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Abstract—We consider a system with a single source that
measures/tracks a time-varying quantity and periodically at-
tempts to report these measurements to a monitoring station.
Each update from the source has to be scheduled on one of K
available communication channels. The probability of success of
each attempted communication is a function of the channel used.
This function is unknown to the scheduler.

The metric of interest is the Age-of-Information (AoI), formally
defined as the time elapsed since the destination received the
recent most update from the source. We model our scheduling
problem as a variant of the multi-arm bandit problem with
communication channels as arms. We characterize a lower bound
on the AoI regret achievable by any policy and characterize the
performance of UCB, Thompson Sampling, and their variants.
In addition, we propose novel policies which, unlike UCB and
Thompson Sampling, use the current AoI to make scheduling
decisions. Via simulations, we show the proposed AoI-aware
policies outperform existing AoI-agnostic policies.

I. INTRODUCTION

We consider a learning problem that focuses on the metric
of Age of Information (AoI), introduced in [1]. AoI is formally
defined as the time elapsed since the destination received the
recent most update from the source. It follows that AoI is a
measure of the freshness of the data available at the intended
destination which makes it a suitable metric for time-sensitive
systems like smart homes, smart cars, and other IoT based
systems. Since its introduction, AoI has been used in areas
like caching, scheduling, energy harvesting, and channel state
information estimation. A comprehensive survey of AoI-based
works is available in [2].

We focus on a system consisting of a single source that
measures/tracks a time-varying quantity. The source updates a
monitoring station by sending periodic updates using any one
of K available communication channels at a given time (Figure
1). The probability of an attempted update succeeding is
independent across communication channels and independent
and identically distributed (i.i.d.) across time-slots for each
channel. Channel statistics are unknown to the scheduler. AoI
increases by one on each failed update and resets to one
on each successful update. The goal is to determine which
communication channel to use in each time-slot in order to
minimize the cumulative AoI over a finite time-interval of T
consecutive time-slots. We view our work as a key first step
towards studying real IoT-type systems which have multiple
sensors updating a central monitoring station via multiple
communication channels.

Like the standard multi-arm bandit (MAB) problem and
its numerous variants, our scheduling problem experiences
a trade-off between exploring the various communication
channels and exploiting the most promising communication
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Fig. 1: A system consisting of a source, a monitoring station,
and five communication channels. The source tracks a time-
varying quantity and sends periodic updates to the monitoring
station using any one of the five channels for each update.

channel, as observed from past observations. Henceforth, we
refer to our problem as AoI bandits. The pseudo-regret of a
policy at time T as the difference between the cumulative AoI
in the first T time-slots under that policy and the cumulative
AoI in the first T time-slots by the “genie” policy which uses
the (statistically) best channel in each time-slot.

The key difference between our problem and the classical
MAB problem is that since AoI is correlated across time-slots,
the scheduling decision made in a time-slot has a cascading
effect on the regret accumulated in future time-slots. Variants
of the classical MAB problem like queuing bandits [3], [4] also
exhibit this characteristic. This time-correlation has significant
implications for both algorithm design and analysis.

Since the potential regret accumulated in a time-slot is
a function of the current AoI, it is crucial to incorporate
the current AoI in making scheduling decisions. We refer
to policies that do this as AoI-aware policies and refer to
policies that do not incorporate this information into their
decision making as AoI-agnostic policies. Popular policies like
UCB and Thompson Sampling are AoI-agnostic as they make
decisions based only on the number of times each channel
is used and the total number of successful transmissions on
each channel. The performance analysis of policies for AoI
bandits requires a novel approach where we upper bound the
regret accumulated in all future time-slots as a result of using
a sub-optimal channel in a time-slot.

A. Our Contributions

Lower bound on AoI regret: We show that the AoI regret
of any α-consistent policy is Ω(K log T ).

Performance of AoI-agnostic policies: We show that the AoI
regret of UCB [5] and Thompson Sampling [6] is O(K log2 T )
and the AoI regret of Q-UCB [3] and Q-Thompson Sampling
[3] is O(K log4 T ).
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New AoI-aware policies: We propose variants of UCB,
Thompson Sampling, Q-UCB, and Q-Thompson Sampling
which work in two phases. When AoI is “low”, the variants
mimic the corresponding original policies and when AoI is
“high”, the variants only exploit based on past observations.
Via simulations, we show that the proposed variants outper-
form the original AoI-agnostic policies.

B. Related Work

In this section, we focus on AoI based work most relevant
to our setting. Scheduling to minimize AoI has been explored
in a variety of settings [7]–[12]. The key difference between
these works and our work is that in these works, channel
statistics and/or channel state information is assumed to be
known, whereas we work in the setting where channel statistics
are unknown and have to be learned. In addition, some of
these works focus on the infinite time-horizon and evaluate
the steady-state performance, whereas we provide finite-time
guarantees.

A multi-arm bandit based approach to scheduling problems
to minimize queue-length is the focus of [3], [4], [13]–[21].
The focus in [13]–[21] is on the infinite horizon problem,
whereas [3], [4] focus on the finite horizon setting. The key
difference between [3], [4] and our work is that their metric
is queue-length regret whereas we focus on AoI regret. We
evaluate the performance of policies proposed in [3] for our
metric. The policies proposed in [4] cannot be applied in our
setting due to the difference in the evolution of queue-length
and AoI.

II. SETTING

A. Our System

We consider a system with a source and a monitoring
station. The source tracks/measures a time-varying quantity
and relays its measurements to the monitoring station via K
communication channels as shown in Figure 1. We use Ci,
1 ≤ i ≤ K to denote the K channels. Time is divided
into slots. In each time-slot, the source attempts to update
the monitoring station by sending its current measurement
via one of the K communication channels. Each attempted
communication via Ci is successful with probability µi and
unsuccessful otherwise, independent of all other channels and
across time-slots. The values of the µis are unknown to the
scheduler. For a problem instance µ, let µmin = min

i=1:K
µi,

k∗ = arg max
k=1:K

µk, and µ∗ = µk∗ . We assume that µmin > 0.

B. Metric: Age-of-Information Regret (AoI Regret)

The age-of-information is a metric that measures the fresh-
ness of information available at the monitoring station. It is
formally defined as follows.

Definition 1 (Age-of-Information (AoI)). Let a(t) denote the
AoI at the monitoring station in time-slot t and u(t) denote the
index of the time-slot in which the monitoring station received

the latest update from the source before the beginning of time-
slot t. Then,

a(t) = t− u(t).

By definition,

a(t) =

{
1 if the update in slot t− 1 succeeds
a(t− 1) + 1 otherwise.

Let aP(t) be the AoI in time-slot t under a given policy
P , and let a∗(t) be the corresponding AoI under the genie
policy that always uses the optimal channel, i.e., Ck∗ , where
k∗ = arg max

1≤k≤K
µk. We define the AoI regret at time T as

the cumulative difference in expected AoI for the two policies
in time-slots 1 to T .

Definition 2 (Age-of-Information Regret (AoI Regret)). AoI
regret under policy P is denoted by RP(T ) and

RP(T ) =
T∑
t=1

E[aP(t)− a∗(t)]. (1)

For concreteness and technical convenience, we make the
following assumption on the initial state of the system.

Assumption 1 (Initial Conditions). The system starts operat-
ing in time-slot t = −∞ and the source sends an update to
the monitoring station using one channel in each time-slot.
Any candidate policy starts making scheduling decisions at
t = 1. The policy does not use information from observations
in time-slots t ≤ 0 to make decisions in time-slots t ≥ 1.

The goal is to design a scheduling policy/algorithm1 which
minimizes AoI regret (Definition 2).

III. MAIN RESULTS AND DISCUSSION

In this section, we state and discuss our main results. A
summary of our analytical results is provided in Table I. In
addition to this, we propose new policies and compare the
performance with known policies via simulations.

Algorithm Regret
Any α−consistent policy Ω(K log T )

UCB [5] O(K log2 T )

Thompson Sampling [6] O(K log2 T )

Q-UCB [3] O(K log4 T )

Q-Thompson Sampling [3] O(K log4 T )

TABLE I: Summary of our analytical results

A. Lower Bound on AoI Regret

We first provide a lower bound on the performance of any
α−consistent policy defined as follows.

Definition 3. (α−consistent policies [22]) Let k(s) denote the
index of the channel scheduled in time-slot s. A scheduling

1We use the terms policy and algorithm interchangeably.



policy is said to be an α−consistent policy for α ∈ (0, 1), if
for any channel success probability vector µ, there exists a
constant C(µ) such that

E

[
t∑

s=1

1{k(s) = k}

]
≤ C(µ)tα, ∀k 6= k∗.

Theorem 1. (Lower Bound) For any α−consistent policy P ,

RP(T ) ≥ (K − 1)D(µ)

µ∗
((1− α) log T − log(4KC)) ,

where D(µ) = ∆

KL(µmin,
µ∗+1

2 )
, ∆ = µ∗ −max

k 6=k∗
µk.

We thus conclude that the AoI regret of any α−consistent
policy scales as Ω(K log T ).

B. AoI Regret of Popular AoI-agnostic Policies

Definition 4 (AoI-Agnostic Policies). A policy is AoI-agnostic
if, given past scheduling decisions and the number of success-
ful updates sent via each of the K channels in the past, it
does not explicitly use age information in a time-slot to make
scheduling decisions.

We now characterize the performance of four known AoI-
agnostic policies, namely, UCB [5], Thompson Sampling (TS)
[6], Q-UCB [3], and Q-Thompson Sampling (Q-TS) [3].

The UCB and Thompson Sampling policies are known to
perform well for MAB and Q-UCB, and Q-Thompson Sam-
pling are variants of UCB and Thompson Sampling respec-
tively, proposed in [3] for queueing bandits. The difference
between the original policies and their “Q-” variants is that,
in each time-slot, the variants force the policy to explore with
a probability which decays with time, similar to the ε-greedy
policy proposed in [5]. For the sake of completeness, we also
provide a formal description of these policies.

Algorithm 1: UPPER CONFIDENCE BOUND (UCB)

1 Initialise: Set µ̂k = 0 to be the estimated success
probability of Channel k, Tk(0) = 0 ∀ k ∈ [K].

2 while 1 ≤ t ≤ K do
3 Schedule update on Channel k(t) = t
4 Receive rewards Xk(t)(t) ∼ Ber(µk(t))
5 µ̂k(t) = Xk(t)(t)
6 Tk(t)(t) = 1
7 t = t+ 1

8 while t ≥ K + 1 do
9 Schedule update on Channel k(t) such that

k(t) = arg max
k∈[K]

µ̂k(t) +

√
8 log t

Tk(t− 1)

Receive reward Xk(t)(t) ∼ Ber(µk(t))
10 µ̂k(t) =

(µ̂k(t) · Tk(t)(t− 1) +Xk(t)(t))/(Tk(t)(t− 1) + 1)
11 Tk(t)(t) = Tk(t)(t− 1) + 1
12 t = t+ 1

In the following we bound regret of each of these policies.
For notational convenience write Let c = −1

log(1−µ∗) .

Theorem 2. (Performance of UCB) Consider any problem
instance µ. Under Assumption 1, we have

RUCB(T ) ≤


1
µmin

+ c log T
µmin

(
1 + (K − 1)×(

32 log T
∆2 + 1 + π2

3

))
, for T > K(

1
µmin
− 1

µ∗

)
T, for T ≤ K.

We thus conclude that AoI regret of UCB scales as
O(K log2 T ). The proof of Theorem 2 first characterizes the
AoI regret as a function of the expected number of times a
sub-optimal channel is scheduled under UCB. The result then
follows using a known upper bound from [5] on this quantity.

Remark 1. There is a gap between the lower bound obtained
in Theorem 1 and the bound obtained for UCB in Theorem 2.
In subsequent results, we see that a gap exists for TS, Q-UCB,
and Q-TS as well. Closing this gap, either through tighter
analytical results or designing a policy that provably meets
the lower bound obtained in Theorem 1 is an open problem.

Algorithm 2: THOMPSON SAMPLING (TS)

1 Initialise: Set µ̂k = 0 to be the estimated success
probability of Channel k, Tk(0) = 0 ∀ k ∈ [K].

2 while t ≥ 1 do
3 αk(t) = µ̂k(t)Tk(t− 1) + 1,
4 βk(t) = (1− µ̂k(t))Tk(t− 1) + 1,
5 For each k ∈ [K], pick a sample θ̂k(t) of

distribution,

θ̂k(t) ∼ Beta(αk(t), βk(t)).

Schedule update on Channel k(t) such that

k(t) = arg max
k∈[K]

θ̂k(t)

Receive reward Xk(t)(t) ∼ Ber(µk(t))
6 µ̂k(t) =

(µ̂k(t) · Tk(t)(t− 1) +Xk(t)(t))/(Tk(t)(t− 1) + 1)
7 Tk(t)(t) = Tk(t)(t− 1) + 1
8 t = t+ 1

Theorem 3. (Performance of Thompson Sampling) Consider
any problem instance µ. Then, under Assumption 1, we have

RTS(T ) ≤

{
1
µmin

+ c log T
µmin

(1 + O(K log T )) , for T > K(
1
µmin
− 1

µ∗

)
T, for T ≤ K.

We thus conclude that AoI regret of TS scales as
O(K log2 T ). The proof of Theorem 3 follows on the same
lines as that of Theorem 2 using known results for TS [23].



Algorithm 3: Q-UPPER CONFIDENCE BOUND (Q-
UCB)

1 Initialise: Set µ̂k = 0 to be the estimated success
probability of Channel k, Tk(0) = 0 ∀ k ∈ [K].

2 while t ≥ 1 do
3 let E(t) ∼ Ber

(
min

{
1, 3K log2 t

t

})
4 if E(t) = 1 then
5 Explore: Schedule update on a channel chosen

uniformly at random
6 else
7 Exploit: Schedule update on Channel k(t) such

that

k(t) = arg max
k∈[K]

µ̂k(t) +

√
log2 t

2Tk(t− 1)

8 Receive reward Xk(t)(t) ∼ Ber(µk(t))
9 µ̂k(t) =

(µ̂k(t) · Tk(t)(t− 1) +Xk(t)(t))/(Tk(t)(t− 1) + 1)
10 Tk(t)(t) = Tk(t)(t− 1) + 1
11 t = t+ 1

Theorem 4. (Performance of Q-UCB) Consider any problem
instance µ. Under Assumption 1, there exists a constant t0
such that

RQ-UCB(T ) ≤


c log T+1+cK log4 T+O( K

T2 )
µmin

for T > t0(
1
µmin
− 1

µ∗

)
T, for T ≤ t0.

We thus conclude that AoI regret of Q-UCB scales as
O(K log4 T ). The proof of Theorem 4 first characterizes the
AoI regret as a function of the expected number of times a
sub-optimal channel is scheduled under Q-UCB. The result
then follows using results in [3].

Theorem 5. (Performance of Q-TS) Consider any problem
instance µ. There exists a constant t0 such that

RQ-TS(T ) ≤


c log T+1+cK log4 T+O( K

T2 )
µmin

for T > t0(
1
µmin
− 1

µ∗

)
T, for T ≤ t0.

We conclude that AoI regret of Q-Thompson Sampling
scales as O(K log4 T ). The proof of Theorem 5 follows on
the same lines as that of Theorem 4.

C. Our AoI-aware Policies

In this section, we propose AoI-aware variants of the four
policies discussed in the previous section.

In the classical MAB with Bernoulli rewards, the contri-
bution of a time-slot to the overall regret is upper bounded
by one, but in AoI bandits it can be more than one. Also,
unlike the MAB, for AoI bandits, the difference between AoIs
under a candidate policy and the genie policy in a time-slot
can be unbounded. This motivates the need to take the current
AoI value into account when making scheduling decisions.

Algorithm 4: Q-THOMPSON SAMPLING (Q-TS)

1 Initialise: Set µ̂k = 0 to be the estimated success
probability of Channel k, Tk(0) = 0 ∀ k ∈ [K].

2 while t ≥ 1 do
3 let E(t) ∼ Ber

(
min

{
1, 3K log2 t

t

})
4 if E(t) = 1 then
5 Explore: Schedule update on a channel chosen

uniformly at random
6 else
7 Exploit:
8 αk(t) = µ̂k(t)Tk(t− 1) + 1,
9 βk(t) = (1− µ̂k(t))Tk(t− 1) + 1,

10 For each k ∈ [K], pick a sample θ̂k(t) of
distribution,

θ̂k(t) ∼ Beta(αk(t), βk(t)).

Schedule update on Channel k(t) such that

k(t) = arg max
k∈[K]

θ̂k(t)

11 Receive reward Xk(t)(t) ∼ Ber(µk(t))
12 µ̂k(t) =

(µ̂k(t) · Tk(t)(t− 1) +Xk(t)(t))/(Tk(t)(t− 1) + 1)
13 Tk(t)(t) = Tk(t)(t− 1) + 1
14 t = t+ 1

Intuitively, it makes sense to explore when AoI is low and
exploit when AoI is high since the cost of making a mistake is
much higher when AoI is high. We use this intuition to design
AoI-aware policies. The key idea behind these policies is that
they mimic the original policies when AoI is below a threshold
and exploit when AoI is equal to or above a threshold, for an
appropriately chosen threshold.

The first two policies (Algorithm 5 and Algorithm 6 in
Appendix A of [24]) are variants of Thompson Sampling and
UCB respectively. These policies maintain an estimate of the
success probability of the best arm, denoted by µ̂∗. When
AoI is not more than 1

µ̂∗ , the two policies mimic UCB and
Thompson Sampling respectively, and exploit the “best” arm
(based on past observations) otherwise. The third and fourth
policies are variants of Q-UCB and Q-Thompson Sampling.
When AoI is one, the two policies mimic Q-UCB and Q-
Thompson Sampling respectively and exploit the “best” arm
(based on past observations) otherwise. These policies are
formally defined in Appendix A of in [24] (Algorithms 7 and
8).

In the next section, we compare the performance of all eight
policies via simulations.

IV. SIMULATIONS

We present two sets of simulation results. In the first
set of results (Figures 2, 3, and 4), we consider the first
five parameter settings in Table II. We fix the number of



Algorithm 5: AOI-AWARE THOMPSON SAMPLING
(AA-TS)

1 Initialise: Set µ̂k = 0 to be the estimated success
probability of Channel k, Tk(0) = 0 ∀ k ∈ [K].

2 while t ≥ 1 do
3 αk(t) = µ̂k(t)Tk(t− 1) + 1,
4 βk(t) = (1− µ̂k(t))Tk(t− 1) + 1,
5 Let limit(t) = min

k∈[K]

αk(t)+βk(t)
αk(t)

6 if a(t− 1) > limit(t) then
7 Exploit: Select channel with highest estimated

success probability
8 else
9 Explore:

10 For each k ∈ [K], pick a sample θ̂k(t) of
distribution,

θ̂k(t) ∼ Beta(αk(t), βk(t)).

Schedule update on Channel k(t) such that

k(t) = arg max
k∈[K]

θ̂k(t)

11 Receive reward Xk(t)(t) ∼ Ber(µk(t))
12 µ̂k(t) =

(µ̂k(t) · Tk(t)(t− 1) +Xk(t)(t))/(Tk(t)(t− 1) + 1)
13 Tk(t)(t) = Tk(t)(t− 1) + 1
14 t = t+ 1

arms to five and vary the range of success probabilities of
these five arms. The success probability of the five arms is
equally spaced in this range, for example, if the range is
0.1 to 0.3, the success probabilities for the five arms are
{0.1, 0.15, 0.2, 0.25, 0.3}. In the second set of results (Figures
5, 6, and 7), we consider the last five parameter settings in
Table II. We fix the range of success probabilities and vary the
number of arms. As in the first set of simulations, the success
probability of the arms is equally spaced in the specified
range. Each reported data-point is the average value of 1000
independent iterations.

Setting Range Number of Arms (K)
1.a [0.1; 0.3] 5
1.b [0.1; 0.4] 5
1.c [0.1; 0.5] 5
1.d [0.1; 0.6] 5
1.e [0.1; 0.7] 5
2.a [0.05; 0.9] 2
2.b [0.05; 0.9] 4
2.c [0.05; 0.9] 6
2.d [0.05; 0.9] 8
2.e [0.05; 0.9] 10

TABLE II: Simulation parameters settings. The success prob-
ability of the arms is equally spaced in the specified range.

Due to space constraints, we show the time-evolution of
regret for two of the five settings in each set. In addition, we
show the regret at T = 10000 for all five settings in each set.

Consistent with expectations, AoI-agnostic policies are out-
performed by their AoI-aware versions across all settings. The
most notable observation is that AA-TS consistently outper-
forms all other policies, followed closely by TS. Also, the
performance of AA-TS improves significantly relative to TS
as the uniform gap between the success probabilities decreases,
i.e., the optimal channel becomes harder to find. Notably, TS
and Q-TS always outperform UCB and Q-UCB respectively,
for all settings considered. Q-TS performs significantly worse
than TS, but the same does not always hold true for Q-UCB
and UCB respectively, which only seem to follow this trend for
a sufficiently high success probability of the optimal channel.
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Fig. 2: AoI regret as a function of time for Setting 1.b

V. PROOFS

In this section, we discuss the proofs of the results presented
in Section III. Some details have been relegated to Appendix
B of [24] due to space constraints.

A. Proof of Theorem 1

To prove this theorem, we construct an alternative service
process described in [3], such that under any scheduling policy,
the AoI evolution for this system has the same distribution as
that for the original system. The service process is constructed
as follows: let {U(t)}t≥1 be i.i.d random variables distributed
uniformly in (0, 1). Let the service process for Channel k
be given by Rk(t) = 1{U(t) ≤ µk} for all t. Note that
E[Rk(t)] = µk, i.e., the marginals of the service offered by
each channel under this constructions is the same as that in
the original system.
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Fig. 3: AoI regret as a function of time for Setting 1.e

1.a 1.b 1.c 1.d 1.e
0

2000

4000

6000

8000

R(
10

00
0)

Q-UCB
AA Q-UCB
Q-TS
AA Q-TS
UCB
AA UCB
TS
AA TS

1.a 1.b 1.c 1.d 1.e
Parameter Setting

250

500

750

R(
10

00
0) TS

AA TS

Fig. 4: AoI regret at T = 10000 for Settings 1.a – 1.e

The proof of the claim that for any scheduling policy, the
AoI evolution for this system with coupled service processes
across channels has the same distribution as that for the
original system follows using arguments from Section 8.1 in
[3]. We use the following Lemma from [3] to prove Theorem
1.

Lemma 1 (Corollary 20, [3]). Let Tk(t) be the number of
time-slots in which Channel k is used in the time-interval 1
to t − 1. For a problem instance µ, let µmin = min

i=1:K
µi > 0

and µ∗ = max
i=1:K

µi. For any α−consistent policy P , there exist
constants τ and C, s.t. for any t > τ ,

∆
∑
k 6=k∗

E [Tk(t+ 1)]
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Fig. 5: AoI regret as a function of time for Setting 2.b
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Fig. 6: AoI regret as a function of time for Setting 2.d

≥ (K − 1)D(µ) ((1− α) log t − log(4KC)) ,

where D(µ) = ∆

KL(µmin,
µ∗+1

2 )
, and ∆ = µ∗ −max

k 6=k∗
µk.

Proof of Theorem 1. Let the AoI in time-slot t, under an
α−consistent policy and the genie policy be denoted by a(t)
and a∗(t) respectively. Let S(t) and S∗(t) be indicator random
variables denoting successful updates in time-slot t by an
α−consistent policy and the genie policy respectively. By
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Fig. 7: AoI regret at T = 10000 for Settings 2.a – 2.e

definition,

a(t) = (1− S(t))(a(t− 1) + 1) + S(t),

a∗(t) = (1− S∗(t))(a∗(t− 1) + 1) + S∗(t).

It follows that

a(t)− a∗(t) =(1− S(t))(a(t− 1) + 1) + S(t)

− (1− S∗(t))(a∗(t− 1) + 1)− S∗(t).

In the coupled system, a∗(t) ≤ a(t), for all t. Therefore,

a(t)− a∗(t) ≥ (S∗(t)− S(t))(a∗(t− 1)).

Taking expectations, it follows that

E [a(t)− a∗(t)] ≥ E [S∗(t)− S(t)] · E [a∗(t− 1)] ,

since a∗(t − 1) is independent of S∗(t) and S(t). Since the
genie policy always uses the best channel, a∗(t) is a geometric
random variable with parameter µ∗. It follows that E [a∗(t)] =
1
µ∗ , and therefore,

RP(T ) ≥ 1

µ∗

T∑
t=1

E [S∗(t)− S(t)] . (2)

Let Yk(t) be an indicator random variable denoting if an
update sent on Channel k in time-slot t will be successful. Let
Y ∗(t) be an indicator random variable denoting if an update
sent on the optimal channel in time-slot t will be successful.
Let k(t) by the index of the channel used by the α−consistent
policy in time-slot t. It follows that

S∗(t) = Y ∗(t) and S(t) =

K∑
k=1

1{k(t) = k}Yk(t).

Therefore,

E [S∗(t)− S(t)] = E

∑
k 6=k∗

1{k(t) = k}Yk(t)



=
∑
k 6=k∗

(P (1{k(t) = k} = 1)P (µk < U(t) ≤ µ∗))

=
∑
k 6=k∗

(µ∗ − µk)P (1{k(t) = k} = 1)

≥∆
∑
k 6=k∗

P (1{k(t) = k} = 1) . (3)

From (2) and (3),

RP(T ) ≥ ∆

µ∗

T∑
t=1

∑
k 6=k∗

P (1{k(t) = k} = 1)

=
∆

µ∗

∑
k 6=k∗

E [Tk(T + 1)] . (4)

By Lemma 1 and (4),

RP(T ) ≥ (K − 1)D(µ)

µ∗
((1− α) log T − log(4KC)) .

�

B. Proofs of Theorems 2 and 3

We use the following lemmas to prove Theorems 2 and 3.
The proofs of these lemmas are available in Appendix B of
[24]. In the first lemma, we bound AoI regret as a function of
the number of times a sub-optimal channel is used.

Lemma 2. Let k(t) denote the index of the communication
channel used in time-slot t and k∗ be the index of the optimal
channel. Let K(T ) = {k(1), k(2), · · · , k(T )} be the sequence
of channels used in time-slots 1 to T and

N(K(T )) =

T∑
t=1

1k(t)6=k∗ ,

denote the number of time-slots in which a sub-optimal chan-
nel is used. Then, under Assumption 1, for c = −1

log(1−µ∗) ,

T∑
t=1

E[a(t)] ≤ T

µ∗
+

1

µmin
+
c log T

µmin
(1 + E[N(K(T ))]) .

The next lemma summarizes the results from Theorem 1
in [5] and Theorem 2 in [23] to provide upper bounds on the
number of time-slots in which a sub-optimal channel is picked
by UCB and Thompson Sampling.

Lemma 3. Let k(t) denote the index of the communication
channel used in time-slot t and k∗ be the index of the optimal
channel. Let EUCB [N(K(T ))] and ETS [N(K(T ))] denote the
expected number of time-slots in which a sub-optimal channel
is picked in time-slots 1 to T by UCB and Thompson Sampling
respectively. Then, for t > K,

EUCB [N(K(T ))] ≤ (K − 1)

(
32 log T

∆2
+ 1 +

π2

3

)
,

ETS [N(K(T ))] ≤ O(K log T ),

where ∆ = µ∗ −maxk 6=k∗ µk.

We now use Lemmas 2 and 3 to prove Theorems 2 and 3.



Proof. (Proof of Theorems 2 and 3) Note that by Assumption

1,
T∑
t=1

E[a∗(t)] =
T

µ∗
. From Lemma 2, we have that,

T∑
t=1

E[a(t)] =
T

µ∗
+

1

µmin
+
c log T

µmin
(1 + E[N(K(T ))]).

The results then follow by using Lemma 3. �

C. Proof of Theorems 4 and 5

We use the following lemmas to prove Theorems 4 and 5.
The proofs are available in Appendix B in [24].

Lemma 4. Let k(t) denote the index of the communication
channel used in time-slot t and k∗ be the index of the optimal
channel. Let K(T ) = {k(1), k(2), · · · , k(T )} be the sequence
of channels used in time-slots 1 to T and Et be the event that
k(τ) = k∗ for t−c log T+1 ≤ τ ≤ t. Then, for c = −1

log(1−µ∗) ,

T∑
t=1

E[a(t)] ≤ T

µ∗
+
c log T + 1

µmin
+

1

µmin
E

 T∑
t=c log T+1

1Ect

 .
Lemma 5. Let Et be the event that k(τ) = k∗ for t−c log T+
1 ≤ τ ≤ t. Let EQ-UCB[ ] and EQ-TS[ ] denote expectation under
the Q-UCB and Q-TS policies. Then,

EQ-UCB

 T∑
t=c log T+1

1Ect

 ≤ cK log4 T +O

(
K

T 2

)
,

EQ-TS

 T∑
t=c log T+1

1Ect

 ≤ cK log4 T +O

(
K

T 2

)
.

Proof of Theorems 4 and 5. Follows by Lemmas 4 and 5 us-
ing the same arguments as the proof of Theorem 2. �

VI. CONCLUSIONS

We consider a variant of MAB, called AoI bandits. We
first characterize a lower bound on the regret achievable by
any policy for AoI bandits. Next, we analyze the performance
of popular policies, namely UCB and Thompson Sampling
for our setting. In addition, we analyze the performance of
two policies, namely, Q-UCB and Q-Thompson Sampling
proposed in [3]. The commonality between these four policies
is that they are AoI-agnostic, i.e., conditioned on the number
of times each channel is used in the past and the number
of successful communications on each channel, these policies
make decisions independent of the current AoI. We then pro-
pose four AoI-aware policies, which also take the current value
of AoI into account while making decisions. Via simulations,
we observe that the AoI-aware policies outperform the AoI-
agnostic policies.
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