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Abstract—Plane graphs play a major role for local routing and
some other local network protocols in wireless communication.
With such local algorithms each node requires information
about its neighborhood only. It is assumed that nodes are
deployed on the plane and each node knows its position in
a given coordinate system. An arbitrary graph drawn on the
plane can be transformed into a plane spanning subgraph by
deleting edges. However, to assure connectivity at the same
time some additional structural graph properties are required.
Current graph classes that assure the existence of connected plane
spanning subgraphs require assumptions, that are not very likely
to hold for wireless network structures. In this work we develop
the acyclic redundancy condition. This is a novel graph class with
only one property that assures the existence of a connected plane
spanning subgraph. Furthermore, we describe local algorithms
that construct a connected plane spanning subgraph for graphs
satisfying the acyclic redundancy condition. With numerical
studies we confirm that the acyclic redundancy condition is a
more realistic condition than existing graph classes that were
required so far to construct connected plane spanning subgraphs.

Index Terms—plane subgraph, local algorithm, log-normal-
shadowing, stochastic analysis, numerical evaluation

I. INTRODUCTION

Many distributed local algorithmic solutions for large scale
wireless networks like unicast [1]–[3], multicast [4], [5],
geocast [6], anycast [7], mobicast [8], broadcast [9], [10],
void and boundary detection [11], distributed data storage
[12], [13], tracking of mobile objects [14], localized address
auto-configuration [15], or coordination of mobile sensors [16]
require the network graph to be drawn on a plane without
intersecting edges. Here local means that a global network
wide objective is achieved just by local node decisions based
on neighborhood information.

Original methods for finding such plane graphs (i.e. graphs
without intersecting edges) as described in [1], [2], [17], [18]
require the network to be given as a unit disk graph (UDG),
i.e. two nodes are connected if and only if their Euclidean
distance is less or equal than a given network wide unique
unit disk radius. In general, the unit disk assumption does not
hold for wireless networks. Thus, subsequent work dealt with
algorithm modifications and model extensions such that local
construction of intersection free drawings can locally be found
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beyond the unit disk graph assumption. This includes, methods
for quasi unit disk graphs [19], [20] which is a model extension
of unit disk graphs, and as well the recently studied class of
graphs satisfying redundancy [21], [22] and coexistence [23]
property. Redundancy assures that intersections can be found
locally while coexistence supplementally assures existence of
a connected plane spanning subgraph [24]. Recently it was
found that such an intersection free spanning subgraph can
also be found by local rules [25].

In this paper we advance the state of the art on the question
how far graph assumptions can be weakened such that realistic
wireless networks are closely reproduced while the graph
properties assure design of local algorithms with provable
correctness guaranteed. Compared to the related work we
develop a property which is an advancement of the redundancy
property. Proper redundancy guarantees the existence of edges
to detour and hence delete intersecting edges. However there
are certain graph structures preventing the existence of a
connected and plane spanning subgraph (for details see [24]).
To rule out those scenarios the coexistence property was used.
However, the coexistence property demands much more edges
to exist than needed to avoid those so called redundancy
cycles. Hence, we are searching for alternative graph prop-
erties compensating coexistence. We introduce two variants of
a novel graph class with just one property, the (basic resp.
extended) acyclic redundancy graph condition. Redundancy
follows only from basic acyclic redundancy. Coexistence fol-
lows from none of them, so the acyclic redundancies can be
regarded as a new approach for graph conditions that assure
existence of connected plane spanning subgraphs. We present
global and local algorithms which construct plane spanning
subgraphs and prove their correctness. Moreover, we analyze
how far these properties can be assumed to hold in realistic
wireless networks described by the log-normal shadowing
model.

The remainder is structured as follows. In the next section
we introduce the required graph concepts and the underlying
wireless network model. In section III we define the two
versions of acyclic redundancy and present algorithms to con-
struct a plane spanning subgraph under those conditions. Fur-
thermore, we prove correctness of the algorithms and examine
the relation of the different graph properties. In section IV
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we derive, by means of stochastic geometry, expressions to
compute how far the novel properties can be assumed to
hold in random geometric graph models. The result is then
used in section V where we show numerically that under the
log-normal shadowing model extended acyclic redundancy is
more likely to be satisfied than proper redundancy (with or
without coexistence) in relevant settings. We discuss under
which parameter settings the property can be assumed to hold
closely to 100% and when it can no longer be assumed to be
likely. Furthermore, similar it was applied in [26], we discuss
the concept of artificially bounding the communication range
to improve the probability that acyclic redundancy holds. We
conclude our work in section VI where we judge how far
the model may still be relaxed while still supporting local
solutions and where limitations on such local solutions have
to be expected.

II. ASSUMPTIONS AND DEFINITIONS

We consider embedded undirected graphs G = (V,E)
where each vertex v ∈ V is a point in the R2 plane
and each edge uv ∈ E a straight line connecting u and
v. A path between two vertices u, v ∈ V is a sequence
w0, . . . , wk ∈ V with u = w0, v = wk and pairwise disjoint
edges wiwi+1 ∈ E. We term k the length of such a path. We
call a path with w0 = wk polygon of length k. A polygon of
length 3 is a triangle. A polygon of length 4 is a quadrilateral.
A graph is called a plane graph if each pair of its edges have
at most one end point in common. A pair of edges having
another point p in common are said to intersect each other.

We say F = (V,E′) is a (spanning) subgraph of G if E′ ⊆
E. We say a graph is connected if for all u, v ∈ V there is
a path from u to v. We say F = (V,E′) is a connectivity-
preserving subgraph of G if the connected components of F
and G coincide.

Since we do not consider any other subgraphs we drop the
spanning property from the notation.

The k-hop neighborhood of a vertex v refers to all paths of
length at most k starting in v. The vertices contained in these
paths are termed k-hop neighbors of v. The k-hop neighbors of
a vertex v are termed Nk(v). The edges connecting a vertex to
its 1-hop neighbor are termed outgoing edges. Edges sharing
one endpoint are called each others edge-1-hop neighbors.

In this work we are given a connected graph G and the
goal is to construct a connected and plane subgraph of G by
local rules. This means a distributed algorithm on each vertex
v which eventually decides for each outgoing edge of v if it
has to be kept or removed. In this work each vertex needs
to know its 2-hop neighborhood. Based on that information
without any further message exchange it decides immediately
which of its outgoing edges are removed.

Note that the algorithms and the proved results work as
well for not necessarily connected graphs and a connectivity-
preserving subgraph of a connected graph is connected again.
Thus, we can generalize the problem setting to construct a
connectivity-preserving plane subgraph.

Fig. 1. Example of an RCG graph, satisfying redundancy on the left and
coexistence on the right.

A graph satisfies the (proper) redundancy property (PR) if
for all intersecting edges uv and wx at least one edge end
point is 1-hop neighbor of the other three ones (see Fig. 1).
A graph satisfies the coexistence property if for all triangles
u, v, w with an interior vertex x, x is 1-hop neighbor of u, v
and w. A graph satisfying both properties is called redundancy
and coexistence graph (RCG).

Furthermore, we assume to have a strict total order ≺ on
the edge set E, i.e. for all e 6= f ∈ E either e ≺ f or e � f .
A locally testable order can be obtained by edge weights c.
We use the induced decreasing total order �c given by e �c f
iff. c(e) ≤ c(f). We call f c-heavier than e. To get a strict
total order one has to break ties, i.e. define a total order on
edges with the same weight. That can be done by e.g. using
the endpoints’ positions.

To study the question how far certain structural properties
can be assumed to hold with high probability in real wireless
networks, we consider the following commonly used random
graph model.

For the analysis we use a homogeneous Poisson point
process (PPP) of intensity λ as vertex set. The number of
vertices in an area of size A is a Poisson distributed random
variable with mean λA. Furthermore, the number of vertices
in two disjoint areas are independent.

On this vertex set we consider a random geometric graph
model. Given a monotonically decreasing connection function
p : (0,∞) → [0, 1] two nodes with distance d are connected
by an edge with probability p(d). The existence of the edges
are assumed to be independent. Note, as also required in [26] p
has to guarantee that edge lengths have finite expectation and
that the integral expressions for edge intersections converge
(see section IV).

Note that with probability 1 no two vertex pairs in a
homogeneous PPP have the same distance. Hence the edge
lengths are unique with probability 1 and an ordering just
based on edge lengths is a well defined total ordering.

The log-normal shadowing model is widely known as
a realistic model describing wireless network graphs. The
received signal strength PRX(d) in dBm of a transmission
over distance d is given by

PRX(d) = c− 10α log10(d/d0) +Xσ (1)

where d0 > 0 is the reference distance, c the power received at
reference distance, α > 1 the path loss coefficient, and Xσ a
Gaussian random variable with mean 0 and standard deviation



σ > 0. By [27] we can reformulate the probability that an edge
of length d exists to be the following connection function

pLNS(d) =
1

2
− 1

2
erf
( 10√

2

α

σ
log
( d
r0

))
(2)

with average communication distance r0.

III. CONSTRUCTION OF A CONNECTIVITY-PRESERVING
PLANE SUBGRAPHS UNDER ACYCLIC REDUNDANCY

A. Acyclic Redundancy

In the subsequent sections all properties and algorithms
are defined on (injectively) weighted graphs. Since a strict
total edge order can also be transferred to a weight function,
everything holds as well for any arbitrary strict total ordering
of the edges.

Definition 1. A weighted embedded graph (G, c) satisfies the
basic acyclic redundancy property (BAR) if for each pair of
intersecting edges uv,wx one of the intersecting edges is the
c-heaviest edge of a triangle in G within {u, v, w, x}.

An example with Euclidean distance as weight function is
shown in Fig. 2.

Definition 2. A weighted embedded graph (G, c) satisfies the
extended acyclic redundancy property (EAR) if for each pair
of intersecting edges uv,wx one of the intersecting edges is
the c-heaviest edge of a triangle or quadrilateral in G within
{u, v, w, x}.

Examples are illustrated in Fig. 2, Fig. 5 and Fig. 6. If
we do not further specify whether basic or extended acyclic
redundancy is regarded, we just say acyclic redundancy. We
term graphs satisfying the acyclic redundancy ARG.

Definition 3. An embedded graph G satisfies the basic (ex-
tended) Euclidean redundancy property if (G, d2) satisfies the
basic (extended) acyclic redundancy property, where d2 is the
Euclidean distance between two vertices.

Note that basic acyclic redundancy implies both, proper and
extended acyclic redundancy.

Proper redundancy is implied because the demanded trian-
gle requires two adjacent edges from the possible quadrilateral,
which is spanned by the intersection, to exist. This is an
equivalent formulation of proper redundancy.

Extended acyclic redundancy follows from basic acyclic
redundancy because the triangle from basic acyclic redundancy
is a polygon demanded for the extended property.

Note that no further implication holds in general. Thus,
neither EAR and PR are implying each other (see Fig. 4
and Fig. 5), nor is BAR implied by one of them nor their
conjunction (Fig. 6).

The already studied properties and the properties defined
in this work are related as follows (see Fig. 3). Compared
to the UDG property, the acyclic redundancy is a property
which is more likely to hold. It directly implies basic acyclic
redundancy. Therefore the unit disk property also implies the
extended acyclic redundancy property. The other implication

u v

w

x

Fig. 2. Example for a graph that satisfies the Euclidean acyclic redundancy
which is not a UDG.

PR EAR
BAR

UDG

Coex

Fig. 3. Venn diagram depicturing the relations of the graphs satisfying
the different redundancies, the unit-disk-graph-property and the coexistence
property.

does not hold in general, since for a pair of intersecting edges,
not all redundancy edges that are shorter than one of the
intersecting edges have to exist (see Fig. 2).

B. Algorithmic constructions of plane subgraphs

In this section we will show that graphs satisfying basic
or extended acyclic redundancy can be transformed into a
connectivity-preserving plane subgraph that contains no tri-
angles.

Theorem 1. Algorithm 1 outputs a connectivity-preserving
plane subgraph under basic acyclic redundancy.

u

v
w

x

Fig. 4. Example for an intersection that satisfies the proper redundancy
property, but not the extended acyclic redundancy property.

u x

vw

Fig. 5. Example for an intersection that satisfies the extended acyclic
redundancy property, but not the proper redundancy property.
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Fig. 6. Example for an intersection that satisfies proper and extended acyclic
redundancy but not basic acyclic redundancy.

Algorithm 1 Global algorithm for basic acyclic redundancy
F ← E (* initialize the result *)
W ← E (* set up the working set *)
while W 6= ∅ do

choose c-heaviest uv ∈W
remove uv from W
if ∃uw, vw ∈ F then

remove uv from F
end if

end while
G’ = (V,F)

Proof. The connectivity-preserving follows directly from the
formulation of the algorithm, since an edge uv can only be
removed if in the so far constructed subgraph there is still an
alternative path of the edges uw and wv left.

For the planarity, assume there is an intersection between
the edges uv and wx left after termination of the algorithm.
However, because of the basic acyclic redundancy property
there would have been two redundancy edges, w.l.o.g. uw and
ux that have been shorter than wx. Thus, wx would have been
removed. Since this holds for all intersections, the resulting
graph G’ is intersection free.

Algorithm 2 Distributed edge-1-hop algorithm from the view
of an edge e = uv

1: F ← E (* initialize the result *)
2: if ∃uw, vw ∈ E|c(uw), c(vw) < c(uv) then
3: remove e from F
4: end if
5: G’ = (V,F)

Theorem 2. Algorithm 1 and Algorithm 2 yield the same
output for the same input.

Proof. Suppose the results differ from each other. Let e be
the c-heaviest edge which is contained in exactly one of the
two resulting graphs. At the moment, when e is decided in the
global version all triangles from the initial graph containing e
and a longer edge are already canceled. The heaviest edge has
already been processed and has been canceled because of the
triangle. Obviously all triangles of the initial graph where e
is the longest edge are still there, since all the other (shorter)
edges have not been processed so far. So at that point the
triangles containing e are exactly those (from the initial graph)

where e has been the longest edge. Hence all triangles relevant
for the decision of e in the global algorithm are considered
in the local one and vice versa. Hence the decision on e
will be identical for both algorithms, which contradicts the
assumption.

Note that the algorithm is edge-1-hop local, i.e. each edge
only needs the information of the edge-1-hop-neighbors. If one
wants to formulate it as a procedure for vertices one needs 2-
hop information (i.e. information about the neighbors of the
neighbors) to detect triangles. However, if vertices have that
information we can detect quadrilaterals to detour edges with
a path of length 3. This leads to the following versions of the
algorithms.

Algorithm 3 Global algorithm for extended acyclic redun-
dancy
F ← E (* initialize the result *)
W ← E (* set up the working set *)
while W 6= ∅ do

choose c-heaviest uv ∈W
remove uv from W
if ∃uw, vw ∈ F ∨ ∃uw, vx,wx ∈ F then

remove uv from F
end if

end while
G’ = (V,F)

Algorithm 4 Distributed 2-hop algorithm from the view of an
vertex u
F ← E (* initialize the result *)
for v ∈ N1(u) do

if ∃uw, vw ∈ E|c(uw), c(vw) < c(uv)∨∃uw, vx,wx ∈
E|c(uw), c(vx), c(wx) < c(uv) then

remove e from F
end if

end for
G’ = (V,F)

Theorem 3. Algorithm 3 outputs a connectivity-preserving
plane subgraph under extended acyclic redundancy.

Theorem 4. Algorithm 4 outputs the same graph as Algo-
rithm 3.

The proofs are analogous to the respective proofs of the
basic versions.

Theorem 5. The resulting graphs of all four algorithms still
contain an minimum spanning tree (MST)

Proof. Theorem 2 and Theorem 4 state that it is enough to
show that Algorithms 1 and 3 yield graphs that contain an
MST. Since Algorithm 1 deletes only a subset of the edges
deleted by Algorithm 3, the only implication left to show is
that Algorithm 3 yields a graph G′ that contains an MST.
The reverse-delete-algorithm of Krsukal [28] is quite similar to



Algorithms 1 and 3. It removes edges e from F in decreasing
order if F \ e does not contain more partitions than F . An
equivalent formulation of the algorithm is, that an edge is
deleted if and only if it is the heaviest edge of any cycle in the
initial graph (assuming injective weights). Since Algorithm 3
removes an edge only if it is the heaviest edge of a cycle of
length at most four, the resulting graph from the reverse-delete-
algorithm is a subset of the resulting graph of Algorithm 3.
Therefore an MST is contained in the resulting graph of
Algorithm 3.

Remark 1. The resulting graph of Algorithm 1 does not
contain any cycles of length 3. Hence it is an MST if G does
not contain a cycle of length 4 or more. The resulting graph
of Algorithm 3 does not contain cycles of length three or four.
Thus, it is an MST if G does not contain a cycle of length 5
or more.

Remark 2. Another characteristic of the resulting graph of
one of the four algorithms is, that G′ is 3-colorable if G is
triangle-free since G′ is a plane graph and therefore also a
planar graph without triangles.

IV. STOCHASTIC ANALYSIS

x
y

a− x
b− yγ

cd

e f

Fig. 7. Illustration of the parameterization of an intersection.

From this section onwards we fix the Euclidean distance
as edge weights. Therefore we call the weight of an edge its
length as well. Furthermore we assume that the lengths are
unique.

In [26] we developed the following probability density
function for intersections in random geometric graphs on a
homogeneous PPP.

fint(a, b, x, y, γ) =
1

Nint
ab sin γp(a)p(b)1b,x∈(0,a)

y∈(0,b)
γ∈(0,π)

(3)

with a, b being the lengths of the intersecting edges, γ
the common angle and x, y the intersection points on the
respective edge. Nint is a normalization constant. Furthermore
we can assume a < b.

For notational simplification let [z] be the event that edge z
exists and [z < w] be the event that z exists and it is shorter
than w.

For proper redundancy we get the formulation:

([c] ∨ [e]) ∧ ([d] ∨ [f ])

The basic acyclic redundancy can be formulated as:

([c < a] ∧ [d < a]) ∨ ([e < a] ∧ [f < a])

∨([c < b] ∧ [f < b]) ∨ ([d < b] ∧ [e < b])

We can formulate the probability of basic Euclidean acyclic
redundancy for a given setting as the probability that at least
one of the four clauses holds. However, since more than one
of the clauses can be satisfied simultaneously and they are not
independent of each other a separation into disjoint events is
necessary. A possible separation is

([c < a] ∧ [d < a])

∨([e < a] ∧ [f < a] ∧ ¬([c < a] ∧ [d < a]))

∨([c < b] ∧ [f < b] ∧ ¬[d < a] ∧ ¬[e < a])

∨([d < b] ∧ [e < b] ∧ ¬[c < a] ∧ ¬[f < a])

Since the existences of the edges c, d, e, f are independent
of each other once the lengths are set, we can calculate the
probability to satisfy a clause by multiplying the corresponding
probabilities. Since the events are disjoint we can just add them
up which yields the probability that two intersecting edges
satisfy the basic acyclic redundancy to be

pbar =pa(c)pa(d) + pa(e)pa(f)(1− pa(c)pa(d))
+ pb(c)pb(f)(1− pa(d))(1− pa(e))
+ pb(d)pb(e)(1− pa(c))(1− pa(f))

with pw(z) = p(z)1z≤wfor a given setting (a, b, x, y, γ)

c =
√
x2 + y2 − 2xy cos γ

d =
√
(a− x)2 + y2 + 2(a− x)y cos γ

e =
√
(a− x)2 + (b− y)2 − 2(a− x)(b− y) cos γ

f =
√
x2 + (b− y)2 + 2x(b− y) cos γ

Translating the indicator function of the probability density
(3) into the integration bounds we get for the probability of a
random intersection satisfying basic acyclic redundancy

∞∫
0

a∫
0

π∫
0

a∫
0

b∫
0

(pbarfint)(a, b, x, y, γ)dydxdγdbda

For the extended acyclic redundancy we get the following
formulation:

([c < a] ∧ [d < a]) ∨ ([e < a] ∧ [f < a])

∨([c < b] ∧ [f < b]) ∨ ([d < b] ∧ [e < b])

∨([c < a] ∧ [e < a]) ∨ ([d < a] ∧ [f < a])

Again a separation into disjoint events is necessary and it
can be formulated as:

([c < a] ∧ [d < a])

∨([e < a] ∧ [f < a] ∧ ¬([c < a] ∧ [d < a]))

∨([c < b] ∧ [f < b] ∧ ¬[d < a] ∧ ¬[e < a])

∨([d < b] ∧ [e < b] ∧ ¬[c < a] ∧ ¬[f < a])

∨([c < a] ∧ [e < a] ∧ ¬[d < a] ∧ ¬[f < a])

∨([d < a] ∧ [f < a] ∧ ¬[c < a] ∧ ¬[e < a])
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Fig. 8. Probability of proper (PR), basic acyclic (BAR), extended acyclic
redundancy (EAR) and coexistence over σ/α for R = ∞.

Adopting the previous notation the probability that two
intersecting edges satisfy the extended acyclic redundancy is
given by:

pear =pa(c)pa(d) + pa(e)pa(f)(1− pa(c)pa(d))
+ pb(c)pb(f)(1− pa(d))(1− pa(e))
+ pb(d)pb(e)(1− pa(c))(1− pa(f))
+ pa(c)pa(e)(1− pa(d))(1− pa(f))
+ pa(d)pa(f)(1− pa(c))(1− pa(e))

The probability of a random intersection satisfying Eu-
clidean extended acyclic redundancy is then given by

∞∫
0

a∫
0

π∫
0

a∫
0

b∫
0

(pearfint)(a, b, x, y, γ)dydxdγdbda

V. NUMERICAL EVALUATION

Based on the previous stochastic analysis we study numer-
ically how far basic acyclic and extended acyclic redundancy
can be expected to hold in graphs pertaining to the log-normal
shadowing model. Moreover, based on the numerical analysis
in [26] we study how likely these properties are compared to
coexistence and proper redundancy.

As can be seen in equation (2) the probability that an edge
of length d exists under log-normal shadowing depends on the
average communication distance r0 and the relation between
path loss coefficient α and log-normal shadowing variance σ.
In particular, as shown in [26] the likelihood of coexistence
and redundancy is independent of r0 but depends only on the
relation between α and σ. The same derivation holds for any
thinning of the intersection space, especially for the probability
expressions for basic and extended acyclic redundancy derived
in this work.

Fig. 8 shows the likelihood of basic and extended acyclic
redundancy and compares it to coexistence and proper redun-
dancy. As can be seen in the range of 0 ≤ σ/α ≤ 3, the
probability of any redundancy dominates that of coexistence.
Moreover, the probability of extended acyclic redundancy
dominates that of all other properties in that range. When
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Fig. 9. Probability of basic acyclic (BAR), extended acyclic (EAR) and proper
redundancy (PR) for different σ/α over R/r0.

σ/α is clear beyond 1 and all properties are unlikely, the
curve progression of any redundancy falls marginally below
coexistence.

Similar to [26] we study how far the properties are improved
when artificially cutting the communication range to a maxi-
mum communication distance, i.e. edges of length greater than
a certain value R are ignored. We investigate different relations
between log-normal variance σ and path loss coefficient α.

Fig. 9 shows the likelihood of basic acyclic redundancy
and its extended variant depending on the relation between
the artificially cut communication distance R and the aver-
age communication distance r0 of the log-normal shadowing
model.

For all σ/α relations the probability tends to 1 when R/r0
tends to zero. This is due to the fact that the smaller that
relation the more the graph will be unit disk like which implies
all considered properties.

As well, the smaller the relation σ/α, the less will be the
shadowing variation compared to the path loss coefficient and
thus the graph faster tends towards a unit disk graph when the
relation is decreased. Thus, for increasing σ/α the curves lie
clearly below of each other.

On the other side, if the relation R/r0 tends to infinity,
the graph tends to the regular log-normal shadowing model.
Thus, the probability values for acyclic redundancy (as well
as proper redundancy and coexistence) tend to the ones under
the regular log-normal shadowing model. As can be seen, all
plotted curves tend to the probability values which can be
determined from Fig. 8 by the basic and extended acyclic
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Fig. 10. Probability of basic acyclic and extended acyclic redundancy over
σ/α at the empirical percolation radius R̄ for varying average number N of
neighbors.

redundancy curves for σ/α = 1, 2, 3, 4.
Basic acyclic redundancy compared to proper redundancy

allows for two intersecting edges uv and wx less combinations
for existence and non-existence of edges uw, ux, vw and vx.
It thus can be at most as likely as proper redundancy. However,
the extended variant of acyclic redundancy allows use of the
shorter intersecting edge to detour the longer one. Note that
this edge exists anyway. As can be seen in the second plot of
Fig. 9 the flexibility to use the fourth node to detour outweighs
the constraints of basic acyclic redundancy posed on proper
redundancy. Compared to proper redundancy, extended acyclic
redundancy improves the likelihood for all relevant parameter
settings.

For all properties we observe that probabilities tend to 1
when the relation R/r0 and thus R itself tends to 0. This is
again because the graph gets the more unit disk like the more
the artificial maximum communication distance R is below
average communication distance r0. Such a graph always
satisfies coexistence and any redundancy. However, the smaller
one chooses R, the more the graph is partitioned. By setting
R = 0 every vertex becomes isolated. Thus, as done in our pre-
cursor [26], to judge how far the probabilities can be improved
by artificially setting a reasonable maximum communication
distance we investigate the graphs at the percolation bounds
regarding R/r0.

Here, percolation bound refers to the minimum setting of R
to have a non-zero probability of finding an infinite connected
component in random instances of graphs with infinite many

nodes homogeneously Poisson distributed on an infinitely large
plane. We call this R the percolation radius.

Note that we use percolation bound and not connectivity
probability. This keeps our measurement free of an additional
parameter which would be the size of the observation window
otherwise.

Following the same approach as in [26] we employ the
simulation method from [29] to determine the percolation
bounds. Percolation depends on the expected number of
neighbors. Thus, the parameter depends on the density of
the Poisson point process, as well as on the relation between
σ/α. We resort to the percolation radii we already determined
empirically in [26] (see Fig. 9 in that paper). There we found R
depending on the PPP density λ measured in average number
N of neighbor nodes under log-normal shadowing. We have
determined R exemplarily for N = 6, 8, 12, 16.

In Fig. 10 we show the probability of basic (the first plot)
and extended acyclic redundancy (the second plot) for the em-
pirically determined percolation radii R for N = 6, 8, 12, 16.
The black curves refer to the graph without artificially setting
a maximum communication distance.

As can be seen in both plots, with more neighbors on
average the probability of all properties improves. This, is ob-
viously true since more neighbors on average supports smaller
artificially set maximum communication distance R which
supports all redundancy property variants and coexistence as
already discussed.

VI. CONCLUSION

We investigated the likelihood of structural graph properties
in random wireless communication graphs. Edges are sampled
independent with a probability depending on the communica-
tion distance. In our numerical evaluations we have specifically
looked at graphs where edge sampling follows the log-normal
shadowing model.

Our work is a successor of our work [25] where we
described a local algorithm for finding plane subgraphs under
proper redundancy and coexistence. This work carries on our
previous results, describing a novel local algorithm which
requires only one property, acyclic redundancy.

We have seen that likelihood of basic acyclic redundancy is
admittedly dominated by that of proper redundancy, however
it makes the accessibility of vertices in the interior of triangles,
resp. the coexistence property, irrelevant for the existence of
a connectivity-preserving plane subgraph. However, extended
acyclic redundancy is more likely than proper redundancy in
relevant settings as well. Thus, it makes the new method more
likely to succeed than the previous one for these two reasons.

The presented algorithms are simpler than the one presented
in [25] as one has to consider just triangles and quadrilaterals
instead of arbitrary large cliques. Moreover the new variants
are more efficient, since each edge can be decided immediately
once the 2-hop information are available and no waiting period
is necessary.

In this paper BAR and EAR are formulated as local proper-
ties, i.e. it only depends on the existence of the edges within



the four endpoints of an intersection. However, the properties
could be transferred to a global version. So an intersection
satisfies the global BAR if one of the intersecting edges is
the longest edge of any triangle. Analogously the EAR can
be globalized. Note that now one can allow not just detours
of length two or three, i.e. an intersection satisfies the global
(k)-EAR if one of the intersecting edges is the longest edge
of a polygon of length at most k (for an arbitrary large but
fixed k ≥ 3). These variants would remain edge-1-hop locally
(global BAR) resp. dk2 e-hop locally (global EAR) detectable
and the algorithms would still work (one has just to include the
k − 1-detours). However, now the decision if an intersection
satisfies one of these properties depends on the existence of the
edges to all other nodes (or at least in an large enough area in
the Euclidean case). Thus, it would depend on infinitely many
(resp. arbitrary many) edges. That makes the stochastical and
numerical analysis much more difficult.

Our numerical evaluations show for which parameter set-
tings we can assume the required properties to hold very
likely, i.e., the parameter settings where it is reasonable to
apply the studied local algorithm to construct plane subgraphs.
An analysis of the likelihood that such algorithm variant fails
is subject to future work. Moreover, our stochastic analysis
strongly depends on the Poisson point process assumption.
In future, other commonly used point process models can be
investigated. Furthermore an investigation of different methods
to evaluate/rank the edges to obtain several total orders are an
interesting field of study.
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