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Age of Information Aware UAV Network Selection

Man Hon Cheung

Abstract—For the command and control in unmanned aerial
vehicles (UAVs), it is important to limit the latency of the
real-time status updates. Previously proposed network selection
schemes mainly select the closest or the strongest-signal base
station (BS) for data rate maximization, thus neglecting the BSs’
queueing and handover delays. In this paper, we aim to minimize
the age of information (Aol) in both the network access and
handover. Specifically, with the BS’ load and UAVs’ flight plan
information, each UAV needs to choose between uncongested
BSs for low-latency updates or BSs along its trajectory for less
frequent handovers. As the UAVS’ decisions are coupled towards
the BSs’ load, we formulate the UAVS’ interactions as a non-
cooperative game, where each UAV aims to minimize its cost
as the summation of the associated BSs’ average Aol and the
handover penalties. We show that it is a potential game by
characterizing its exact potential function. It leads to the design
of a distributed BS association (DBA) algorithm, whose output is
guaranteed to converge to a Nash equilibrium within a finite
number of iterations. Simulation results show that the DBA
scheme’s load-aware handover leads to a lower Aol cost than
two benchmark schemes.

I. INTRODUCTION
A. Moativations

Recently, numerous innovative unmanned aerial vehicle
(UAV) applications, such as search-and-rescue and package
delivery, have emerged that rely on the cellular network to sup-
port their remote operations[1], [2]. Along its flight path, each
UAV associates with and handovers among different ground
base stations (BSs) to maintain its network connectivity. Due
to the time-critical requirements of UAVS command and
control (such as autonomous operation, flight authorization,
and navigation database update) [1], it is important to ensure
the freshness of the flight status updates [3]. A relevant
metric to characterize the information freshness is the age of
information (Aol) [4], which is defined as the time elapsed
between the last update and the present time. For an Aol-aware
network selection, it is important to jointly consider the delay
incurred during the BS association and handover procedures.

First, in BS association, a UAV can experience a lower
gueueing delay by connecting with an uncongested BS with
less data traffic. Traditional UAV network selection policy
usually recommends connecting with the closest BS [5] or
strongest-signal BS [6], so as to ensure a good wireless
channel and thus a high data rate. However, the flight status
updates latency, instead of data rate, matters more for the
UAVS safe operations. Thus, an Aol-aware network selection
policy should favor lightly loaded BSs with low queueing
delays [4]. However, if al the UAVs nearby simply choose
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the same BS with the lowest latency, they will overwhelm the
BS and significantly increaseits Aol at the end. In other words,
to balance the BSs' traffic load for a low-Aol network access,
a proper coordination mechanism is needed among UAVs.

Besides, the handover procedure may lead to service dis-
ruption in the form of delay or packet loss during network
switching [7]. As UAVs are flying with a high mobility (in
the order of 100 km/h [2]), ssimply adopting the closest BS
or the strongest-signal BS policies without considering their
future trajectories may result in frequent network handovers
(known as ping-pong effect [1]), and thus significantly in-
creases the idle intervals without any network connectivity.
One way to reduce the unnecessary handovers is to leverage
the flight plan information to identify available BSs in the
next few time dots and associate with them. In fact, the 3rd
Generation Partnership Project (3GPP) has launched a study in
Release 15 to leverage the flight plan information to facilitate
the handover procedure [1]. However, the detailed network
association policy is not specified in the study.

Considering the BS association and handover procedures
jointly, we need to achieve a good tradeoff between choosing
uncongested BSs for low-latency updates or BSs along the
UAV’s trgjectory for less frequent handovers. Overall, we seek
to answer the following question: Given the UAVS' trajectory
information, how should they coordinate their network selec-
tions in multiple time slots to reduce the Aol due to queueing
delay and handover?

B. Contributions

In this paper, we aim to leverage the UAVS flight plan to
coordinate their network selections and reduce the ping-pong
effect over afinite horizon. As the UAVS aggregate decisions
are coupled towards the BSs' traffic loads, we formulate their
interactions as a non-cooperative game, where each UAV’s
cost is defined as the total Aol of the selected BSs plus the
handover penalties. We show that it is a potential game [8],
which guarantees that the network selection of our proposed
distributed BS association (DBA) agorithm will converge to
a pure strategy Nash equilibrium (NE) within a finite number
of iterations.

To the best of our knowledge, this is the first paper that
studies Aol-aware network selection in UAVS. Our major
contributions are:

o Aol-aware network selection: We study how the UAVs
should coordinate their network access to reduce the Aol
due to queueing delay and handover. Thus, we define
a UAV-dependent cost as the summation of the selected
BSs Aol and the handover penalties.
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« Didtributed algorithm with nice convergence property:
Based on the potential game characterization, we design
the DBA agorithm whose network selection is guaran-
teed to converge to a stable equilibrium within a finite
number of iterations.

« Load-aware adaptive handover: Simulation results show
that the DBA scheme adjusts its handover tendency based
on the BSs' traffic load to achieve a lower cost than
the benchmark closest BS [5] and greedy distributed
schemes.

C. Related Works

Depending on the UAVS' roles in the communication sys-
tem, we can classify the applications into either adopting the
server or client model [9]. In the server model, the UAVs serve
as flying base stations (BSs) in enhancing the network capacity
or providing Internet connectivity for rural areas and disaster
zones. By contrast, in the client model, a UAV is an aeria user
equipment (UE) requesting communication services. Despite
the research community’s growing interest in studying UAVs
in recent years (as documented in afew survey papers[2], [9]—
[11]), most of these studies are devoted to the server model.

Comparatively, there are only a few studies, such as[5], [6],
[12]{17], on the client model, which can be broadly classified
into three research themes. First, the studies in [12], [13]
considered the path planning problem of cellular-connected
UAVSs. Different from these works that the flight plans are the
decisions, we consider the UAVS' network selections based on
their given flight paths in this paper. Second, the studiesin [5],
[6] focused on the performance analysis of the closest BS and
strongest-signal BS policies, respectively. Different from [5],
[6], we aim to design a network selection policy that takes into
account the network congestion and handover penalty. Third,
there were afew simulation studies in [14]-{17] on the impact
of drone deployment in existing cellular networks. Different
from these simulation studies, we aim to study the network
selection problem from an analytical perspective.

Recently, there were some studies [ 3], [18]-{20] on the Aol-
aware UAV communication design. Specificaly, the works in
[18]20] considered the Aol in the Internet-of-things (10T)
status updates through UAV relays. Thus, they considered the
server model, instead of the client model in this paper. Garnaev
et a. in [3] amed to maintain the information freshness
for UAV control under an adversaria interferer. Although
the authors also applied game theory in the design, they
mainly focused on the jamming interference, instead of the
BS congestion that we consider in this paper.

Overdl, our unique contribution is an Aol-aware UAV
network selection algorithm design in the client model based
on the analytical framework of non-cooperative game theory.

The rest of the paper is organized as follows. We describe
our system model in Section I and formulate a BS association
game in Section Ill. We present our simulation results in
Section IV and conclude the paper in Section V.
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Fig. 1. An example of a flight plan aware UAV network coordination with
I =2 UAVsand N = 4 BSsin 16 regions. Initialy, UAV 1 is associated
with BS 1. While flying to region 7, it may associate with the closer BS 2
or a further BS 4, which is possible due to the line-of-sight (LOS) channel
condition. (Here, we assume that the coverage radius of each BS for UAV is
around 1.5 times the length of the side of a square region in this example.)
Aware of its flight plan and the heavy congestion (with five ground users) at
BS 2, UAV 1 begins its association with BS 4 for a lower Aol. Similarly,
towards the end of UAV 2’s trgjectory, knowing that three users (i.e., UAV 1
and two other ground users) will be connected with BS 4, UAV 1 decides to
associate with BS 3 (instead of BS 4) throughout its course to enjoy a lower
Aol without any handover.

Il. SYSTEM MODEL

In this section, we discuss the system model for the flight
plan aware BS association problem. First, we describe the net-
work setting, the air-to-ground (A2G) channel model, and the
UAV setting in Sections|1-A, 11-B, and 11-C, respectively. Then
we represent a UAV'’s network access strategy as a network-
time route in Section 11-D and discuss its cost function in
Section II-E.

A. Network Setting

As shown in Fig. 1, we consider a cellular system with a
set N = {1,...,N} of base stations (BSs).! They provide
network access to a set Z = {1,...,1} of UAVs and some
groundusersinaset 7 = {1,...,T} of time dots, where the
length of each time slot is A. The parameters of each network
are described as follows.

Definition 1 (Network Parameters): Each network n € N
is associated with the:

« Average service rate p.,,: We model eachBSn € AN asa
queuing system that handles the data demand of the users
(including both UAV's and ground users) at an average
service rate fi, . ,

« Handover time 6;"" : It is the delay incurred by UAV i
when it handovers from network n € N to network n’
N, and it accounts for signaling and network switching
time during the handover procedure. It is equal to the
total number of time slots required to tear down the old
connection of network n and setup the new connection
of network n’. As there is no handover when a UAV

1In this paper, we use the terms “network” and “BS’ interchangeably.



keeps using the same network n, we have d;"" = 0, Vi €
Z,neN.

B. Air-to-Ground Channel Model

In this subsection, we define the A2G channel model
between a BS-UAV pair. Let I; 2 (z;,y:,hi) € L be the
three-dimensional coordinates of UAV ¢ € Z, where x; and y;
together indicate UAV i's horizontal position, h; represents
UAV ¢'s dtitude, and £ is the set of feasible positions.
Similarly, we let (z,,yn, hn) € L be the three-dimensional
coordinates of BS n € N. Thus, when UAV ; is a [;, its
distance from BS n is

din(l;) = \/(xn — )24+ (Yyn —¥i)? + (hn — hi)2. (D)

In practice, we assume that h; > h,,Vi € Z,n € N. The
elevation angle 6, ,, [21] of UAV ¢ with respect to BS n is

@ sin™?! hi =
s dz,n(lz) ’

Thus, the LOS probability [21] between UAV i and BS n is

ei,n (lz) =

2

1
LOS li —
pz,n ( ) 1 _|_ aexp(—b(eim,(li) -

where a and b are the environment parameters.

Let 7-°S and nN-OS be the excessive path loss coefficients
in the LOS and non-LOS (NLOS) cases, where nN-0S > 5-0S,
Then the average path loss between UAV ¢ and BS n is[21],
[22]

bin(li) Z(phgs(li)nLoer(l - piL,%S(li))nNLoa (@dm (lq;)) ;

4
where « is the path loss exponent, f is the carrier frequency,
and c is the speed of light.

We consider orthogonal? uplink transmissions from UAV's
to BSs, where a dedicated frequency band is allocated for
each pair of UAV-BS communication link [13]. When UAV 1
is at location I;, we assume that BS n is available for data
uploading if the BS's received signal-to-noise ratio (SNR) is
no less than a predefined threshold . That is,

b th
’Ym,n(lz) = ¢i,n(li)‘11 Z T

where P; is UAV i's transmit power and ¥ is the noise power.
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C. UAV Sting

Definition 2 (UAV's Flight Plan and Network Availability):
Each UAV i € T is associated with:

« Flightplan@; = (;[t] € £, Yt € T): It contains UAV i’s
position ;[¢] at eachtime slot ¢t € 7, which is determined
by the UAV’s flight control system.

« Location dependent network availability NV;[t] C N: The
set of networks available for UAV ¢ € 7 at its location

2This can be achieved using various medium access control protocols, such
as time or frequency division multiple access.
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Fig. 2. The network availability and network-time routes of both UAVs in
Fig. 1. Here, a solid black dot indicates that the network is available (i.e.,
n € N;[t]), while an empty dot indicates otherwise. The two UAVs have
different network availabilities due to their heterogeneous flight plans.

at time t € 7. Based on the flight plan 8; and (5),° we
can define it as

Nl = {ne N qa@) =8 ©

For the example in Fig. 1, we illustrate \V;[t] in Fig. 2. As an
example, we have N (3] = {3,4} for UAV 2 at time ¢ = 3.

D. Network-Time Route as UAV's Srategy

Next, we define a UAV'’s strategy as its network selections
across multiple time slots, which is referred to as a network-
time route define below. We further define R ; as the set of all
UAV i’s feasible network-time routes.

Definition 3 (Feasible Network-Time Route): Given UAV
i'sflight plan 6;, its feasible network-time route is a sequence

)

which indicates UAV i's network selections in different time
dots. It satisfies the following conditions:
1) Causdity: 1=t} <t?<...<tM <T.
2) Network availability based on the flight plan: n]"* €
N;[t], for each m € {1,..., M;}.

m ,m+

n

3) Handover time: ¢/ ! —¢m > g7 ™
m e {1;7M2_1}

Condition 1) accounts for the fact that time is aways
increasing. Condition 2) ensures that the network is available
for the UAV based on its flight plan. Condition 3) ensures
that the duration between network switching is sufficient for
the handover.

To facilitate the introduction of the UAV’s cost function in
the next subsection, we define the network-time points of a
feasible network-time route as follows.

Definition 4 (Network-time points): Given a feasible route
r; € R; in (7), we define its network-time points as the set

Vi) = {mhth), ), ) (@)

SWe want to emphasize that our later analysis is not restricted to the
A2G channel model in Section 11-B. As long as we can characterize Aj[t]
(e.g., through actual channel measurement), our game theoretic analysis and
proposed DBA algorithm in Section 11 remain valid.

4Note that it is an inequality constraint. The reason is that some networks
may not be available at certain locations, which results in the time difference
between two adjacent network-time points to be larger than the handover time.

ro= ((nh e (2.8, (2, 82) € R,

1
+ 1, for each



The set can aso be represented as the M; — 1 network-time
point pairs

E(ra) = { (), () s =1, M 1},

9)
which are the consecutive pairs of network-time points visited
by UAV i in route r;.

Example 1: An example of the feasible network-time
routes is illustrated in Fig. 2. In this example, we have
Ty = ((]-a 1),(1,2), (4, 4))' so V(r1) = {(1,1),(1,2), (4,4)}
and £(r1) = {((1,1),(1,2)), ((1,2),(4,4)) }. The pair of
network-time points ((1,1), (1,2)) denotes that UAV 1 asso-
ciates with BS 1 at time slot 1, and keeps connecting with BS
1 at time slot 2. The pair of network-time points ((1,2), (4,4))
means that UAV 1 then associates with BS 4 at time slot 4
after taking one time slot of handover time.

E. Aol-aware Cost Function

For the low-latency control, a UAV needs to select BSs with
small Aol and reduces the handover delay. In this subsection,
we define an Aol-aware cost function that captures these two
components.

To define a BS n’s Aol at a particular time ¢, we need to
first define its load level as

w[(n,t),r] =jel: (nvt) € V(’I’j),’l’j € Rj —HJJGUE[(nat)]a

(10)
which represents the number of users (including both the
UAVs and ground users) it needs to serve. The first term on
the right hand side counts the number of UAVs that connect
with network n € N at time ¢t € 7 under strategy profile
r = (ry,...,7r7). The second term w®YE[(n, t)] represents the
number of ground users that associate with network n € A/
attimeteT.

Let a,(w) be the average Aol through BS n when its load
level isw. Define p(n, t) = 221071 a5 the utilization of BS
n at time ¢, where \ is the average traffic demand rate per user.
We notice that when p(n,t) > 1, BSn will be overloaded such
that the average queueing delay is infinite [23]. As a resullt,
the UAV's cannot update their status in the whole time slot, so
we set the Aol of BS n at time dlot ¢ to be equal to the time
dot length A. Suppose that BS n can be modeled as a M/M/1
queue,® BS n’s average Aol at time ¢ can be expressed as

Qnp (w[(n7 t)’ T‘]) -
Hn /\2“}[(”5 t)7 T]Q
) 8}
(11)

min{uin(”wn,tm "

where the first term in the minimization function is the Aol
when the utilization p(n,t) < 1 [24].

While targeting for low-Aol BSs, a UAV aso needs to
reduce the handover time, when it does not associate with
any BSs. Specifically, for a feasible switching from network

5Note that our results (e.g., Theorems 1 and 2) are general and they are
not restricted to the specific Aol function in (11) of the M/M/1 example here.

neN atimet e T tonetwork n’ € N at t' € T such that
e = ((n,t),(n,t)) € E(r;), we define its handover penalty
as

gz[e] =9 [(nat)v (nlvt/)} = wz(tl —1- 1)7

where v;(¢) > 0 is the penalty function for a handover delay
€ > 0. Asit is undesirable to lose connectivity for an extended
period of time, we assume that it is a nondecreasing function
in e with ¢,(0) = 0.
Overdll, given the strategy profile » of all UAVs, if r; € R;,
UAV i’s cost function is
S it —t-1).

ci(r)= Y an(wl(n,t),7]) +
(n,t)eV(r:) (), (n 1)) €€ ()

(12)

(13)
which is the summation of the average Aol of the connected
BSs and the aggregate handover penalties of UAV . It models
the UAV'’s tradeoff between choosing uncongested BSs for
low-latency updates or BSs along its trgjectory for less fre-
guent handovers.

I1l. DISTRIBUTED BASE STATION ASSOCIATION GAME

In this section, we first formulate the UAVS BS association
as a non-cooperative game in Section I11-A. Next, we show
that it is a potential game by deriving its exact potentia
function in Section 111-B. We then propose a DBA agorithm
to coordinate the UAVS network selections in Section 111-C.

A. BS Association Game Formulation

We first formulate the UAVS BS association interactions as
a non-cooperative game [8] as follows.
Definition 5 (BS Association Game): A BS  association
gameis atuple Q = (Z, R, ¢) defined by:
« Players: The set 7 of UAVSs.
o Strategies: The set of strategy profiles of al the UAVsis
R =Ry X...x Ry, wherethe strategy r; € R; of UAV
i is its network-time route.

» Costs: The vector ¢ = (¢;, Vi € Z) contains the cost
functions of the UAVs defined in (13).

Letr_;, = (r1,...,7i-1,Tit+1,-..,71) be the strategies of
al the UAVs except UAV i. A strategy profile can be written as
r = (r;,7_;). We define the pure strategy NE [8] as follows.

Definition 6 (Nash equilibrium): The strategy profile »* is
a pure strategy Nash equilibrium (NE) if

Ci(’l'j,T'ii) < Cq;(’l'q;,Tii), Vr; € Ri,i cT. (14)

In other words, a NE is a strategy profile that no UAV has
the incentive to unilaterally deviate from its strategy to obtain
a lower cost.

B. Potential Game

In generd, it is difficult to establish the analytical results of
the NE. Nevertheless, we are able to show that 2 is a potential
game [8], which exhibits the finite improvement property [25].
It thus implies the existence of and the convergence to the NE.



Algorithm 1 Distributed BS association (DBA) algorithm for
UAV i € 7.
Initialization

1: User's input: Flight plan 8; = (L;[t], Vt € T).

2: Query network availability A;[t], V¢ € T from the operator by
reporting 6;.

3: Query network setting from the operator’s database: BS Aol
function a, (w), Vn € N and average demand rate \.

4: Define the user-dependent penalty function v;(e) and handover
time 67", Yn,n' € Nyn #n'.

5: Determine the set R; of feasible network-time routes from
Nilt], vt € T and handover time 6" ,Vn,n’ € N by
Definition 3.

Planning Phase: BS Association Game

6: repeat

7: ifrel;

8: Obtain network load level g_;[(n,t)] fordl (n,t) € N'x T
from the operator

9 Perform a best response update by identifying a route

r; € R; that minimizes UAV ¢'s cost:

G(ri) = Y an(gal(nOl+1)+ > (' —t—1).

() €V (ri) ((nt),(n7 1)) €€(ry)
17)
10: Report the BS association plan r; to the operator.
11 end if

12: Setr:=7+1.
13: until 7 > 7™,
BS Association Phase
14: Associate with BSs in different time slots based on strategy ;.

Definition 7 (Potential Game): Game (2 is a potential game
if there exists an exact potentia function ®(r) such that

ci(risr—i)—ci(rir—;) = ®(ri,r_;) —®(rj, r_;),

VTi,T‘; eRi,t el

Theorem 1. Game 2 is a potential game with the exact
potential function given by

wl(n,t),r]
or)= Y Y a@+). S gt —t—1).

()N XT ¢=1 P (), (1)) €€ ()

(15

(16)

The proof of Theorem 1 is given in Appendix A.

1) Properties of the Potential Game: Before stating the
convergence properties, let us recall some definitions.

Definition 8 (Best response update): Starting from » =
(r;,T_;), abest response update [8] is an event where asingle
UAV i changes its strategy from r; € R; to r, € R; to
minimize its cost. That is, r; = argmin,. . ci(ri,7_;).

Definition 9 (Finite improvement property): A game pos-
sesses the finite improvement property (FIP) [25] when asyn-
chronous best response updates always converge to a NE
within a finite number of steps, irrespective of the initial
strategy profile or the UAVS' updating order.

The FIP implies that best response updating always leads
to a pure strategy NE, which implies the existence of a pure
strategy NE. From [26], every finite game with a potential
function has the FIP, which leads to the following result.

Theorem 2: Game () possesses the FIP.

Algorithm 2 Information update algorithm for the mobile
operator.
Initialization
1: Establish network parameter database for UAVs: BS Aol function
an(w), Vn € N and average demand rate \.
2: Synchronize the clock timer 7 := 1 with al the UAVs.
Network availability information update
3: iIf UAV ¢ queries for network availability by reporting 9;
Calculate NV;[t], Vt € T based on (6) and send to UAV .
5: end if
BS load information update

»

6: repeat
7 if UAV ¢ queries for BS load
8 Calculate the network load level g—;[(n,t)] for al

(n,t) e N x T and send it to UAV i:

g-il(n, )] == |j € T\{i} : (n, 1) € V(r))| + w®F[(n,1)].
(18)
9: end if
10: Setr:=7+1.
11: until 7 > 7™,

C. Algorithm Design

With the nice FIP, we propose a DBA agorithm (i.e., Algo-
rithm 1) for the UAV's to make their BS association decisions
autonomously. It relies on the operational information obtained
from the mobile operator® in Algorithm 2.

1) Algorithm 1: The key operations of Algorithm 1 are as
follows:

« Initialization: The user of UAV 1 first needs to input its
flight plan (line 1), so that the UAV can automatically
query the operator’s database for the network availability
(line 2) and other network parameters (line 3). He also
needs to define the penalty function v;(¢) and handover
time ™", Vn,n' € N',n # n’ (line 4). Then UAV i
initializes the set R; of feasible network-time routes (line
5).

« lIterative best response update: We apply an iterative best
response update for UAV 1 to plan its network association
(line 6-13). Let I'; be the set of time dots (line 7)
when UAV i updates its strategy. First, UAV i queries
the operator on the network load level ¢q_;[(n,t)] (from
Algorithm 2) excluding UAV i itself for each network-
time point (n,t) (line 8). Next, UAV i computes the
best response by applying a shortest path algorithm [27],
such as Dijkstra’s algorithm (line 9). This process can be
performed in an asynchronous manner until reaching the
iteration limit 7™ (line 13).

o Srategy update: After each round of best response up-
date, UAV i reports its network association plan r; to the
operator (line 10).

« BS association: When UAV i is flying according to its
planned trgjectory 8, it can then associate with the BSs
based on its network association strategy r; (line 14).

SNotice that with this architecture, the UAV's can coordinate their network
selections through the mobile operator. Thus, it is not required that the UAVs
are located in proximity or able to connect with all the BSs.



TABLE |
SIMULATION PARAMETERS

Parameters Values
Number of BSs N 9
BS antenna height A, 25 m [1]
Carrier frequency f 2 GHz [1]
Transmit power P; 49 dBm
Noise power U —96 dBm
Path loss exponent « 2.2 [2]
Environment parameters a, b 11.95,0.14 [22]
Excessive path loss coefficients 795 nN-OS | 2.3 dB, 34 dB [21]
Receive SNR threshold 7 10 dB

Regarding the computational complexity of Algorithm 1,
we can show that each best response update (i.e., line 9) can
be computed efficiently in polynomial time.

Proposition 1: Each best response update of UAV ¢ can be
computed in O(N2T?) time.

The proof of Proposition 1 is given in Appendix B. In
Section 1V, we will further discuss the average number of
best response iterations required for convergence.

2) Algorithm 2: In Algorithm 2, the operator needs to
provide some network parameters to the UAVs (line 1) and
two key information:;

« Time dependent network availability (in response to Al-
gorithm 1 line 2): With flight plan 8;, the operator can
determine UAV i's time dependent network availability
set N;[t] based on (6) related to the A2G channel model
or channel measurement (line 3-5).

o BSload (in response to Algorithm 1 line 8): The operator
calculates q_;[(n,t)] in (18) for each UAV i based on
other UAVS planned network usage r _; (line 6-11).

IV. PERFORMANCE EVALUATIONS

In this section, we eval uate the performance of our proposed
DBA scheme by comparing it with the benchmark closest
BS scheme [5] and greedy distributed scheme under various
system parameters. We show that the DBA scheme takes
advantage of the BS load information to select less congested
BSs and adaptively adjust its handover tendency to reduce its
cost.

A. Smulation Setting

1) Network Setting: We consider a1.5 km by 1.5 km square
region. There are N = 9 BSs deployed in a grid topology
(smilar to Fig. 1 but with a larger scale) and the inter-site
distance between the closest pair of BSs is 500 m [1]. For
each BSn € A/, we consider that the average service rate u.,
is a normally distributed random variable with mean equals
to 1000 packets/second and standard deviation equals to 10
packets/second. We adopt the M/M/1 BS queueing model such
that the BS's Aol is given by (11). To model the dissatisfaction
of a prolonged idle period without any network connectivity
in UAV command and control, we assume the same increasing
and convex handover penalty function for al the UAV's such
that ;(e) = €2, Vi € Z. The handover time 67" = 1
for dl n # n/,i € Z. To focus on the impact of UAVS

network association, we do not consider any ground users
such that w®YE[(n,t)] =0, Vn € N,t € T. Other simulation
parameters are listed in Table | unless specified otherwise.

2) UAV Setting: For each UAV 4, we assume that its initial
horizontal coordinates, z; and y;, are randomly generated
within the square region. Its atitude & ; is uniformly distributed
between 50 and 300 m [1]. Then, it flies at a constant speed
and height in a straight line adong a randomly generated
horizontal direction [1]. Its speed is uniformly distributed
between 100 and 160 km/hr [1], [2]. When it reaches the
boundary of the square region, it will bounce back in arandom
direction.

3) Benchmark Schemes: We compare our DBA scheme
with the following two benchmark schemes:

o Closest BS scheme [5]: At a given time ¢t € T, each
UAV i aims to associate with the nearest BS 7 € N that
is available (i.e, i = argmin, ¢,y din(Li[t])). IN case
no BS is available (i.e., N;[t] = 0), it will remain idle
and does not associate with any BS.

o Greedy distributed (GD) scheme: At agiventimet € T,
each UAV aims to associate with an available BS with
the lowest initial Aol without considering the demand
from other UAVs. That is, it aims to connect with BS
7l = arg min, ¢ v, ;) @ (1) by assuming that it is the sole
user of the network with w = 1. Similar to the closest
BS scheme, it will remain idle when no BS is available.

B. Performance Evaluations

For each set of system parameters, we run the simulations
10000 times in MATLAB with randomized UAV flight plans
and BS service rates to obtain the following results.

Impact of the number of UAVs on cost: In Fig. 3, we plot
the average cost (defined in (13)) per UAV against the total
number of UAVs I for the average traffic demand rate A =
200. First, we can see that the average costs of all the schemes
increase with I, as the increasing traffic demand increases the
BSs loads and thus their Aol. Second, we observe that the
average cost of the DBA scheme is much lower than that of
the two benchmark schemes. The reason is that DBA balances
the load across different BSs to significantly reduce their Aol.
Also, we see that the GD scheme results in a higher cost than
the closest BS scheme. It is because under the GD scheme, the
UAVs in a neighbourhood may tend to associate with the same
BS with a low initial Aol without any coordination, which
leads to a higher chance of network congestion and thus a
higher average Aol.

Scalability of DBA algorithm: To evaluate the complexity
of the DBA scheme, besides deriving the best response's
polynomial time complexity in Proposition 1, we need to
further study the number of best response iterations required
for convergence. In Fig. 4, we plot the average number of best
response updates required for convergence per UAV against 1
for A = 200. We observe the diminishing increase rate of the
required iterations over I and reaches only 5.90 iterations for
I = 50, which suggests the scalability of the DBA agorithm.
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Fig. 3. The average UAV cost versus the total
number of UAVs I for A = 200.
scheme with A = 200.

Adaptive handover with respect to demand rate: In
Fig. 5, we plot the total number of handover operations (i.e.,
the number of network switchings to different BSs) against
the average demand rate A\ for I = 30. First, we notice that
the operations of both the closest BS and GD schemes are
independent of ), as they always suggest connecting with
the closest BS or the lowest-Aol BS, respectively, regardless
of the traffic load. Second, the handover tendencies of the
DBA and GD schemes are similar for small A, when the BSs
are not congested. Interestingly, when X increases, the DBA
scheme handovers more often. The reason is that each UAV is
generating more traffic as A increases, which becomes easier
to overwhelm BSs surrounded by plenty of UAV's and increase
their Aol significantly from (13). Thus, it is better to handover
more often in search of some less congested BSs to prevent
the sharp increase in Aol.

V. CONCLUSION

In this paper, we proposed an Aol-aware network selection
algorithm to support the UAV command and control, which has
not been explored in the literature to the best of our knowl-
edge. Specifically, we exploited the flight plan information to
coordinate multiple UAVS network selections by balancing
the BSs' loads. Through the potential game formulation, we
proposed the distributed BS association (DBA) agorithm,
whose network selection is guaranteed to converge to a Nash
equilibrium within a finite number of iterations. Simulation
results showed that our proposed DBA agorithm handovers
more often under the high traffic regime to lower its cost as
compared with two benchmark schemes.
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APPENDIX

A. Proof of Theorem 1

In the proof, we want to show that the cost function in (13)
and the potentia function in (16) satisfy (15). First, starting
from the origind strategy profile » = (r;,r_;), we define a
new strategy profile r’, where r’; = r; if j # i and r); # r;
if 5 = 4. In other words, only UAV ¢ changes its strategy from
r; to r} in the new strategy profile ' = (v}, r_;).

Next, we define a partition of set A x T, which consists of
four non-overlapping sets of the network-time points

B(l) = {(’I’L,t) : (’I’L,t) € V(Ti)a (’I’L,t) ¢ V(T;)}a
B® ={(n,t): (n,t) ¢ V(r:), (n,t) € V(r})},
3) , (29
B ={(n,t): (n,t) € V(ri), (n,t) € V(r;)},
BW = {(n,t) : (n,t) ¢ V(rs), (n,t) ¢ V(r})},

where B U B?) U B®) UBW = N x T. As a result, by
considering the difference in congestion level in network-time
point (n,t) between strategy profiles » and r’, we have

1, if (n,t) € BW,

—1,if (n,t) € B®,

0, if (n,t) € B uBW,
(20)

For example, in the first line in (20), we have one more UAV

(i.e., UAV i) choosing the network-time point (n,t) € B™) in

the strategy profile r = (r;,7_;) thaninr’ = (v},r_;), since

UAVs other than i choose the same strategy profile r _;.

Let

wl(n,t),7] — wl(n,t),r'] =

A2 Y g —t-1)-
((n0),(n" 1)) €€ (r)

S kit —t-1).
((n0),(n" 1)) €€(r?)
(21)

As a result, we have
(I)(ria ’I“,i) - @(7‘;,’!',1')

- X w-t-y

IT ((nyt),(n',t)) €€(ry)

Y Y e —t-)
IEL ((n,t),(n' ) €€ (7))

w[(n,t),7] w[(n,t),r']

Y (Y ww- Y )
(nt)EN'XT q=1 q=1
w((n,t),r] wl(n,t),r’]
—a+ Y > al)) - Y au(a)
(n,t)eBMUBRIUBGIUBW  g=1 q=1
wl(n,t),r] w((n,t),r’]
=A+ Z ( Z Gn, (Q) - Z an (q))
(n,t)eBM q=1 q=1
wl(n,t),r] w[(n,t),r’]
+ Z Z an(Q) - Z Qn (Q))
(n,t)eB®) q=1 q=1
=A+ > an[(nt), 7)) = > anw((n,t),7])
(n,t)eBM (n,t)eB®)

=A+ > anw[(nt),r) = D an(w((n,t),r)

(n,t)eBOUBG) (n,t)eB@UBE

=4+ Y an@lnt),r) = D an(wl(n,t),r])
(n,t)eV(r;) (n,t)ev(ry)

:Cz‘(riﬂ‘—i) - Ci(T;ﬂ'—i)- (22)

Here, the first equality is due to the definition in (16). The
second equality is dueto v/ = r; for j # i and B UB®@ U
B®) U B®W = N x T. The third equdlity is due to the fact
that from (20), we have

wl(n,t),r] wl(n,t),r’] [
S anlg)— Y an(g) =0, for (n,t) € B UBW.
q=1 q=1

(23)
The fourth equality is due to the algebraic manipulation
based on (20). The fifth equality is due to a.,,(w[(n,t),r]) =
an(wl(n,t),r']) if (n,t) € BG) from (20). The sixth equality
is dueto V(r;) = B UBG and V(r) = B uB®). The
last equality is due to the definition in (13). ]

B. Proof of Proposition 1

As illustrated in Fig. 2, in a network-time graph, the total
number of nodesV = NT'. In the extreme case that every pair
of nodes is connected by an edge, the total number of edges
E =~ V2 = N2T2. In computing the best response update for
UAV i, we can applying a shortest path algorithm, such as
Dijkstra’s algorithm, which has a computational complexity
of O(E +V?%) =0(V?) = O(N?T?) [27]. [ ]



