=0 then:
ρ1βk

ρ0(1− αk)
≤ Pα/β

(
Y(n)

)
≤ ρ1(1− βk)

ρ0αk
.

(i) ρ1(1−βk)
ρ0αk

− 1 =
ρ1−r(ρ)

k

ρ0αk
≥ 0 is decreasing with αk,

(ii) 1− ρ1βk
ρ0(1−αk) =

ρ0−r(ρ)
k

ρ0(1−αk) ≥ 0 is increasing with αk.

Thus, in (11), the set Γπ
∗

1,Yk=1 \ Γπ
∗

1,Yk=0 will accumulate

terms for which Pα−β

(
Y

(n)
−k

)
is negative and discard terms

for which Pα−β

(
Y

(n)
−k

)
is positive, as the values of αLk and

αRk that create the interval αk in (8) increase.
Therefore, Pπ

∗

e (Sn) is concave in αk, when r(ρ)
k ≤ ρ1.

b) WHEN r
(ρ)
k ≥ ρ1: Notice that the sum 1+ ∂βk

∂αk
= 1−

ρ0
ρ1

is non-positive. Consequently, αk +βk is a non-increasing
function of αk.

Consequently, αk + βk ≥ 1 if and only if αk ∈[
(r

(ρ)
k −ρ1)+

ρ0
,
r
(ρ)
k −ρ1
ρ0−ρ1

]
. Applying (9), we get (a) and (b).



(a) In the interval αk ∈
[

(r
(ρ)
k −ρ1)+

ρ0
,
r
(ρ)
k −ρ1
ρ0−ρ1

]
, we get:

∂Pπ
∗

e (Sn)

ρ0 · ∂αk
=

∑
Γπ

∗
1,Yk=0\Γπ

∗
1,Yk=1

− Pα−β

(
Y

(n)
−k

)
. (12)

(b) Using (9) in the interval αk ∈
[
r
(ρ)
k −ρ1
ρ0−ρ1 ,

r
(ρ)
k

ρ0

]
, we get

that (11) holds true for these αk.
Moreover, in this case, whether Y(n)

−k ∈ Γπ
∗

1,Yk=1 \ Γπ
∗

1,Yk=0,
or Y(n)

−k ∈ Γπ
∗

1,Yk=0 \ Γπ
∗

1,Yk=1 we have:

Pα/β

(
Y(n)

)
≤ 1 =⇒ Pα−β

(
Y(n)

)
≤ 0.

(i) 1− ρ1(1−βk)
ρ0αk

=
r
(ρ)
k −ρ1
ρ0αk

≥ 0 is decreasing with αk,

(ii) 1− ρ1βk
ρ0(1−αk) =

ρ0−r(ρ)
k

ρ0(1−αk) ≥ 0 is increasing with αk.

Thus, when αk ≤
r
(ρ)
k −ρ1
ρ0−ρ1 and (12) holds true: The

set Γπ
∗

1,Yk=0 \ Γπ
∗

1,Yk=1 will discard more terms for which

Pα−β

(
Y

(n)
−k

)
is negative and ∂Pπ

∗
e (Sn)
∂αk

will become less
positive, as the values of αLk and αRk that create the interval
αk in (8) increase.

And, when αk ≥
r
(ρ)
k −ρ1
ρ0−ρ1 and (11) holds true: The set

Γπ
∗

1,Yk=1 \ Γπ
∗

1,Yk=0 will accumulate more terms for which

Pα−β

(
Y

(n)
−k

)
is negative and ∂Pπ

∗
e (Sn)
∂αk

will become more
negative, as the values of αLk and αRk that create the interval
αk in (8) increase.

Therefore, Pπ
∗

e (Sn) is concave in αk, when r(ρ)
k ≥ ρ1.

Thus, assuming r(n) ∈
[
0, 1

2

]n
and it is fixed, the error

function Pπ
∗

e (Sn) is coordinate-wise concave w.r.t. αk.

Note: Theorem 1 does NOT prove that the error function,
Pπ

∗

e (Sn), is jointly concave with respect to α(n).

Note: It is obvious that the value αk =
r
(ρ)
k −ρ1
ρ0−ρ1 represents

the local maxima of the error function, whenever r(ρ)
k ≥ ρ1

regardless of the choice of r(n)
−k and α

(n)
−k .

Theorem 1 leads us to the conclusion that: assuming ρ0 ≥
ρ1 and r(n) is fixed, the probability of error Pπ

∗

e (Sn) is at its
minimum for a system Sn, where αk ∈ {αk,min, αk,max} , ∀k.

Here, αk,min ≥
(
r
(ρ)
k −ρ1

)+

ρ0
and αk,max ≤

r
(ρ)
k

ρ0
.

B. Optimality of similarly-biased BIPs holding maximum bias

Now, we will seek from the 2n possible combinations of
the most extreme biases, the combination that will represent
the lower bound on the probability of error to the RIC.

Proof of Corollary 1. From Theorem 1, we know that the
error function Pπ

∗

e (Sn) is concave in each αk for every α
(n)
−k .

Therefore, for a fixed r(n), we can conclude that the lower
bound on the error function Pπ

∗

e (Sn) can only occur at an

extreme bias. That is, when αk ∈

{(
r
(ρ)
k −ρ1

)+

ρ0
,
r
(ρ)
k

ρ0

}
, ∀k.

For each of these possible extreme values of αk, at least one
value among αk, βk, and 1− βk is zero.

Thus, whenever an extreme bias is chosen for the binary
channel Ci, only one value of the outcome Yi can be generated
by both X = 0 and X = 1 while the other is generated by
either X = 0 or X = 1. So, when we choose extreme biases
for every BIP in Sn, the optimal decision policy is prone to
error only for one particular Y(n) = y(n). For the channel Ci:

P (yi | X = 0) =


(

1−r(ρ)
i

ρ0

)1−yi (
r
(ρ)
i

ρ0

)yi
, if r(ρ)

i > ρ1

(1)
1−yi

(
r
(ρ)
i

ρ0

)yi
, if r(ρ)

i ≤ ρ1.

P (yi | X = 1) =


(1)

1−yi (1)
yi , if r(ρ)

i > ρ1(
r
(ρ)
i

ρ1

)1−yi
(1)

yi , if r(ρ)
i ≤ ρ1.

Since r(ρ)
i ≤ 1

2 , we always have 1− r(ρ)
i ≥ r(ρ)

i . Moreover,
when r

(ρ)
i > ρ1, we have r(ρ)

i , 1 − r(ρ)
i < ρ0. Finally, since

ρ0 ≥ ρ1, we deduce that the combination of extreme biases
that will represent the lower bound of the error function, has an
optimal decision policy is error-prone only when Y(n) = 1(n).

∴ Pπ
∗

e (Sn) = min

{
ρ0

n∏
k=1

r
(ρ)
k

ρ0
, ρ1 · 1

}
.

Through the results presented in this section, we conclude
that: if an RIC wishes to receive an information bit X through
n (presumably, independent) BIPs, then for prefixed individual
error rates, the RIC is best served by n fully-biased BIPs
which favor the a-priori unlikely outcome (BIPs are either S
or Z type, depending on the priors). Then the RIC is prone
to making an error in its deduction only when all n BIPs are
wrong. For example, when no sensor sends correct information
to the central node; when all the friends and trusted news
sources of a person choose to spread false information.

C. Characterizing the gains of fully-, similarly-biased BIPs

Corollary 1 demonstrates “how” the BIPs’s affect the RIC’s
decisions. In this section, we will investigate the gains that the
RIC anticipates to obtain from its choices.

Proof of Theorem 2. We will start with a useful claim. Its
proof is omitted due to its simplicity and space constraints.

Claim 1.
(

2m+ 1

m

)
< 2

(
2m

m

)
;

(
2m

m

)
= 4m

m∏
j=1

(
1− 1

2j

)
.

We also denote π∗u(y(n)) as π∗u(k) since the channels are
identical

(
let k be the number of 1’s in y(n)

)
.

P
π∗
u

e (Sun) =

n∑
k=0

(
n

k

)
min

{
ρ0(r(ρ))k(1− r(ρ))n−k,

ρ1(1− r(ρ))k(r(ρ))n−k
}

We define c := 1
r(ρ) − 1 and m :=

⌊
n
2

⌋
.

P
π∗
u

e (Sun) =
(
r(ρ)

)n n∑
k=0

(
n

k

)
min

{
ρ0c

n−k, ρ1c
k
}



=
(
r(ρ)

)n n∑
k=0

(
n

n− k

)
min

{
ρ0c

k, ρ1c
n−k}

≤ 1

2

(
r(ρ)

)n n∑
k=0

(
n

k

)
ck

=
(
r(ρ)

)n [ m∑
k=0

(
n

k

)
ck − ρ01{n=2m}

(
n

m

)
cm

]
.

From Corollary 1, we know the minimum probability of
error for Sfn with all S-channels is: P

π∗
f

e

(
Sfn
)

= ρ1−n
0 (r(ρ))n.

∴
P
π∗
u

e (Sun)

P
π∗
f

e

(
Sfn
) ≤ ρn−1

0

[
m∑
k=0

(
n

k

)
ck − ρ01{n=2m}

(
n

m

)
cm

]
.

For the upper bound: Using Claim 1,

P
π∗
u

e (Sun)

P
π∗
f

e

(
Sfn
) ≤ ρn−1

0

m∑
k=0

(
n

k

)
ck ≤ ρn−1

0 (m+ 1)

(
2m+ 1

m

)
cm

< ρ2m−1
0 (m+ 1)2

(
2m

m

)
cm

= exp

(
m ln

(
4ρ2

0c
)

+ ln(m+ 1) + ln

(
2

ρ0

))
.

For the lower bound: Define p := dlog2me.

P
π∗
u

e (Sun)

P
π∗
f

e

(
Sfn
) ≥ ρ1−n

0

m∑
k=0

(
n

k

)
ρ1c

k ≥ ρ1

ρ0
ρ2m+1

0

(
2m

m

)
cm

≥ ρ1

(
ρ2

0c
)m

4m
m∏
j=1

(
1− 1

2j

)
∵ (Claim 1)

≥ ρ1

(
4ρ2

0c
)m p∏

i=1

2i−1∏
j=2i−1

(
1− 1

2j

)
·
(
1− 2−p−1

)
≥ ρ1

(
4ρ2

0c
)m p∏

i=1

(
1− 2−i

)2i−1

·
(
1− 2−p−1

)
(a)

≥ ρ1

(
4ρ2

0c
)m(1

2

)p+1

≥ ρ1

(
4ρ2

0c
)m

e− ln(4m)

= exp
(
m ln

(
4ρ2

0c
)

+ ln(ρ1)− ln(4m)
)
,

Inequality (a) is justified since f(x) := x ln(1− x/2) is non-
increasing for x ∈ [0, 1]. Thus, (1− x/2)

x ≥ ef(1) = 1
2 .

We note that the lower bound applies for all n ∈ N but
its exponent might not be positive for very small n. The
exponent becomes positive when n is large enough for the
fast-growing m ln

(
4ρ2

0c
)

term to dominate the slow-growing
ln(2m) − ln(ρ1) term. Further, we observe that as n grows,
the exponents of both bounds converge asymptotically to the

growth rate given by
n

2
ln

(
4ρ2

0

(
1

r(ρ)
− 1

))
, proving (6).

V. SIMULATIONS

In this section, we perform numerical experiments to vali-
date our theoretical results and to develop a broader under-

standing of the impact of bias on the choices that appear
optimal to a graph-blind RIC that seeks n BIPs.

We showed that a graph-blind RIC expects to minimize its
error probability, by choosing fully-biased BIPs amongst all
BIPs that have the same individual error rates (cf. Corollary 1).
Further, we want to know if the RIC expects other choices to
yield vastly different error probabilities (as in Theorem 2).
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Fig. 5: Distribution of probabilities of error in a system with
fixed priors (ρ) and fixed channel error rate r(ρ).

In Figure 5, we explore this question for n = 5 channels,
ρ = (0.6, 0.4), and r(ρ) = 0.3. We choose many different
values of (α(n), β(n)) that satisfy r(ρ) = 0.3 in order to
generate the plotted histogram of the optimal-probability-of-
error values obtained by them. The resulting plot confirms
that the fully-biased system with all S-channels (βi = 0,∀i)
achieves the minimum value (in this case ≈ 0.02). Moreover,
it reveals that the error probabilities has a wide range between
0.02 and 0.2 with most of the distribution centered around
higher values of ≈ 0.15. In particular, the case of unbiased
channels (αi = βi,∀i) yields an error probability of ≈ 0.165.
As such, this figure further highlights the significance of
utilizing fully-biased channels as opposed to other choices.

In Theorem 2, we replaced unbiased BIPs (αi = βi) with
fully-biased BIPs that favor the same outcome (αi = 0,∀i or
βi = 0,∀i). There, we established that the RIC’s anticipated
gains (factor by which probability of error will fall) grow
asymptotically at an exponential rate with the exponent being
linearly dependent on n (the number of BIPs/channels used).
We obtained this result by deriving upper and lower bounds
on the gains that become tight as n increases. To check the
tightness of these bounds, the rates of change of the exponents
with n are plotted in Figure 6 for different ρ and r(ρ). From
this plot, we verify that the growth rates of the exponents of
the gains are, in fact, linear in n. Moreover, the upper and
lower bounds are tight even for fairly small values of n. We
also confirm that the growth rates of the exponents in the
gains and their bounds all converge to 1

2 ln
(
4ρ2

0

(
1
r(ρ) − 1

))
.

Incidentally, the plot also reveals that the RIC expects to obtain
almost no gains, by replacing unbiased BIPs with fully-biased
BIPs when ρ1 = r(ρ) = 1

2 , confirming our earlier intuition.
From a graph-blind RIC’s perspective, these numerical

investigations not only validate the optimality of fully-biased
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BIPs and their asymptotic gains over unbiased BIPs, but also
reveal that: (i) even partially-biased BIPs lose substantially
against the fully- and similarly-biased ones, and (ii) the asymp-
totic performance is approached quite rapidly for increasing n.

VI. CONCLUSIONS

We investigated an information fusion problem in a network,
primarily motivated by the unique qualities and constraints
of modern-day social networks. Herein, information-providers
supply only binary information, are unrestrained, prone to
bias, and abundantly available. In such an information net-
work comprised of biased-information-providers (BIPs) and
rational-information-consumers (RICs), we studied the impact
of the information-providers’ biases (tendencies of favoring
one outcome over the other) on a graph-blind RIC that is trying
to deduce the true information.

We modeled the input-output behavior of each BIP as a bi-
nary channel, and reasonably assumed that an RIC (especially,
a human one) might not know/account for the dependencies
among its BIPs. Then, we proved that from this “graph-blind”
RIC’s perspective, the optimal decision will always be to
choose BIPs that are fully-biased against the a-priori likely
event. Further, in the absence of BIPs that are fully-biased
against the a-priori likely event, the set of BIPs that the RIC
will choose are still guaranteed to be maximally-biased. We
also proved that by choosing n identical, fully-biased BIPs
instead of n identical, unbiased BIPs, the RIC anticipates
gains that converge asymptotically to an exponential growth
rate with a positive exponent. We explicitly characterized this
exponent using the number of BIPs n, their common error rate
r > 0, and the prior distribution of the input at the source ρ0.

Our work establishes that, if a graph-blind RIC is ac-
counting for bias, it will choose its information-providers
according to a counter-intuitive, but highly tractable rule:
“When choosing n BIPs from infinitely many, (presumably)
independent BIPs reporting a 0/1 event, choose the ones that
are fully-biased against the a-priori likely event.” This rule is
opposed to the more intuitive option of choosing diversely-
biased or unbiased information-providers.

Any information-consumer can emulate an RIC by follow-
ing a counter-intuitive, but elegantly uniform rule. However, if

the BIPs are not acting independently, then the dependencies
might affect the accuracy of the information that an RIC
deduces to be true. In accordance to the varying levels of
network awareness that might be exhibited by rational agents
with limited resources (e.g. humans, low-complexity devices),
in future work, we hope to build on this model of the graph-
blind RIC to arrive at models of “more-aware” RICs. Through
these models, we aim to enable the design of novel RIC-centric
frameworks with mechanisms to reduce misinformation.
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