2020 18th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)

RetroRenting: An Online Policy for
Service Caching at the Edge

Lakshmi Narayana V S Ch, Sharayu Moharir, and Nikhil Karamchandani
Department of Electrical Engineering, Indian Institute of Technology Bombay

Abstract—The rapid proliferation of shared edge computing
platforms has enabled application service providers to deploy
a wide variety of services with stringent latency and high
bandwidth requirements. A key advantage of these platforms is
that they provide pay-as-you-go flexibility by charging clients in
proportion to their resource usage through short-term contracts.
This affords the client significant cost-saving opportunities, by
dynamically deciding when to host (cache) its service on the
platform, depending on the changing intensity of requests.

A natural caching policy for our setting is the Time-To-Live
(TTL) policy. We show that TTL performs poorly both in the
adversarial arrival setting, i.e., in terms of the competitive ratio,
and for i.i.d. stochastic arrivals with low arrival rates, irrespective
of the value of the TTL timer.

We propose an online caching policy called RetroRenting
(RR) and show that in the class of deterministic online policies,
RR is order-optimal with respect to the competitive ratio. In
addition, we provide performance guarantees for RR for i.i.d.
stochastic arrival processes and prove that it compares well with
the optimal online policy. Further, we conduct simulations using
both synthetic and real world traces to compare the performance
of RR and its variants with the optimal offline and online policies.
The simulations show that the performance of RR is near optimal
for all settings considered. Our results illustrate the universality
of RR.

I. INTRODUCTION

Widespread adoption of smartphones and other handheld
devices over the last decade has been accompanied with
the development of a wide variety of mobile applications
providing a plethora of services. These applications often
rely on cloud computing platforms [1] to enable delivery
of high-quality performance anytime, anywhere to resource-
constrained mobile devices. However, the last few years
have seen the emergence of applications based on machine
learning, computer vision, augmented/virtual reality (AR/VR)
etc. which are pushing the limits of what cloud computing
platforms can reliably support in terms of the required latency
and bandwidth. This is largely due to the significant distance
between the end user and the cloud server, which has led the
academia and the industry to propose a new paradigm called
edge computing [2] whose basic tenet is to bring storage
and computing infrastructure closer to the end users. This
can help enable applications with ultra-small network latency
and/or very high bandwidth requirements, which cannot be
reliably supported by the backhaul connection. As a concrete
example, consider a user in a wildlife sanctuary, capturing
the scene around her live on a mobile device, which relays
the image/video to an edge server. Using its much higher
computational and storage capabilities, an application on the

ISBN 978-3-903176-29-4 © 2020 IFIP

edge server can continually detect species of plants, animals,
birds and relay this information back to the end user device
where it can be overlaid onto the live stream to provide
a much richer viewing experience. Broader applications of
edge computing include industrial robotics/drone automation,
AR/VR-based infotainment and gaming, autonomous driving
and the Internet of Things (IoT). While there are now several
industry offerings of dedicated edge computing platforms, e.g.,
Amazon Web Services [3] and Microsoft Azure [4], there have
also been proposals to augment cellular base stations [5] and
WiFi access points [6] so that they can act as edge servers.

Edge computing platforms enable an application provider
to ‘cache’ its service at servers close to the end users. In
this paper, we say that a service is cached at an edge server,
if all the data and code needed to run the service has been
downloaded from a remote/back-end server (possibly in the
cloud) and cached on the edge server. Thus the edge server
can handle service requests on its own without requiring
to communicate with the back-end server. Edge servers are
often limited in computational capability as compared to cloud
servers [7], and hence there might be a limit on the number
of parallel requests they can serve for the cached service.
An application provider can avail this ability to cache on the
edge server in return of a cost which is in proportion to the
amount of resources used and/or the duration of rental. Since
computing platforms usually provide pay-as-you-go flexibility
[8], the client can dynamically decide when to cache or evict
the service at the edge, depending on the varying number
of arriving service requests. The application provider needs
to design an efficient service caching policy which can help
minimize the overall cost of deploying the service.

Most of the literature on caching policies has focused on
the related content caching problem [9], which deals with the
problem of delivering content (for example video or music)
to end users by deploying storage caches close to the end
user. There are several key differences between the content
caching and the service caching problem. In the former, if a
content is not currently cached and a request arrives for it
(cache miss), the content has to be fetched from a back-end
server. On the other hand, in the latter, each time a service
request arrives at the edge server and the service is not cached,
there are two options: (a) request forwarding which simply
forwards the service request to the back-end server, which
then carries out all the relevant computation for addressing
the request; and (b) service download which downloads all the
data and code needed for running the service from the back-

Amogh Pandey
2020 18th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)

Amogh Pandey
ISBN 978-3-903176-29-4 © 2020 IFIP

end server and caches it on the edge server. The cost for these
two actions is different, depending for example on the amount
of network bandwidth needed or the latency incurred for each
of them. Motivated by empirical evidence [2], [10], a natural
assumption is that the cost of forwarding a single request to
the back-end server is lower than the cost of downloading
the entire service to cache it on the edge server [11]. Our
goal in this work is to design online service caching policies
for the application provider which aim to minimize the total
cost it incurs for serving requests, which is a combination
of the request forwarding cost, the service download cost
and the edge server rental cost. We consider two classes of
request arrival processes: (i) adversarial arrivals: the request
sequence is arbitrary and the performance of any online policy
is measured by its competitive ratio, which provides a worst-
case guarantee on its performance for any request arrival
sequence in comparison to the optimal offline policy, which
has knowledge of the entire arrival sequence a-priori. (ii) i.i.d.
stochastic arrivals: requests are generated according to an i.i.d.
stochastic process and we compare the expected cost of a
proposed policy with that of the optimal online policy.

A. Our Contributions

A natural policy for our setup is the Time-To-Live (TTL)
policy [12], which is popular in the content caching literature.
Under the TTL policy, each cache miss triggers a download of
the service to the edge server where it is then retained for some
fixed amount of time. We show that TTL performs poorly both
in terms of the competitive ratio for arbitrary arrivals and for
ii.d. stochastic arrivals with low arrival rates, irrespective of
the value of the TTL timer. Given the limitations of TTL,
we propose an online caching policy called RetroRenting
(RR) which uses the history of request arrivals to decide
when to cache or evict the service at the edge server. Under
the adversarial request setting, we show that RR is order-
optimal with respect to the competitive ratio in the class
of deterministic online policies. In addition, we also provide
performance guarantees for RR under i.i.d. arrivals and prove
that it compares very well with the optimal online policy in
this setting. In addition to our analytical results, we conduct
simulations using both synthetic and real world traces to
compare the performance of RR and its variants with the
optimal offline and online policies. Our simulations show
that the performance of RR is near optimal for all settings
considered. These results combined illustrate the universality
of RR.

B. Related Work

The emergence of such edge computing platforms [13]-[15]
has been accompanied with various academic works which
model and analyse the performance of such systems. We
briefly discuss some of the relevant works in the literature.

One approach towards designing efficient edge computing
systems is to formulate the design problem as a large one-
shot static optimization problem which aims to minimize the

cost of operating the edge computing platform [5], [7], [16]-
[18]. Our work differs from this line of work in that we
are interested in designing online algorithms which adapt
their service placement decisions over time depending on the
varying number of requests.

An approach to modeling time-varying requests is to use a
stochastic model as done in [19]-[21].Our work differs from
these works in that in addition to stochastic request models, we
also focus on the case of arbitrary request arrival processes and
provide ‘worst-case’ guarantees on the performance of our pro-
posed schemes instead of ‘average’ performance guarantees.
This can be vital in scenarios where the arrival patterns change
frequently over time, making it difficult to predict demand or
model it well as a stochastic process.

The work closest to ours is [11] which considers an edge
server with limited memory K and an arbitrary request process
for a catalogue of services. This work studies the design of
service caching policies which minimize the cost incurred by
the edge server for deploying the various services. The authors
propose an online algorithm called ReD/LeD and prove that
the competitive ratio of the proposed scheme is at most 10K.
Unlike [11], we study the problem from the perspective of an
application provider and design cost-efficient service caching
policies which dynamically decide when to cache or evict the
service at the edge.

Finally, as mentioned before, the problem of service caching
does resemble the content caching problem but with some key
differences. Content caching has a rich history, see for example
[9], [22]-[26]. A popular class of online caching policies is the
Time-To-Live (TTL) policy [12], which downloads a content
to the cache upon a cache miss and then retains it there for
a certain fixed amount of time. In this work, we consider a
variant of the TTL policy for service caching and demonstrate
that it performs poorly in several cases.

II. SYSTEM SETUP

A. Network Model

We study a system consisting of a back-end server and an
edge server in proximity to the end-user. The back-end server
always stores the service. The service can be cached on the
edge server by paying a renting cost. On paying this cost,
requests can be served at edge free of cost, subject to an upper
limit on the number of concurrent requests being served at
the edge. In addition, requests can be served by the back-end
server at a non-zero cost. The back-end server can serve all
the requests that are routed to it.

B. Arrival Process

We consider a time-slotted system and consider both ad-
versarial and stochastic arrival processes. In the adversarial
setting, we make no assumptions on the arrival sequence. In
the stochastic setting, we make the following assumption.

Assumption 1: (ii.d. stochastic arrivals) The number of
requests arriving in a time-slot is independent and indentically

distributed across time-slots. More specifically, let X; be the
number of requests arriving in time-slot ¢. Then, for all ¢,

P(X;=2a)=p, forx=0,1,2,---.

C. Sequence of Events in a Time-slot

The following sequence of events occurs in each time-
slot. We first have request arrivals. If the service is cached
on the edge server, requests are served locally subject to the
constraints on the computation power of the edge server, else
requests are forwarded to the back-end server. The system then
makes a caching decision (fetch/evict/no change).

D. Cost Model and Constraints

Our cost model builds on the model proposed in [11] and
extends it to the setting where cache space can be rented in a
dynamic manner by paying a renting cost. For a given caching
policy P, the total cost incurred in time-slot ¢, denoted by C7,
is the sum of the following three costs.

— Service cost (C’g’,t): Each request forwarded to the back-

end server is served at the cost of one unit.

— Fetch cost (CF,,): On each fetch of the service from the
back-end server to cache on the edge-server, a fetch cost
of M (> 1) units is incurred.

— Rent cost (C’Et): A renting cost of ¢(> 0) units is
incurred to cache the service on the edge server for a
time-slot.

The number of requests that can be served by the edge server
in a time-slot is limited to k € Z™T, where Z1 is the set of
all positive integers. Let r; be an indicator of the event that
the service is cached on the edge server during time-slot ¢. It
follows that

cP =CE,+CE, +CE,, 0
where, Cgt - Xy —min{X;,xk} ifr,=1
) X otherwise,
OF — M ifrt:Oandrt+1:1
! 0 otherwise,
c ifrp=1
CP p—
fut { 0 otherwise.

Remark 1: We limit our discussion to the case where ¢ €
[0, k) because, for ¢ > &, it is optimal to forward all requests
to the back-end server, irrespective of the value of M and the
arrival sequence.

E. Algorithmic Challenge

The algorithmic challenge is to design a policy which
decides when to cache the service on the edge server. Caching
policies can be divided into the following two classes.

Definition 1: (Types of Caching Policies)

— Offline Policies: A policy in this class knows the entire

request arrival sequence a-priori.

— Online Policies: A policy in this class does not have

knowledge of future arrivals.

We design an online policy which makes caching decisions
based on the request arrivals thus far and the various costs
and constraints, i.e., the rent cost (¢), the fetch cost (M), and
the edge service constraint (k).

F. Metric and Goal

The optimal offline and online policies serve as benchmarks
to evaluate the performance of the proposed policy. We use
different cost metrics for the adversarial and stochastic request
arrival settings.

1) Adversarial arrivals: For the adversarial setting, we
compare the performance of a policy P with the performance
of the optimal offline policy (OPT-OFF). The goal is to design
a policy P which minimizes the competitive ratio p” defined

as
P cr (a)

p= 223 COPT-OFF (g 2

where A is the set of all possible finite request arrival
sequences, C' (a), COPTOFF () are the overall costs of service
for the request arrival sequence a under online policy P and
the optimal offline policy respectively.

2) iid. stochastic arrivals: For i.i.d. stochastic arrivals
(Assumption 1), we compare the performance of a policy P
with the performance of the optimal online policy (OPT-ON)
. The goal is to minimize 07TD , defined as the ratio of the
expected cost incurred by policy P in T time-slots to that of
the optimal online policy in the same time interval. Formally,

%

t=1

; 3)

where CF is as defined in (1).

III. MAIN RESULTS AND DISCUSSION

Next, we state and discuss our main results. We provide an
outline of the proof of Theorem 1 in Section V. Refer to [27]
for detailed proofs of all results presented in this section.

A. Our Policy: RetroRenting (RR)

A caching policy determines when to fetch and cache the
service and when to evict the service from the cache. The RR
policy makes these decisions in each time-slot by evaluating
if it made the right decision in hindsight. We first provide an
overview of the RR policy.

To fetch: Let the service not be cached at the beginning of
time-slot ¢ and teyir < t be the time when the service was
most recently evicted by RR. The RR policy searches for a
time-slot 7 such that feicc < 7 < t, and the total cost incurred
is lower if the service is fetched in time-slot 7 — 1 and cached
during time-slots 7 to ¢ than if the service is not cached during
time-slots 7 to ¢. If there exists such a time 7, the RR policy
fetches the service in time-slot ¢.

To evict: Let the service be in the cache at the beginning
of time-slot ¢ and t¢fcn, < t be the time when the service was

most recently fetched by RR. The RR policy searches for a
time-slot 7 such that teyicc < 7 < t, and the total cost incurred
is lower if the service is not cached during time-slots 7 to ¢
and fetched in time-slot ¢ than if the service is cached during
time-slots 7 to t. If there exists such a time 7, the RR policy
evicts the service in time-slot ¢.

Refer to Algorithm 1 for a formal definition of the RR
policy. The notation used in Algorithm 1 is summarized in
Table I.

[Symbol | Description |

t Time index

M Fetch cost

c Rent cost per time-slot

K Maximum number of requests that can be served
by the edge server in a time-slot

Tt Number of requests arriving in time-slot ¢

rt Indicator variable; 1 if the service is cached
in time-slot ¢ and O otherwise

(z; — k)T | max{z; — x,0}

TABLE I: Notation used in Algorithms 1

Algorithm 1: RetroRenting (RR)

1 Input: Fetch cost M units, rent cost ¢ units per
time-slot, request arrival sequence: x;, t > 0

2 Output: Caching strategy 7, t > 0

3 Initialize: Caching variable r| = tgeich = teviet = 0

4 for each time-slot t do

5 Tt41 = Tt
6 if r, = 0 then
7 for t,,., <7 <tdo
8 if
t t
le > (t—7+1)c+M+Z(xl - k)T,
=T =T
then
9 T4l = 1, treeen = ¢
10 break
1 end
12 end
13 end
14 if r, = 1 then
15 for tfetch <T<tdo
16 if
t t
ZZIJI+M < (t—T+1)c+Z(a¢l —r)t,
l=7 l=T1
then
17 Ti41 = 0, tevie = ¢
18 break
19 end
20 end
21 end
22 end

Remark 2: Note that in time-slot ¢, the computation and
storage complexities of the RR policy scale as O(t) (if either
teteh = 0 Or tevice = 0). This is indeed a limitation of the RR

policy since, in the worst case, the computational and storage
complexities increase linearly with time.

To overcome this limitation, we propose an efficient variant
of the RR policy called the RR,, policy. The only difference
between the RR and RR,, policies is that, at time ¢, the RR,,
policy considers the arrival sequence in the previous at most u
time-slots to make its caching decision whereas the RR policy
can potentially look at the entire arrival sequence from ¢ =
0 to make its caching decision for each time-slot (refer to
lines 7 and 15 in Algorithm 1). Therefore, under RR,, the
range for 7 in lines 7 and 15 in Algorithm 1 are replaced with
max{teict, t — u} < 7 < t and max{trecn,t —u} < 7 < t
respectively.

Remark 3: Note that the computational and storage com-
plexity of the RR, policy is O(u) and does not scale with
time as was the case for the RR policy. Since x; > 0, for all
[, for the conditions in lines 7 and 15 of RR,, to be satisfied,
u> -2 and u > % respectively. Therefore, we impose the

K—c¢C
condition that v > max { Kj\f -, %

B. Performance guarantees for RR and RR,,

1) Adversarial arrivals: Our first theorem characterizes the
performance of RR in the adversarial arrivals setting.

Theorem 1: Let pRR be the competitive ratio of RR as
defined in (2). Then,

4c
RR o (5 F %€
p _<+M K

Since this result holds for all finite request arrival sequences,
Theorem 1 provides a worst-case guarantee on the perfor-
mance of the RR policy as compared to that of the optimal
offline policy. Recall that unlike the RR policy, the optimal
offline policy knows the entire arrival sequence a-priori.

The competitive ratio of RR improves as the fetch cost (M)
and rent cost (¢) increase, however, it increases linearly with
k. Our next result shows that the competitive ratio of any
deterministic online policy increases linearly with k.

Theorem 2: Let P be any deterministic online policy and
let p” be the competitive ratio of this policy as defined in (2).
Then,

1 if kK >
+0+M =

K
C

p’ >
otherwise.

From Theorems 1 and 2, we conclude that the RR policy
is order optimal with respect to the edge server computation
constraint (x) and the service fetch cost (M) for the setting
considered. This is one of the key results of this work. There
is a gap between the performance of RR and the bound on the
optimal policy with respect to the rent cost c.

While Theorem 1 gives a worst-case guarantee on the
performance of the RR policy, in our subsequent analytical and
simulation results, we observe that for the request sequences
considered, the performance of the RR policy is significantly
closer to that of the offline optimal policy than the bound in
Theorem 1 suggests.

2) Stochastic arrivals: Next we characterize the perfor-
mance of the RR and RR,, policies for i.i.d. stochastic arrivals
(Assumption 1, Section II). Recall that, under Assumption 1,
in each time-slot, the number of request arrivals is & with
probability p, for x =0,1,---.

Our next theorem charaterizes the performance of our
policies for stochastic arrivals.

Theorem 3: Let v = E[X;], 1 = E[min{Xy, x}] and the
function f and ¢ are defined as follows

exp <727(”7:g2%)
1 —exp (—2(“;726)2)
(A= 1) M(u— C>>) and

AK2
M)

(s, A\, M, p,c) _(MML)G)\MW

uw—-c

+ exp (—2

K—c

_ 2
exp(_gwgz

1 —exp (—2(0‘;7’;)2)

M—lig—mM>>.

c—p

+ exp (—2

Recall the definition of 0? given in (3).
— Case y > c:
AM

(ke +1)

RR < . o Ir,ufc ctrv—pu
o (T) < min (1 T
Ty
T NS RA, y Uy C)
e M)
AM M+c+v
AM | (Miety 4
O’RR“ (T) S min <1 o Ir,ufc—‘ (ctrv—p)
IRPP Q=i T
AM
wﬂm A\, M, p,c)).
Tle+v—p)
— Case p < c:

URR(T) < min (1 — B\—i]\/;ﬂ (w * 1)

A>1 T
T[]
+ jw;ug(ﬁ,)‘aMnuac))v
AM 7 (M+ct+v +1
O'RR“ (T) S min (1 _ Irc—u-l (v)
1< lemiu T
T — {)\JW'I
+ gk A Mo, C))~

Remark 4: The bounds obtained Theorem 3 hold for all i.i.d.
stochastic arrival processes. We note that the bounds worsen
as k increases. This is a consequence of using Hoeffding’s
inequality to bound the probability of certain events. It is
important to note that significantly tighter bounds can be
obtained for specific i.i.d. processes by using the Chernoff
bound instead of Hoeffding’s inequality. In the next section,

via simulations, we show that the performance of RR and its
variants does not worsen as x increases. We thus conclude that
the deterioration of the performance guarantees with increase
in K is a consequence of the analytical tools used and not
fundamental to RR and its variants.

We use Theorem 3 to conclude that for 7" large enough, the
bound on the ratio of the expected cost incurred by RR/RR,,
in T' time-slots to that of the optimal online policy (OPT-
ON) in the same time interval decays as M increases. Lemma
4 in [27] is an intermediate result which characterizes the
difference between the expected cost incurred in a time-slot
by our policies and the optimal online policy. From the lemma
we conclude that for ¢ large enough, the difference between
the cost incurred by RR/RR,, and the optimal online policy in
time-slot ¢, decays exponentially with M and |u — ¢|.

Often, policies designed with the objective of minimizing
the competitive ratio tend to perform poorly on average in
typical stochastic settings. Similarly, polices designed for
specific stochastic arrival processes can have poor competitive
ratios if they perform poorly for certain ‘corner case’ arrival
sequences. The performance guarantees for RR obtained in this
section show that RR performs well in both the adversarial and
the i.i.d. stochastic setting. This is a noteworthy feature of the
RR policy.

C. Performance of TTL

In this section, we focus on the TTL policy which is widely
used and studied in the classical caching literature. TTL serves
as a benchmark to compare the performance of RR and RR,,.

The TTL policy fetches and caches the service whenever
there is a miss, i.e., the service is requested but is not cached
on the edge server. There is a timer associated with the fetch,
which is set to a fixed value (L) right after the service is
fetched. If the service is not requested before the timer expires,
the service is evicted from the cache. If a request arrives while
the service the cached, the timer is reset to its initial value of
L. Refer to Algorithm 2 for a formal definition.

Algorithm 2: TTL Policy

1 Input: Request arrival sequence z;, ¢t > 0, TTL value
L

2 Output: Caching Strategy ry, t > 0

3 Initialize: Caching variable vy = 0 and timer = 0

4 for each time-slot t do

5 if z; = 0 then

6 if timer = 0 then

7 ‘ Tt+1 = 0

8 else

9 ‘ 741 = 1, timer = timer — 1
10 end
1 else

12 | 71 =1, timer = L
13 end
14 end

Our next result provides a lower bound on the competitive
ratio of the TTL policy.

Theorem 4: Let pT™ be the competitive ratio of the TTL
policy with TTL value L as defined in (2). Then,

14+ Le+ M
k+ Le+ M
¢+ min{Le, M}

if1<k<M +ec,

pTTL > '
otherwise.

The key takeaway from Theorem 4 is that unlike the RR
policy, the performance of the TTL policy deteriorates as the
fetch cost (M) increases. This is a consequence of the fact
that the TTL policy fetches and caches the service on a miss
irrespective of the value of M, whereas for high values of M,
RR and the optimal offline policy might choose not to fetch
the service at all. Note that the performance of both RR and
TTL deteriorates with increase in k.

Next, we characterize the performance of TTL for i.i.d.
stochastic arrivals.

Theorem 5: Let v = E[X;] and p = E[min{ Xy, x}]. Recall
the definition of o7 given in (3). If 41 < ¢,

1) min{(1 — po)(poM + ¢ — p), ¢ — p}
T v ’

STTL(T) > (1 _

From Theorem 5, we conclude that for low request arrival
rates (u < c), the performance of TTL deteriorates with
increases in M. A lemma used to prove this theorem show that
for low arrivals rates, the difference between the cost incurred
by TTL and the optimal online policy in time-slot ¢, increases
with M and ¢ — p. Contrary to this, the performance of RR
and RR, approaches the performance of the optimal online
policy as M increases (Theorem 3). We thus conclude that
for low arrival rates and high fetch cost, TTL is sub-optimal.

TTL policies perform well in content caching, where on a
miss, the requested content is fetched from the back-end server
by all policies including TTL. However, as discussed above,
on a miss in our service caching setting, there are two options:
(a) request forwarding which forwards the request to the back-
end server for service; and (b) service fetch which fetches all
the data and code needed for running the service from the
back-end server and caches it on the edge server. The cost
for these two actions is different. By definition, TTL always
takes the second option, whereas, for low request arrival rates
and high fetch cost, RR, its variants and the optimal online
and offline policies use the first option. This explains the poor
performance of TTL for service caching.

IV. SIMULATION RESULTS

In this section, we compare the performance of various
caching policies via simulations. From our analytical results,
we know that the Fixed TTL policy performs poorly for our
setting. Therefore, we compare our policy with an online
variant of the TTL policy proposed in [12]. The simulation
parameters are provided in the figure captions.

0.9 T T T
—¥ - TTL Online] .
B Ry, .
08 1| “5 RRu, ' K
=¥-RRin, : .
—B—RR
0.7 - Lower Bound-ON| | VK
§ —F— OPT-OFF | .
©® [} ‘
i; 0.6 : ’%
= ! .
Tosf ! *
) PR —: %
2,
2 040
Q
O
0.3 -
0.2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Renting cost (¢) per time slot
Fig. 1: Cost per time-slot as a function of storage cost (c) for

M = 4 for i.i.d. Bernoulli(p) arrivals with p = 0.4

A. Stochastic Arrivals

For the first set of simulations, we focus on arrival processes
satisfying Assumption 1. We compare the performance of RR,
RR,, TTL online, and the optimal offline policy. In addition
to these, we plot the lower bound on the cost incurred by any
online policy (Lemma 17 in [27]). Each data-point in the plots
is averaged over 10000 requests.

1) ii.d. Bernoulli Arrivals: In Figures 1-3, we consider
Bernoulli arrivals with parameter p, i.e., X; = 1 with prob-
ability p and X; = 0 otherwise. Recall that x > 1 and
= E[min{Xy, k}]. Since X; < 1 in this case, therefore,
w = p. We fix k = 1 and define v = max{nj‘fc,%}. We
compare the performance of RR, RR;q, RR5¢,, RR1ggy With
the optimal offline and TTL online policies. The gap between
RR,, and RR decreases with increase in u. The performance
of the RR policy is quite close to the lower bound on online
policies for all parameter values considered. The performance
gap between the optimal offline policy and the RR policy
is very small compared to the bound on competitive ratio
obtained in Theorem 1. We see that the gap between the
performance of the RR and optimal online policy increases as
M and/or |p — c| decrease. This can be explained as follows.
If © < ¢, the optimal online policy does not fetch/store the
service and forwards all the requests to the back-end server.
However, for small values of ¢ — u, and M, the condition
the RR policy checks to fetch and cache the service (Step 8
in Algorithm 1) is not very unlikely. This leads to multiple
fetch—store—evict cycles and therefore a higher cost than the
optimal online policy. As M and/or ¢ — p increase, this event
becomes less probable. The case when 1 > ¢ can be argued
along similar lines.

2) i.i.d. Poisson Arrivals: In Figure 4, we consider the
case where the arrival process is Poisson with parameter .
We vary k and define v = max { HA_'IC, %} We see that the
performance of all policies improves with increase in . The
performance of RR is very close that of the optimal offline
policy and the lower bound on online policies. As before, the

gap between RR, and RR decreases with increase in w.

. ke
— - TTL Online

036 - 3 - - A~ RR,,
kit Sl e g “o-Rey,
=%-RRio,
0.34 —B—RR
) Lower Bound-ON
B —— OPT-OFF
T 0a2
= A,
g 0.3 AA PN, e . — A A
-
%
S8\
:f~ -0 e -O--.
0.26 i S oL B S
2 4 6 8 10 12 14 16 18 20

Fetching cost M (p < ¢)
Fig. 2: Cost per time-slot as a function of the fetch cost (M)
for i.i.d. Bernoulli(p) arrivals with p = 0.25 and ¢ = 0.35

wruedd == TTL Online
04 | A LDl A RRyp,
AN W -©-RRs
-3%-RRyp0
—B—-RR
‘ 0.39 —9— Lower Bound-ON
= i,
3 —— OPT-OFF
)
& 038 R
] -
.= \
e} \
X \
g 0.37 o o
= R i il - S
& 036 ‘* * PR — -
[TR B N SRR S e e iRl e
_____ — *_ - x‘
0.35%
0.34 -
2 4 6 8 10 12 14 16 18 20

Fetching cost M (p > ¢)
Fig. 3: Cost per time-slot as a function of the fetch cost (M)
for i.i.d. Bernoulli(p) arrivals with p = 0.35 and ¢ = 0.25

A
44 L ~Jc- TTL Online
<A Ry,
-© - RRsp,
4.2 - %= RRu,
al —B-RR]
Lower Bound-ON
;3 38l 57— OPT Offline
T
d
é 36 -
T34t
3]
Rigat
-
S 3
O
28 | s
26
24 T TR

3 3.‘5 4‘& 4,‘5 E'; 5.‘5 é 6.‘5

Edge server constraint (k)
Fig. 4: Cost per time-slot as a function of the edge server
constraint (x) for i.i.d. Poisson arrivals with parameter A = 5,

M =10, and ¢ = 2

B. Trace-driven Simulations

For the next set of simulations, we use trace-data obtained
from a Google Cluster [28]. We use a time-slot duration small
enough to ensure that there is at most one request in a time-
slot. This trace-data has requests for four types of jobs/services
identified as “Job 07, “Job 17, “Job 2”7, and “Job 3”. In this
section, we present results for “Job 2” (Figures 5 and 6).
Results for the other jobs are qualitatively similar.

For this set of simulations, we fix x = 1 and v =

| [~%-TTL Online s

05 Il A RRyp, K
-©-RRy, .

-~ RRu, -

0.4 ||—E-BR WX

: —V— OPT-OFF *, -

Cost per time-slot for job2

0.1 O.‘2 O.‘3 O,‘4 0,‘5 0,‘6 0.‘7 0.‘8 0.9

Storage cost (c)
Fig. 5: Cost per time-slot as a function of storage cost (c) for
M = 10 for Job 2

-+
03 r +* - -~ TTL Online
e S A Ry,
- -@-RIL‘,K;
*- * -~ RRion,
-7 —B-RR
025 K —=7— OPT-OFF

0.2

0.15 -

Cost per time-slot for job2

014 R ol bk At Al (b

2 4 & 8 10 12 14 16 18 20
Fetching cost(M)
Fig. 6: Cost per time-slot as a function of the fetch cost (/)

for ¢ = 0.45 for Job 2

max { HA:[C, %} We compare the performance of RR and its

variants with the optimal offline policy and TTL online. The
performance of TTL online is the worst among these polices,
and the performance gap between TTL online and RR is
significant. We note that the performance gap between RR
and RRo,, RR5g, is significant whereas performance of the
RR g0 policy is very close to that or the RR policy. We also
note that the performance gap between the RR and optimal
offline policy is significantly lower than the the worst case
bound obtained in Theorem 1. For example, in Figure 6, for
M = 2, by Theorem 1, pRR < 3.7, while the ratio of the costs
in simulations is 1.2074.

V. PROOF OUTLINE FOR THEOREM I

We divide time into frames such that Frame ¢ for i € Z™
starts when OPT-OFF downloads the service for the i time.
We refer to the time interval before the beginning of the first
frame as Frame 0. Note that, in all frames, except maybe the
last frame, there is exactly one eviction by OPT-OFF.

We use the properties of RR and OPT-OFF to show that each
frame in which OPT-OFF evicts the service has the following
structure (Figure 7). RR fetches and evicts the service exactly
once each, RR does not cache the service at the beginning
of the frame, the fetch by RR in Frame i is before OPT-OFF
evicts the service in Frame ¢, and the eviction by RR in Frame
1 is after OPT-OFF evicts the service in Frame ¢. We note that

] i.a] 7.b L bec | odd

[T 1 1 i

%L
Frame ¢

] | OPT-OFF

[N RR

Fig. 7: Illustration of the i frame. Downward/upward arrows
represent fetches/evictions. Black and red arrows correspond
to the OPT-OFF and RR policy respectively. The two bars
below the timeline indicate the state of the cache under OPT-
OFF and RR. The solid black and solid red portions represent
the intervals during with OPT-OFF and RR cache the service
respectively

both RR and OPT-OFF fetch exactly once in a frame and
therefore, the fetch cost under RR and OPT-OFF is identical
for both policies.

We divide Frame 7 into four sub-frames (i.a, i.b., i.c. and i.d.)
as shown in Figure 7 and upper bound the difference between
the service and rent costs incurred by RR and OPT-OFF in
each sub-frame. The cost incurred by RR and OPT-OFF in
Frame 0 is equal. We then focus on the last frame. If OPT-
OFF does evict the service in the last frame, the analysis is
identical to that of the previous frame. Else, we upper bound
the ratio of the cost incurred by RR and cost incurred by OPT-
OFF in the frame. The final result then follows from stitching
together the results obtained for individual frames.

VI. CONCLUSIONS

In this work, we focus on designing online strategies for
service caching on edge computing platforms. We show that
the widely used and studied TTL policies do not perform
well in this setting. In addition, we propose an online caching
policy named RR and its variants. Via analysis for adversarial
and i.i.d. stochastic arrivals and simulations for synthetic and
trace-based arrival processes, we show that RR and its variants
perform well for a wide array of request arrival processes.

VII. ACKNOWLEDGEMENTS

This work was supported in part by a SERB grant on
“Content Caching and Delivery over Wireless Networks” and
seed grants from IIT Bombay.

REFERENCES

[1] N. Fernando, S. W. Loke, and W. Rahayu, “Mobile cloud computing: A
survey,” Future generation computer systems, vol. 29, no. 1, pp. 84-106,
2013.

[2] M. Satyanarayanan, “The emergence of edge computing,” Computer,
vol. 50, no. 1, pp. 30-39, 2017.

[3] 2019, aWS: https://aws.amazon.com.

[4] 2019, azure: https://azure.microsoft.com.

[5] L. Chen and J. Xu, “Collaborative service caching for edge computing
in dense small cell networks,” arXiv preprint arXiv:1709.08662, 2017.

[6] D. Willis, A. Dasgupta, and S. Banerjee, “Paradrop: a multi-tenant plat-
form to dynamically install third party services on wireless gateways,”
in Proceedings of the 9th ACM workshop on Mobility in the evolving
internet architecture. ACM, 2014, pp. 43-48.

[7]

[8]

[9]
[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

T. X. Tran, K. Chan, and D. Pompili, “COSTA: cost-aware
service caching and task offloading assignment in mobile-edge
computing,” in [16th Annual IEEE International Conference on
Sensing, Communication, and Networking, SECON 2019, Boston,
MA, USA, June 10-13, 2019, 2019, pp. 1-9. [Online]. Available:
https://doi.org/10.1109/SAHCN.2019.8824854

C. Mouradian, D. Naboulsi, S. Yangui, R. H. Glitho, M. J. Morrow,
and P. A. Polakos, “A comprehensive survey on fog computing: State-
of-the-art and research challenges,” IEEE Communications Surveys &
Tutorials, vol. 20, no. 1, pp. 416-464, 2017.

S. Borst, V. Gupta, and A. Walid, “Distributed caching algorithms for
content distribution networks,” Mar. 2010, pp. 1478-1486.

K. Ha, Y. Abe, T. Eiszler, Z. Chen, W. Hu, B. Amos, R. Upadhyaya,
P. Pillai, and M. Satyanarayanan, “You can teach elephants to dance:
agile vm handoff for edge computing,” in Proceedings of the Second
ACM/IEEE Symposium on Edge Computing. ACM, 2017, p. 12.

T. Zhao, I.-H. Hou, S. Wang, and K. Chan, “Red/led: An asymptotically
optimal and scalable online algorithm for service caching at the edge,”
IEEE Journal on Selected Areas in Communications, vol. 36, no. 8, pp.
1857-1870, 2018.

D. Carra, G. Neglia, and P. Michiardi, “Ttl-based cloud caches,” in
IEEE INFOCOM 2019-1EEE Conference on Computer Communications.
IEEE, 2019, pp. 685-693.

C. Puliafito, E. Mingozzi, F. Longo, A. Puliafito, and O. Rana, “Fog
computing for the internet of things: A survey,” ACM Trans. Internet
Technol., vol. 19, no. 2, pp. 18:1-18:41, Apr. 2019. [Online]. Available:
http://doi.acm.org/10.1145/3301443

Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey
on mobile edge computing: The communication perspective,” [EEE
Communications Surveys & Tutorials, vol. 19, no. 4, pp. 2322-2358,
2017.

P. Mach and Z. Becvar, “Mobile edge computing: A survey on archi-
tecture and computation offloading,” IEEE Communications Surveys &
Tutorials, vol. 19, no. 3, pp. 1628-1656, 2017.

S. Pasteris, S. Wang, M. Herbster, and T. He, “Service placement
with provable guarantees in heterogeneous edge computing systems,” in
IEEE INFOCOM 2019-1EEE Conference on Computer Communications.
IEEE, 2019, pp. 514-522.

S. Bi, L. Huang, and Y.-J. A. Zhang, “Joint optimization of service
caching placement and computation offloading in mobile edge comput-
ing system,” arXiv preprint arXiv:1906.00711, 2019.

L. Yang, J. Cao, G. Liang, and X. Han, “Cost aware service placement
and load dispatching in mobile cloud systems,” IEEE Transactions on
Computers, vol. 65, no. 5, pp. 1440-1452, 2015.

J. Xu, L. Chen, and P. Zhou, “Joint service caching and task offloading
for mobile edge computing in dense networks,” in IEEE INFOCOM
2018-IEEE Conference on Computer Communications. 1EEE, 2018,
pp. 207-215.

L. Chen and J. Xu, “Budget-constrained edge service provision-
ing with demand estimation via bandit learning,” arXiv preprint
arXiv:1903.09080, 2019.

S. Wang, R. Urgaonkar, M. Zafer, T. He, K. Chan, and K. K. Leung,
“Dynamic service migration in mobile edge-clouds,” in 2015 IFIP
Networking Conference (IFIP Networking). 1EEE, 2015, pp. 1-9.

B. Tan and L. Massoulié, “Optimal content placement for peer-to-peer
video-on-demand systems,” vol. 21, no. 2, pp. 566-579, Apr. 2013.
[Online]. Available: http://dx.doi.org/10.1109/TNET.2012.2208199

A. Wolman, G. M. Voelker, N. Sharma, N. Cardwell, A. Karlin, and
H. M. Levy, “On the scale and performance of cooperative web proxy
caching,” in Proc. ACM SOSP, 1999, pp. 16-31.

L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, “Web caching
and Zipf-like distributions: Evidence and implications,” Mar. 1999, pp.
126-134.

D. D. Sleator and R. E. Tarjan, “Amortized efficiency of list update and
paging rules,” Communications of the ACM, vol. 28, no. 2, pp. 202-208,
1985.

L. A. Belady, “A study of replacement algorithms for a virtual-storage
computer,” IBM Systems journal, vol. 5, no. 2, pp. 78-101, 1966.

L. Narayana, S. Moharir, and N. Karamachandani, “Retrorenting:
An online policy for service caching at the edge,” arXiv preprint
arXiv:1912.11300, 2019.

J. L. Hellerstein, “Google cluster data: Google ai blog,” 2010.

