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Abstract—Resource pooling between two service providers,
each having a fixed number of resources is considered. Each of
the providers commit some of their resources to the common pool,
and use the other providers’ resources (committed by it to the
common pool) if available to service their clients if all of their own
resources are completely occupied. Each such request requires
a fixed payment to the other provider. The standard model
of exponentially distributed occupancy time for each resource
request is assumed. Assuming transferable utilities, Shapley value
based inter-provider payoff keeps the coalition stable, and the
problem is to find the optimal number of resources to commit
to the common pool by each provider that maximizes the sum
of the revenues of the two service providers. An exact solution
is derived for the problem that depends on the prices charged
by each provider to its clients. In case of equal prices, either full
sharing or no sharing is shown to be optimal. Otherwise, the
service provider with lower price commits all its resources, while
the other provider commits resources depending on the solution
of a recursive equation.

Index Terms—Resource pooling, cooperative game, Shapley
value

I. INTRODUCTION

Resource pooling in the presence of multiple service
providers is a classical problem with a variety of applications,
such as hospitals that pool beds, maintenance firms that pool
repairmen, spectrum sharing in wireless networks, bandwidth
sharing in internet service providers, shared office spaces, call
centres, bike and car rental services, etc., and has been studied
for various models. The basic problem with resource pooling
is: how many resources should be committed to the common
pool, where the common pool is accessible for all providers to
serve their clients if their own resources are completely occu-
pied. Clearly, many different modelling questions arise, such
as: whether the providers are in cooperative or competitive
mode, whether payment is made between providers if any of
them uses the others’ resources or not, how to share revenue,
and several others.

The basic premise of pooling is to improve occupancy
rate or decrease idleness of resource usage across different
providers, but comes at a cost of potentially degrading QoS for
individual providers for its own clients. There is an inherent
tradeoff from individual providers’ points of view - sharing
more of one’s own resources will lead to decreased availability
for one’s own clients, but not sharing enough resources could
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lead to other providers reciprocating and reducing the benefits
intended from pooling.

The main classification in theoretical work on pooling
depends on whether the providers are in competitive or coop-
erative mode. In the competitive setting, individual providers
are hoping to get maximum selfish benefit and concepts like
Nash bargaining solutions are useful ([1], [2], [3]). In the
cooperative setting, however, the question of interest is how to
fairly allocate the increased revenue so that the core remains
non-empty ([4], [5], [6], [7], [8]), where primarily Shapley
value [16] based revenue sharing is considered.

One specific example where resource pooling has been
studied widely is wireless network providers, because of scarce
available spectrum (see [1], [2], [3], [9], [10], [11], [12], [13]
and references therein). The majority of the work in this field
has concentrated on dynamic spectrum sharing - where the
excess spectrum of a single provider is auctioned/allocated
to other providers dynamically over time [14] [2], [3], [13].
How providers in a coalition will share their revenues has been
considered in [15], while strategic behaviour of providers has
been considered in [11] - [12], where [12] also considers a
pricing game.

In this paper, we consider a generic problem that is suitable
for many applications. There are two providers, and provider
i has Ni resources out of which it commits a subset of size
ki to the common pool. Resource requests arrive for each
provider as a Poisson process with mean λi, i = 1, 2, and
have exponentially distributed occupancy/service times with
unit mean at both the providers. A resource request arriving
to provider i is served by it if provider i has at least one free
resource, or by the other provider if there is at least one free
resource among the ones that it has committed to the common
pool, and denied/blocked otherwise. We consider no queuing
to keep the model simple.

Each provider charges its clients a price pi (fixed ahead of
time) for a successfully completed request, and makes inter-
provider payment to the other provider equal to the charge
levied by each provider to the other for usage of its resources
that it has committed to the common pool. Clearly, the revenue
that each provider makes is a function of its own resources,
the resources committed by the other provider to the common
pool, and inter-provider payments. Thus, it is natural to assume
that each provider is going to behave in a strategic manner to
maximize its own revenue, and consider a pooling game.

We consider a cooperative model for providers, and consider
stable coalition formation among them. In particular, we con-
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sider transferable utilities between providers, and use Shapley
value ([16]) based inter-provider payoff that keeps the coalition
stable. With Shapley value based inter-provider payment, the
main problem we address in this paper is : what is the optimal
number of resources committed by the two providers in the
common pool that maximizes the sum of the revenue made
by the two providers, which is rather challenging to solve.

To obtain our results, we make a correspondence between
the considered game and stochastic loss networks, that have
been well-studied in multiplexing literature. We show that
whenever a coalition is formed, in the optimal solution, at
least one provider must fully share its resources (and in certain
cases, both providers should) in order to maximize individual
revenues via maximizing the total revenue. In particular, we
show that when the prices charged by the two providers are
identical (p1 = p2), either both commit all their resources to
the common pool or no one commits any resources. When
prices are unequal (say p1 < p2), then the cheaper provider
commits all its resources to the common pool, while the
costlier provider commits the number of resources that is given
by a solution of a recursive equation. The solution definitely
has intuitive appeal, however, making a rigorous argument
requires non-trivial work using the concept of shadow prices.

Extending the presented results to more than two providers
is possible, but currently outside the scope of this paper.

The studied problem is a building block for solving a more
general problem, where providers will also select their prices
that maximize their respective revenues. This was considered
in [12], albeit when the pooled part of the resources was
fixed ahead of time. Choosing optimal prices for providers
entails anticipating the client traffic that will be at Wardrop
equilibrium, depending on the utility function (of the QoS
and the price), and given client traffic arrival rates and prices,
the results found in this paper will determine the pooling
configuration. Iterating over price choices, providers can find
the optimal ones. Clearly, this is a more challenging problem,
which is part of ongoing work.

II. MODEL

There are two service providers, who enter into an agree-
ment, or form a coalition, to share portions of their resources.
It is assumed that all the resources are of equal size, one of
which is used to service a single resource request. Let the
number of total resources with provider i be Ni, i ∈ {1, 2},
out of which ki are shared or committed to the common
pool. Provider i chooses to commit ki of its resources in the
common pool. This implies that a total of Ni + kj , j 6= i
resources are available for provider i’s use. Note that there is
no guarantee that all kj resources will be free for provider
i’s use - provider j still treats its committed kj resources as
it would any exclusive resource for its own requests. Either
provider will use its own resources before starting to use the
shared resources. If any of provider i’s own resources free up
while one of its requests is being serviced by a shared resource
of provider j’s, the request will be instantaneously switched
to provider i’s own resources.

Fig. 1. Sharing model, where the colored set of resources are part of the
common pool.

Requests arrive for each provider as a Poisson process with
mean λi, and have unit mean (without loss) exponentially
distributed occupancy time at any of the providers. Each
request takes up the entirety of a single resource, i.e., we
preclude the possibility of a resource being used for multiple
requests. When all the resources available for the use of a
provider are occupied, any incoming requests do not wait for
a resource to free up, and are denied service and is defined
to be blocked. Customers are charged a price pi by provider
i only for a successfully fulfilled request, i.e., one that is not
blocked.

No provider is expected to be altruistic and hence requires
payment from the other provider when it uses any of its shared
resources. We assume that provider i is paid an amount rj by
provider j for the use of provider i’s resources, and vice versa.

The quality of service that a provider offers to customers
while in a coalition is measured using the provider’s blocking
probability, Bi, defined as the probability that an incoming
request from any of its own customers is blocked, and corre-
spondingly the price provider i charges its own customers per
successful request is pi.

While acting by itself (i.e, before forming the coalition of
interest to us), we denote the provider’s blocking probability
as B̃i, and the price it charges per successful request as pi
- we assume that these two quantities are fixed and pre-
determined beforehand, and do not concern ourselves with
how their values are set.
We now characterize the throughput of each provider, i.e, the
average number of successfully served requests.

Lemma II.1. The time-averaged numbers of requests being
served by provider i, Ti, is given by the equation:

Ti = λi(1−Bi). (1)

Using Lemma II.1, the time-averaged revenue Ri that a
provider receives while sharing resources can be expressed



as:
Ri = piλi(1−Bi), (2)

while the time-averaged revenue a provider receives when
serving customers without sharing resources is:

R̃i = piλi(1− B̃i). (3)

We assume that provider i receives revenue Ri (as defined in
(2)) from its customers, and is left with an effective revenue fi
after paying ri to provider j and receiving a payment rj from
provider j. Hence, the effective revenues for the two providers
are

f1 = R1 − r1 + r2,

f2 = R2 − r2 + r1.
(4)

Note that we can simplify the inter-provider payments by
defining

rnet = r1 − r2, (5)

in which case (4) can be written as

f1 = R1 − rnet,
f2 = R2 + rnet, ,

(6)

where now (without loss of generality) provider 1 makes a
net payment of rnet to provider 2, which could be positive or
negative (which signifies a payment of −rnet from provider 2
to provider 1).
Note also that

f1 + f2 = R1 +R2 = Rtotal, (7)

where we define Rtotal to be the total revenue earned by the
coalition.

Next, using concepts of cooperative game theory, we state
some simple properties for forming coalitions in the two
providers case, and describe Shapley value based revenue
sharing to keep the coalition stable. Using these preliminaries,
we will state the main problem in (14).

III. INTER-PROVIDER PAYMENTS (REVENUE SHARING)

We will now provide a formal definition of the considered
game between two providers ([17], [18]). The game, which
we will called POOLING, can be represented as (v,P), where
P is the set of players, and v is the characteristic function,
defined later. Let the two providers be defined by the set P =
{P1, P2}, and let the power set of P be 2P . Any non-empty
subset S of P is called a coalition, and P is called the grand
coalition. Each coalition is assigned a value or revenue, defined
by the characteristic function v : 2P 7→ R+, that denotes the
value of the coalition. For POOLING,

v({Pi}) = R̃i,

v({P}) = R1 +R2 = Rtotal, (8)
v(∅) = 0,

where R and R̃ are defined in (2) and (3).
We assume that the game has a transferrable utility, i.e, revenue
from the game can be shared freely among members of a

coalition. These assumptions are natural for 2 providers with
customer bases and revenue obtained from customers.

Definition III.1. Stable Coalition A stable coalition is one
in which no member has an incentive to leave the coalition.
Let the payoff that provider i receives be gi out of v({P}). A
coalition is defined to be stable if

gi ≥ v({Pi}), i ∈ {1, 2}, (9)

i.e., each provider does not receive less revenue in the coalition
than if it acted on its own.

We now state a useful property of POOLING that is easy to
prove.

Lemma III.1. For POOLING, the characteristic function v
is superadditive ([18]), i.e., for every S, T ∈ 2P such that
S ∩ T = ∅,

v(S ∪ T ) ≥ v(S) + v(T ). (10)

While superadditivity is a necessary condition for a stable
coalition (one whose members have no incentive to split from
the coalition and act individually), it is not sufficient. To
ensure stability, we must find a suitable payoff vector [g1 g2]T

satisfying (9). Such a payoff vector is said to belong to the
core of the game being played.

Definition III.2. Core. The core of a coalitional game with
two players is defined as the set of all payoff vectors satisfying
(9), i.e, the set of stable payoff vectors - those that will ensure
that the players of the game have no incentive to leave the
grand coalition, P = {P1, P2}.

Definition III.3. Shapley Value ([18]) For a game (v,P),
the Shapley value payoff vector is defined as:

gi(v) =
∑

S⊆P\{i}

|S|!(n− |S| − 1)!

n!
(v(S ∪ {i})− v(S)),

(11)
where n = |P|.

For POOLING, the Shapley value g1 can be computed as
follows:

g1(v) =
∑

S∈{∅,{P2}}

|S|!(n− |S| − 1)!

n!
(v(S ∪ {P1})− v(S)),

=
1

2
(v({P1, P2})− v({P2})) +

1

2
((v{P1})− v(∅)),

=
1

2
(v{P} − v({P2}) + v({P1})),

=
1

2
(R1 +R2 − R̃2 + R̃1).

Similarly, we get the expression for Shapley value g2, and the
Shapley value payoffs for POOLING are:

g1 =
1

2
(R1 +R2 + R̃1 − R̃2),

g2 =
1

2
(R1 +R2 + R̃2 − R̃1),

(12)



where Ri and R̃i are the revenues that provider i receives
from its customers after and before joining the coalition
respectively.

Definition III.4. Convex Game. A game is said to be convex
if v(S) + v(T ) − v(S ∩ T ) ≤ v(S ∪ T ), where S ∈ 2P , T ∈
2P , S 6= T .

We state one result from [17] that will be useful:

Proposition III.2. If a game is convex, then the payoff vector
given by the Shapley value belongs to the core of the game.

Using Proposition III.2, we the following property of POOL-
ING.

Proposition III.3. The payoff vector given by the Shapley
value belongs to the core of POOLING.

Proof. It is easy to check that POOLING is convex and the
result follows from Lemma III.2.

�

Thus, if we make the effective revenue fi defined in (4) such
that fi = gi (12), then the effective revenue vector [f1, f2]
belongs to the core of POOLING, and thus ensures a stable
coalition. Hence, we get the following result on how to find the
inter-provider payment rnet such that the coalition is stable,

Proposition III.4. The value of inter-provider payment rnet
(6) that ensures a stable coalition for POOLING is

rnet = R1 − f1 =
1

2
(R1 −R2 − R̃1 + R̃2). (13)

Another important implication of using fi = gi is that since
R̃1, R̃2 are pre-determined, selfishly maximizing f1 and/or f2
for provider 1 or 2 is equivalent to maximizing the Rtotal =
R1 + R2. Thus, we next proceed to find the optimal sharing
strategy (k1, k2) that maximizes Rtotal.

With this background, the main problem we want to solve
is

maxk1,k2,k1≤N1,k2≤N2
Rtotal,

where (14)
Rtotal = R1 +R2 = p1λ1(1−B1) + p2λ2(1−B2).

Note that solving (14) is not trivial, since it involves the
blocking probabilities Bi defined in (17) that are not in closed
form.

We begin by deriving equations describing the blocking
probabilities Bi of the providers while in the coalition. Let
u = (u1, u2) define the state of the system at any time instant,
where ui is the number of requests of provider i’s customers
that are being serviced in the system. Then, the feasible set of
such ordered pairs is given by:

F = {u | u1 ≤ N1+ k2, u2 ≤ N2+ k1, u1+u2 ≤ N1+N2}.
(15)

The number of active requests being serviced by the providers
can now be modeled as a continuous time Markov process,
with state space F . Analysis now is possible, and results in
the following stationary distribution (see [1]).

Lemma III.5. [1] The stationary distribution for a state u ∈
F can be expressed as

π(u) =
1

D
λu1
1

u1!

λu2
2

u2!
, D =

∑
u∈F

λu1
1

u1!

λu2
2

u2!
. (16)

The blocking probability for provider i can now be ex-
pressed as:

Bi =
1

D
∑
u∈Bi

λu1
1

u1!

λu2
2

u2!
, (17)

where

Bi = {u | ui = Ni + kj} ∪ {u | u1 + u2 = N1 +N2}. (18)

It is worthwhile to note that the expressions for blocking
probabilities seen in (17) are identical to the expressions for
blocking probabilities of routes on an appropriately chosen
stochastic loss network (see [19]), described next, which will
help us analyze the system further.

A. Stochastic Loss Networks

Stochastic loss networks are defined by a set of nodes,
N , and a set of links, J between nodes. Routes, (Ri ∈ R,
i ∈ {1, 2, 3...} are defined as pre-determined subsets of links
in the network that form a path between a source node and a
destination node. Each link has a resource capacity Ci allotted
to it. A request that arrives for a particular route blocks one
resource on each link that belongs to that route, essentially
reducing the capacity of all links on that route by one for
as long as that request is active. Request arrivals & request
service times for each of the routes are modeled as independent
random processes. If the number of requests being served
by any link on a route is equal to its capacity, all incoming
requests to that route will subsequently be blocked. (See [20]
for more on loss networks). We will now construct a loss
network where the blocking probabilities on routes are defined
by the same expressions as in (16).
The loss network whose routes’ blocking probabilities will

correspond to the blocking probabilities (16) will have 3 links,
indexed by {1, 2, 3} and two routes: route 1 = {link 1, link
3}, corresponding to provider 1 and route 2 = {link 2, link
3}, corresponding to provider 2 (see Fig. 2). The capacities of
the three links are given by:

C1 = N1 + k2,

C2 = N2 + k1,

C3 = N1 +N2.

(19)

We assume requests arrive at routes 1 and 2 according to
independent Poisson processes with parameters λ1 and λ2
respectively, and the service times are i.i.d. and exponentially
distributed with unit mean.
Let t = (t1, t2) define the state of the loss network at any



Fig. 2. Equivalent loss network

time instant, where ti is the number of requests of provider i’s
customers (equivalently, the number of requests active in the
route corresponding to provider i) that are being serviced in
the network. It follows from the structure of the loss network
that the description of the feasible set of t is identical to the
description of the feasible set of u in (15), i.e.,

F ′ = {t | t1 ≤ N1 + k2, t2 ≤ N2 + k1, t1 + t2 ≤ N1 +N2}.
(20)

Since the request arrival rates and service times are identical
for both the considered model and the described loss network,
modelling the behaviour of t as a continuous time Markov
process with state space F ′ results in a stationary distribution
for t identical to the stationary distribution for u described in
(16). Hence, the expressions for blocking probabilities along
the routes (equivalently, the blocking probabilities for the 2
providers) are identical to the expressions in (17).

IV. QUANTUM OF SHARING

We state our main results on solving (14) in the next two
theorems depending on p1, p2 (the price charged by the two
providers).

Theorem IV.1. If p1 = p2, the optimal solution to (14) is
either (k1

∗, k2
∗) = (0, 0) or (k1

∗, k2
∗) = (N1, N2).

Thus, either no coalition is formed by providers or providers
share their resources completely when prices are equal.

Let p1 6= p2, and define T = p2
p1
> 1.

Theorem IV.2. The optimal solution to (14) when p1 6= p2 is
either (k1

∗, k2
∗) = (0, 0) or k1

∗ = N1 and k2
∗ ≤ N2, where

the optimal k∗2 depends on the value of T and descibed by the
solution of (39).

Thus, either no coalition is formed by providers or the
cheaper provider shares its resources fully, while provider 2
shares some of its resources, but not necessarily all of it.

To prove these results, we consider the equivalent loss
network where finding an optimal sharing policy reduces to
allotting optimal capacities, or dimensioning links 1 & 2 in the

loss network previously described. The optimal dimensioning
of loss networks is a problem that has been considered
previously in the context of circuit-switched phone networks
(see [21]). As is standard in loss network literature, we use
what is called as the Erlang fixed-point approximation, used
to approximate blocking probabilities for loss networks, as
follows

The Erlang approximation assumes that the events that
correspond to requests being blocked in a loss network are
independent from link to link in a given route ([22]). Let the
probability of a request being blocked by a single standalone
link with capacity C when incoming requests are modelled as
a Poisson process with intensity λ, and request service times
are exponentially distributed with mean 1, be E(λ,C), where

E(λ,C) =
λC

C!∑C
i=0 λ

i/i
. (21)

i.e, E(λ,C) can be described using the well-known Erlang-
B function from queueing theory. The dependence of the
blocking probability of a link on the states of the other links
in a loss network is taken into account by the approximation
using the concept of ’reduced traffic’. The traffic offered to
each link on a route is approximated and assumed to be a
Poisson process, but one whose intensity is decreased by the
effects of blocking in the other links on that route - resulting
in a thinned Poisson process.

For Fig. 2, that describes the equivalent loss network for
our model, let bi denote the blocking probability (i.e, the
probability that a link’s full capacity is being utilized to serve
requests on the various routes that it is a part of) for link i
and Bi denote the blocking probability for route i. Recall that
routes correspond to providers, and that links 1 & 3 make
up route 1, and links 2 & 3 make up route 2 (ref. Fig. 2).
Then, by the independence assumption mentioned above, and
reiterating that if any link on a route is serving requests at full
capacity, all incoming requests to that route will subsequently
be blocked, we can first write

B1 = 1− (1− b1)(1− b3),
B2 = 1− (1− b2)(1− b3). (22)

Then the Erlang fixed-point approximation ([22]) for our loss
network can be expressed as:

b1 = E(λ1(1− b3), N1 + k2),

b2 = E(λ2(1− b3), N2 + k1), (23)
b3 = E(λ1(1− b1) + λ2(1− b2), N1 +N2).

Note that a request is blocked on a route when any link
on the route is at full capacity. To understand (23), e.g.,
consider link 1, and its blocking probability b1. Consider
every route that the link 1 is a part of and those routes’
incoming traffic intensities (link 1 is part of only route 1,
which has incoming traffic intensity λ1). We thin each of these
intensities by removing the requests blocked by other links
on each of these routes - temporarily assuming knowledge



of other link blocking probabilities, and ultimately leading
to the recursive nature of (23). This thinning is carried out
by multiplying the traffic intensities by the complements of
the blocking probabilities (i.e, probabilities associated with a
request being accepted by a link, 1 − bi) of all other links
on each route (in our example, we multiply λ1 with (1− b3),
since link 3 is the only other link on route 1). Finally, we
sum all associated traffic intensities to obtain the total reduced
intensity that is used in the Erlang-B function to obtain an
expression for link blocking probabilities (our example hence
yields b1 = E(λ1(1− b3), N1 + k2)).

Kelly ([23]) proved that the fixed point of link blocking
probabilities (i.e, the solution to (23)) both exists and is unique
via Brouwer’s fixed point theorem. Hence, it is always possible
to iteratively compute approximate blocking probabilities from
(23). For our purpose, we will now use equations (23) to derive
analytical results about optimal k1 and k2, via the concept of
shadow prices.

Definition IV.1. Shadow price. The shadow price of a link in
a loss network is defined as the derivative of the total revenue
generated by the loss network with respect to the capacity
of that link. The shadow price sj of a link j for our model is :

sj =
dRtotal
dCj

, (24)

where Rtotal = R1 + R2 is the total revenue (14), and Ri’s
are defined in (2).

Note that if we consider the capacity of a single link in a
loss network, while fixing the capacities of all other links in
the network, we can state the following: if the shadow price
for a link is positive, the revenue earned by the entire loss
network can be increased by increasing the capacity of that
link, and if negative, revenue can be increased by decreasing
capacity. If the shadow price is zero, then the capacity of that
link is at its optimal value. This is how shadow prices are
used to dimension loss networks, and we will use this concept
to find the optimal sharing strategy for the two providers.

Shadow prices can be calculated via a set of equations that
yield a unique fixed-point solution to the values of the shadow
prices, given the dimensioning of and the traffic incoming to
the loss network. These equations for a general loss network
were derived by Kelly in [23], and the set of equations that
yield shadow prices for our specific loss network are:

s1 = η1λ1(1− b3)(p1 − s3),
s2 = η2λ2(1− b3)(p2 − s3), (25)
s3 = η3(λ1(1− b1)(p1 − s1) + λ2(1− b2)(p2 − s2)),

where ηi = η(ρi, Ci) = E(ρi, Ci − 1)− E(ρi, Ci), and

ρ1 = λ1(1− b3),
ρ2 = λ2(1− b3), (26)
ρ3 = λ1(1− b1) + λ2(1− b2),

where {b1, b2, b3} are as defined in (23).
Finally, we are ready to prove Theorem IV.1 and IV.2 in the
next two subsections.

V. PROOFS

A. Equal price p1 = p2

Proof of Theorem IV.1. We prove here that if (k1
∗, k2

∗) 6=
(0, 0) then (k1

∗, k2
∗) = (N1, N2). With p1 = p2 = p, the

shadow price equations (as defined in eq. (25)) simplify to

s1 = η1λ1(1− b3)(p− s3), (27a)
s2 = η2λ2(1− b3)(p− s3), (27b)
s3 = η3(λ1(1− b1)(p− s1) + λ2(1− b2)(p− s2)), (27c)

Since ηi > 0 and λi > 0, (27a, b) implies that s1 and s2
will both either be positive, negative or zero. We assume that
the loss network starts from an under-dimensioned state, i.e,
initially, k1 = 0 and k2 = 0. We have assumed that this is not
the optimal solution to (14), and hence it is optimal for the
providers to share some of their resources. Hence, we have
s1 > 0, s2 > 0 at k1 = 0 and k2 = 0.

To prove the theorem, we will prove that the shadow prices
s1 and s2, as functions of C1 and C2 and hence of k1 and k2
(since N1 and N2 are constant) never go below zero. Hence,
the providers, who are trying to maximize the total revenue
earned by the coalition, always have an incentive to share
more and they will share as much of their resources as they
can - resulting in full sharing. Note that this proof method is
valid only when considering continuous Ci, not discrete. 1

To prove that s1 and s2 are always positive, we start by
assuming that for optimal k1 ≤ N1 and k2 ≤ N2:

s1 = 0,

s2 = 0.
(28)

We will prove by contradiction that (28) can never be true for
any value of k1 and k2, and hence, that shadow prices s1 and
s2 will always be positive. (Note that since ηi > 0 and λi > 0
and by (27a, b), if we assume s1 to be zero, s2 must also be
zero, and vice versa. Hence, it is sufficient to prove that (28)
can never be true.)
Also note from the definition of the Erlang-B function in (21)
that the value of the Erlang-B function is always less than 1,
except for when C = 0 or λ goes to infinity. Hence, from the
definition of b3 (in (23)), we can conclude that b3 < 1 unless:

N1 +N2 = 0 or λ1(1− b1) + λ2(1− b2)→∞.

Since we have N1 > 0, and N2 > 0, and assuming finite λ1
and λ2, we get:

b3 < 1, (29)

and hence, from (27), (28) and (29),

s3 = p. (30)

1Kelly ([23]) however assumes continuous link capacities in his shadow
price analysis, and our proof doesn’t assume discrete capacities anywhere.



Substituting for s3 = p in (27),

p = pη3(λ1(1− b1) + λ2(1− b2)),
=⇒ 1 = η3(λ1(1− b1) + λ2(1− b2)), (31)
=⇒ ρ3η3 = 1.

We will now prove that (31) can never be a valid equation,
hence establishing our contradiction.

Lemma V.1. ρη(ρ, C) < 1, where η(ρ, C) = E(ρ, C − 1) −
E(ρ, C),∀ finite ρ, C.

Proof. For finite ρ,

ρη(ρ, 1) = ρ(E(ρ, 0)− E(ρ, 1)) =
ρ

ρ+ 1
< 1, (32)

From [24], we know that the Erlang-B function E(ρ, C) is
convex in C. Hence, we have,

E(ρ, C − 1)− E(ρ, C) > E(ρ, C)− E(ρ, C + 1), (33)

and it follows that η(ρ, C) = E(ρ, C − 1) − E(ρ, C) is
a decreasing function of C. Moreover, it also follows that
ρη(ρ, C) is a decreasing function of C. Combining this fact
with (32), we get that ∀ finite ρ and C, ρη < 1. �

Thus, we have arrived at a contradiction (i.e., that (31)
cannot be true), and hence our initial assumption (28) is wrong.
Hence, the shadow prices s1 and s2 can never be zero for any
k1 ≤ N1 and k2 ≤ N2, and it is always in the best interest
of the providers to dimension their loss network to the fullest,
i.e k1∗ = N1, k2

∗ = N2. �

It is noteworthy that this full sharing strategy is optimal
for any price p1 = p2 = p, and is independent of the total
number of resources with the providers (N1 and N2). It is
also independent of the traffic intensities (λ1 and λ2) that the
two providers experience. This independence is surprising. For
example, if provider 1 was experiencing a much higher request
intensity than provider 2 (i.e, λ1 >> λ2) and the providers
had equal resources (N1 = N2), intuitively it seems that the
coalition would be benefited by provider 1 withholding some
of its resources to service its high request volume, instead of
allowing any of its resources to be blocked by customers of the
less congested provider 2. Our analysis, however, shows that
regardless of traffic intensity, full sharing is always optimal.

B. Unequal Prices p1 6= p2, where T = p2
p1
> 1.

Proof of Theorem IV.2. We begin by considering that
(k1
∗, k2

∗) 6= (0, 0). Our proof method is as follows: assume
initially that the prices are equal, i.e., p1 = p2 and hence
T = 1, and that the network is optimally dimensioned,
i.e., k1∗ = N1 and k2

∗ = N2. We will show that as T
increases (and holding link dimensioning constant), s2
remains positive for any value of T > 1. This means that the
optimal dimensioning for C2 (and hence k1) is to maximize
capacity C2 (19) and the optimal k1∗ = N1, same as in when
T = 1. On the other hand, we will show that s1 decreases in
magnitude, crosses zero and becomes increasingly negative
as T increases. For values of T such that s1 ≥ 0, similar to

Theorem IV.1, we get k2∗ = N2. For values of T such that
s1 < 0, it follows from (24) that in order to maximize total
revenue, C1 (and hence k2) must be decreased which implies
that k2∗ < N2, and we will describe the equation whose
solution yields k∗2 .

Writing the shadow price equations (from (25)) again:

s1 = η1λ1(1− b3)(p1 − s3),
s2 = η2λ2(1− b3)(p2 − s3), (34)
s3 = η3(λ1(1− b1)(p1 − s1) + λ2(1− b2)(p2 − s2)).

Upon inspection of these equations, it is clear that dividing all
the three equations in (34) by a constant value will result in a
set of three equations with appropriately scaled shadow prices.
We hence divide all 3 equations by p1, and in a slight abuse
of notation, continue to refer to the scaled shadow prices as
si. From (34), the shadow price equations are:

s1 = η1λ1(1− b3)(1− s3),
s2 = η2λ2(1− b3)(T − s3), (35)
s3 = η3(λ1(1− b1)(1− s1) + λ2(1− b2)(T − s2)).

We can treat (35) as a set of 3 linear equations in {s1, s2, s3}.
Solving for s1 and s2, we get:

s1 =
B(1− CD) +B(−A− TC + TCD)

−(AB + CD − 1)
, (36a)

s2 =
D(1−AB)T +D(−A+AB − CT )

−(AB + CD − 1)
(36b)

where A = η3λ1(1 − b1), B = η1λ1(1 − b3) = η1ρ1, C =
η3λ2(1 − b2), D = η2λ2(1 − b3) = η2ρ2. The inequality
established in Lemma V.1 can be directly used to obtain the
following 3 inequalities: A + C = η3ρ3 < 1, B < 1, D < 1,
which yields

AB + CD < 1. (37)

Hence, the denominators of the expressions for s1 and s2
in (36a, b) are positive. Consider now the numerators of the
expressions for:
• s1:
B(1− CD) +B(−A− TC + TCD)
= B(1−A− CD) + T (C(D − 1)).
When T = 1, i.e, equal prices, this simplifies to B(1 −
A−C), which is greater than 0 (since A+C < 1). Hence,
s1 is positive initially.
Now, note that D < 1. Hence, C(D − 1) < 0. Hence,
as T increases, s1 decreases until it crosses 0 at some
value of T , and continues to increase in magnitude while
remaining negative.

• s2:
D{A(B − 1) + T (1− C −AB)}.
When T = 1, this simplifies to 1−A− C > 0.
Since A+C < 1 and B < 1, it follows that AB+C < 1.
Hence, as T increases, s2 becomes increasingly positive
(since 1− C −AB > 0).

�



An equation describing k2
∗ (optimal k2) for a given T

can be obtained by equating s1 to zero (36a). Via a simple
rearrangement of terms, we get:

1 + (T − 1)CD = TC +A, (38)

which is equivalent to

1 + (T − 1)η2η3λ2
2(1− b2)(1− b3)
= Tη3λ2(1− b2) + η3λ1(1− b1), (39)

which together with (23) and k1
∗ = N1 can be used to

recursively find k2∗.

VI. CONCLUSION

In this paper, we considered the problem of finding how
many resources to commit to the common pool in a cooper-
ative pooling game. First using the concept of Shapley value,
we showed that there is a ’fair’ way of splitting the total
revenue such that both the providers have an incentive over
acting alone. This particular revenue split also resulted in a
single objective function for both the ’selfish’ providers of
maximizing the total revenue as a function of their individual
resources. We showed that when both the providers charge
their clients the same price per request, both providers should
completely share their resources in order to maximally utilize
the power of multiplexing. When the charges are unequal, we
show that the provider that charges less should contribute all
its resources to the common pool, while for the provider that
charges more, the optimal resources to commit is given by
a recursive equation. The results derived in this paper are
basic in nature and can be used to tackle more complicated
problems, such as how to find the optimal prices for each
provider etc.
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