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Abstract—This paper considers the time evolution of a queue
that is placed in a Poisson point process of moving wireless
interferers. The queue evolves according to an external arrival
process and a time-varying service process that is a function of
the SINR that it experiences. Static configurations of interferers
result in infinite queue workload with positive probability. In
contrast, a velocity-independent stability condition for the queue
is established in the case where interferers possess any non-zero
mobility that results in displacements that are both independent
across interferers and with a distribution which is invariant to
interferer positions. The proof leverages mixing properties of
point processes under non-zero mobility. The effects of increasing
mobility on statistical averages of queueing metrics are studied,
and convex ordering tools are used to establish that faster moving
interferers result in a queue workload that is dominated in the
increasing convex sense by a queue workload resulting from slower
interferers. As a corollary, it is shown that mean queue workload
and mean delay improve as network mobility increases. It is shown
that there is positive correlation between SINR level-crossing events
at finitely separated time points. The notion of correlation between
interference over time is made precise via an explicit correlation
function. System behaviour is empirically analyzed using discrete-
event simulation and the impact of the mobility model on system
level performance is evaluated.

Index Terms—Time-varying queues, queues in random envi-
ronments, mobility, interference correlation, ad hoc networks,
stochastic geometry, network dynamics, stochastic ordering, convex
ordering.

I. INTRODUCTION
With the advent of self-driving cars or drones, for example,

and more generally autonomous vehicles, the analysis of the
effects of motion on wireless networks is increasingly relevant.
Current wireless networks inherently involve a certain degree of
motion - users in cellular networks are very often mobile, and
there exist multiple use cases for ad hoc networks that involve
mobile nodes. The effect of mobility on the performance of
wireless networks has been extensively investigated (see [1] &
[2] and references therein). This paper, however, takes a different
viewpoint on performance - that of queueing delay, or latency.
To study this metric, we model our system by relaxing the
full buffer assumption that is widely used in wireless network
analysis (for example, in [3] and throughout [4]). This rather
ubiquitous assumption assumes that wireless transmitters always
have packets to transmit and ignores queueing issues. While this
assumption may be an attractive one due to its simplification
of the analysis of wireless networks, most buffers behave in
reality as queues. Further, the full-buffer assumption abstracts
out the aforementioned metric of queueing delay - sacrificing
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knowledge of packet-level effects for tractability in network-
level ones.
Our model assumes that a receiver-transmitter pair of interest
has a queue associated with it - a queue whose departure process
is affected by the interference it experiences, and hence by the
positions of interfering nodes around it, which are modelled as a
Poisson point process. We assume that these points are moving
according to a mobility model with unconstrained but finite
velocity. This motion must be uncorrelated across interferers
- the displacements that two different interferers see in any
interval of time must be independent - and these displacements
should not be a function of the locations of interferers in space.
Our model studies the continuum of velocities in the interval
[0,∞) and leads to scenarios where the point processes seen
at two different time instants are correlated. We will note at
this juncture that significant novelty lies in this correlation -
most analytical work that considers mobility in networks uses
uncorrelated mobility models for tractablility - for instance, an
i.i.d. redistribution of nodes in time slots (for example, see [5]
and [6]). The correlation we see in interferer configurations will
induce time-correlations in the service of the queue, correlations
that make analysis of the behaviour of the queue highly non-
trivial - as we will see in the sequel.
The analysis of this problem hence involves dealing with two
types of network dynamics - the motion associated with nodes
which triggers some evolution of the interference seen by the
queue, and the queueing dynamics that induces changes in the
lengths of buffers and hence has implications on metrics like
delay. The two types of dynamics that we mention are coupled
- the time evolution of the queue considered depends directly on
the time evolution of the positions of interferers around it. In a
broader sense, the interplay of stochastic geometry and queueing
is a challenging problem - the former deals with space averages,
and the latter with time averages. We will see here however that
mobility unifies these disjoint paradigms.
Contributions. The two main questions that we answer are
queueing-theoretic in nature - when, if at all, is this system
stable, and how do queue statistics change with varying degrees
of mobility? The first question considers a notion of capacity
that arises from queueing theory, i.e., the maximum input
data rate that a buffer can support whilst remaining stable. In
answering this question, we show that in the absence of mobility,
universal stability guarantees do not exist. This result stems from
the observation that a static network is exactly that - static and
unchanging, and hence a queue will see the same interference at
all times - dooming it to stability or instability forever, subject
to the caprice of the interferer configuration around it. But all
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is not lost - the introduction of any non-zero mobility results in
enough change in the system to guarantee stability of the queues
- independently of the degree of mobility in the system. The
second question considers the queueing delay experienced by
packets in this queue, and the effects of mobility on this metric.
Considering a continuum of velocities, we find that increasing
motion in the network results in an accelerated rate of variation
in the service rate of the queue - which in turns induces an
averaging effect that provides increasingly reliable, or smooth
service. The overall effect is that of decreasing mean queue
workload and mean delay. The continuum of velocities hence
is shown to induce a continuum of ordered queue workloads.
In addition to these main results, we also provide results on
the correlations that exist in mobile wireless networks, and
connect them to the phenomena we observe. We supplement
our theoretical results with simulations that study the effects of
different mobility models.
A. Related Work
1) Mobility and wireless network performance

The effects of mobility on the performance of wireless
networks have been studied extensively, beginning with [5],
and we do not provide a comprehensive survey here. The vast
majority of work in this area, however, is concerned with the
concepts of transport capacity or throughput capacity, as first
proposed in [3] or of multihop delay (as in [7]) rather than
queueing capacity and delay, as is our focus. These works also
do not consider the traffic dynamics of the systems they study
by virtue of assuming a backlogged/full buffer. Nonetheless, a
common thread between this body of work and our work is the
observation that mobility improves performance.
2) Time-varying and Markov modulated queues

Our model involves a queue that sees time-varying service
rates. There is an existing line of work on time-varying queues
modelled using non-homogenous Poisson processes as arrival
and service processes (e.g. [8], [9]) - our service process is not
amenable to this framework because it is not a Poisson pro-
cess. Modelling more general arrival and service processes has
been accomplished by considering Markov-modulated queues -
where arrival and service rates are functions of the state of a
continuous-time Markov chain with finite state space (the classi-
cal Gilbert model of queueing theory is a special case where the
CTMC has two states). Under this framework, computational
methods to calculate the steady state probabilities have been
proposed ([10], [11]). To attempt to use such an approach, our
model will have to be made Markovian by assuming knowledge
of the interferer point process instead of SINR. Its evolution will
then have to be modelled as a CTMC with infinite dimensional
state space (one coordinate for every interferer) - rendering this
method intractable.
3) Local Delay And Mobility

The concept of local delay, introduced in [12], is the random
number of time slots required by a node to transmit a packet
successfully to its intended (single-hop) destination. This can
instead be thought of as the number of time slots required for
the packet located at the head of a queue such as the one we
consider to be successfully transmitted. The local delay hence
implicitly ignores queueing-level effects. The mean local delay
is computed as a spatial average of the local delays of all nodes
in a network, where by contrast, our queueing system involves
temporal evolution and averaging to obtain queue statistics. The

rather unrealistic infinite mobility model is applied to local delay
in [12] and [6]. Another work that considers finite mobility
([13]) uses a constrained mobility model where locations of
nodes are independent excursions from a fixed home-location
point process, allowing for tractability. In contrast, we consider
an unconstrained mobility model.
4) Queueing in Wireless Networks

There has been a recent body of work that seeks to unify
queueing and wireless networks ([14]). A number of these
works seek to establish necessary and sufficient conditions for
stability using stochastic dominance ideas (see e.g. [15]), but
these conditions are often loose. Other works make indepen-
dence assumptions that decorrelate interference across time slots
([16]), which we do not do. The work closest to ours in terms
of model, [17], assumes an infinite mobility model. Another
line of thought treats the entire wireless network as a queue,
dealing with the birth and death of transmitters and receivers
([18], [19]).

II. MODEL
We assume a continuous time model. We assume that in-

terferers (which are for all intents and purposes, transmitters)
are initially distributed as a homogenous Poisson point process
Φ0 of intensity Λ on R2. Denote by Φt the point process of
interferers at time t. We assume that the receiver of interest
is placed at the origin. Its transmitter transmits at unit power.
The location of the transmitter is a point chosen uniformly at
random on the circle centered at the origin, with radius R.
We can also analyze the case where the receiver is moving
using the same approaches - we will revisit this later in Section
IV. We assume that all interferers transmit with unit power at
all times. But it is straightforward to generalize this model to
one that incorporates spatial ALOHA, simply by independently
thinning the point process of interferers. A path-loss function
l(.) : R+ → R+ is assumed, with the following properties: 1)
limr→∞ l(r) = 0 (in other words, we assume that an interferer
that is infinitely far away does not have any effect at the origin),
and 2)

∫
rl(r)dr <∞ (which ensures that the mean interference

shot-noise at the origin is finite). Denote by F 0
j (t) the fading

variable between interferer j and the origin at time t. We assume
that F 0

j (t) is stationary. Denote by σ2(t) the thermal noise
power at time t. Let S0(t) be the received signal power at the
origin, and I0(t) be the interference seen at the origin. The
SINR seen by the receiver at the origin at time t can then be
described by:

SINR0(t) =
S0(t)

I0(t) + σ2(t)
=

l(R)F 0
0 (t)∑

xj∈Φt
l(|xj |)F 0

j (t) + σ2(t)
.

(1)
Note that the primary object of interest is the behaviour of I0(t),
which is the value at the origin of a time-space interference
shot noise field (see [4], Section 2.3.4), with the positions of
interferers changing over time. This time variation is governed
by our mobility model. We will now present three examples
of mobility models that satisfy the conditions mentioned in the
introduction.
Random Direction Model (RD): Assume that at the beginning of
time, every interferer i samples an angle θi uniformly at random
from the interval [0, 2π] and independently. Each interferer will
then move with constant velocity v ∈ [0,∞) along this angle -
hence, in a time interval ∆t, interferer i will be displaced by
(v∆t cos θi, v∆t sin θi).



Random Waypoint Model (RWP): We consider a version of
the random waypoint model where every interferer i moves
with constant velocity v and angle θi sampled uniformly and
independently from [0, 2π] for a deterministic amount of time
∆p. At the end of every such time interval, every node resamples
its angle of motion and continues moving.
Brownian Motion (BW): We assume that every interferer moves
according to an independent 2-D Wiener process, with the
variance of each one-dimensional Wiener process being γ2.
The magnitude of displacement is hence given by a Rayleigh
distribution with parameter γ, whose mean is γ

√
π
2 . In a small

time interval δs, an interferer moving with velocity v will
be displaced on average by vδs = γ

√
π
2 . This can easily be

extended to more general diffusion processes.
By the displacement theorem for PPPs ([4], Theorem 1.3.9), it
follows that, for all three models, Φt is a homogenous PPP for
all t. Note that all queue comparison results presented in Section
IV hold for these models and for more general mobility models
that satisfy the aforementioned independence conditions.
A. Queueing model

We assume that a queue is associated with the transmitter-
receiver pair of interest. Data arriving to the transmitter en-
ter the queue and must be transmitted to the receiver, upon
which the data leave the queue. To describe the queueing
dynamics, we assume that a discrete time scale is overlaid on
our continuous time scale, with time slots of duration δ. We
consider a single-server infinite buffer queue. We assume that
packets, each of unit size, arrive to the queue according to an
external discrete time stationary and ergodic arrival process,
A(n), which is independent of the spatial PPP and the interferer
motion processes. In other words, the workload Wn (amount
of data waiting in the queue for transmission) at time nδ of
the queue increases by A(n). Note that we can approximate
the case of a continuous time arrival process by making δ
arbitrarily small. The departure process associated with this
queue depends on the time-series of interference that the receiver
sees. We assume a continuous-time random service process,
s(t), upon which we place the dual restrictions that s(t) must be
a measurable function of I0(t), and that s(t) must be integrable.
Examples of possible service processes include: a) Shannon
rate: s(t) = log2(1 + SINR0(t)) and b) truncated Shannon
rate: s(t) = log2(1 + SINR0(t))1[SINR0(t) > T ], where
the former assumes adaptive modulation and coding based on
SINR, and the latter assumes the same as long as the SINR
is above a certain threshold T . It is easy to see that s(t) is a
stationary process. Such a model is a fluid queueing model - we
are implicitly assuming that while data arrive as packets, they
are transmitted continuously as a data stream. The cumulative
service that the queue sees in the time interval (t1, t2] is then
denoted by S(t1, t2) =

∫ t2
t1
s(t)dt. Since the arrival process is in

discrete time, the queue also evolves in discrete time according
to the Lindley recursion:

Wn+1 = (Wn +A(n)− V (n))
+
, (2)

where Wn is the workload of the queue at time slot n or at time
nδ, V (n) = S(nδ, (n+ 1)δ) and x+ = max(0, x).
This queue is a G/G/1/∞ queue - where we emphasize that
service to the queue is stationary, generally distributed, and
dependent, or not independent over time slots - seeing a large
service rate in one time slot will increase the likelihood of a
large service rate in the next time slot, and similarly for small

service rates as well. This fact stems from the finite mobility we
consider in our model, which induces positive time-correlations
in interferer configurations and hence in s(t). We will make the
idea of this correlation more precise in Section V. This lack of
independence makes an already non-trivial problem even more
complex.

III. MOBILITY GUARANTEES STABILITY
In this section, we will contrast the effects of a static

configuration of inteferers on the evolution of our queue with
the effects of a configuration of interferers that possess a non-
zero degree of mobility, modelled using the random direction
model of the last section. The mixing results that we show in this
section will extend to the other two models we presented, but
we do not include these proofs here. For this section, denote by
(Ω,F ,P) the probability space upon which the initial PPP of
interferers is defined. Consider a static version of our model,
with v = 0. The initial configuration of interferers will be
fixed for all times, i.e., Φ0 = Φt ∀t. The service process V (n)
is clearly stationary, but it is not ergodic - time averages of
V (n) will not be the same as ensemble averages over point
process realizations. Assume that the arrival process A(n) has
rate λ = E[A(n)].
Remark III.1. Since the queue workload is driven by a non-
ergodic sequence V (n), Loynes’ Theorem does not apply for
this queue (see Section 2.1, [20] for the necessary conditions
to apply Loynes’ Theorem) and stability is not guaranteed for
any positive λ.

Indeed, we will now see that instances of instability are
present in the system for all positive λ. Note that there exists a
subset ΩU of Ω that has non-zero measure and that corresponds
to point process realizations that have interferers clustered
near the origin, resulting in the instability of the queue. The
other side of this coin is also true - there will be interferer
configurations (for ω ∈ ΩCU ) where all interferers are far enough
away that the queue will experience high rates of service. The
stationary queue workload for ω ∈ ΩCU will be finite, and the
queue workload for ω ∈ ΩU will be infinite. Characterizing ΩU
is straightforward - ΩU = {ω ∈ Ω : λ > E[s(t)|Φ(ω)]},
with Φ(ω) = Φ0. As an example, let s(t) be the
Shannon rate, s(t) = log2[1 + SINR0(t)]. Then, ΩU ={
ω ∈ Ω : λ > E

[
log2

(
1 +

l(R)F 0
0 (t)∑

xj∈Φ(ω) l(|xj |)F 0
j (t)+σ2(t)

) ∣∣∣Φ(ω)

]}
.

Proposition III.2. The mean queue workload for a static field
of interferers (averaged over the point process of interferers,
fading and the arrival process) will be infinite for all positive λ.
Equivalently, for all positive λ, the network will have a positive
fraction of unstable queues.
Proof. Follows from noting that the stationary queue workload
is infinite on ΩU , a set with non-zero measure on the space
(Ω,F ,P).

It is clear that we cannot guarantee sample path stability, nor
stability in a mean sense. From a system design perspective,
this is not ideal - it is preferable that we can guarantee that for
λ small enough, all our wireless buffers are always stable, with
finite workload. The solution to this need, as we will show now,
is to introduce mobility into the network.
Definition III.3. [21] Strong mixing: We say that a time-
indexed stationary stochastic process {Ψt} is strongly mixing
if P{Ψt ∈ Γ,Ψt+s ∈ ∆} → P{Ψt ∈ Γ}P{Ψt+s ∈ ∆} as s→



∞, for all configuration sets ∆, Γ.
We then have the following theorem:

Theorem III.4. If v > 0, the process {Φt} is strongly mixing.
Proof. Denote by s the random displacement that transforms
the point process Φt to Φt+1 for any time t. This random
displacement is characterized by a law G(.), which in our case
uniformly samples angles for every point at time t = 0 from
the interval [0, 2π], while holding speed constant. Hence, s takes
values in the boundary of the 2-D ball centered at the origin with
radius v, ∂B(0, v). From the definition of our mobility model,
we know that the displacement that transforms the point process
Φt to Φt+n is given by ns. To prove the theorem, we must show
that in the limit n → ∞, the point processes Φt and Φt+n are
asymptotically independent. We will accomplish this using the
joint Laplace functional of the two point processes.
We can express the joint Laplace functional of two arbitrary
Poisson point processes, Φ (homogenous with intensity Λ) and
Φ′ (where Φ′ is obtained from Φ via transformation by a
probability kernel p(x, .), as:
E
(
e−

∫
R2 f(x)Φ(dx)e−

∫
R2 g(y)Φ′(dy)

)
= E

(
e−

∑
i f(Xi)−

∑
i g(Yi)

)
= E

(exp

∑
j

log e−f(xj)


exp

∑
j

log

(∫
R2

e−g(yj)p(xj , dyj)

))

= LΦ(h), where h(x) = − log

[∫
R2

e−f(x)−g(y)p(x, dy)

]
= exp

[
−
∫
R2

((
1−

∫
R2

e−f(x)−g(y)

)
p(x, dy)

)
Λ(dx)

]
= LΦ′(g) exp

[
−
∫
R2

(
1− e−f(x)

)
(∫

R2

e−g(y)p(x, dy))

)
Λ(dx)

]
.

Setting Φ = Φt, Φ′ = Φt+n, we get:

LΦ,Φ′(f, g) = LΦ′(g) exp

[
−
∫
R2

(
1− e−f(x)

)
(∫

∂B(0,v)

e−g(x+ns)G(ds)

)
Λdx

]
.

As long as g(.) is such that g(x) → 0 in all directions
as x → ∞, we have that

(∫
R2 e
−g(x+ns)G(ds)

)
→ 1 as

n→∞. This follows directly from the Dominated Convergence
Theorem, where we will upper-bound the exponential by 1. This
in turn implies that:

lim
n→∞

LΦ,Φ′(f, g) = LΦ(f)LΦ′(g).

Corollary III.4.1. In the absence of fading, the interference
shot-noise process, I0(t), is strongly mixing.
Proof. The proof follows from Theorem III.4 and the obser-
vation that measurable transformations preserve strong mixing
(Thm 5.2, [21]).

While considering the presence of fading, it is clear that the
shot-noise will be strongly mixing when the fading processes
at two points sufficiently separated in space are independent of

each other.
Since strong mixing implies ergodicity, we then have that s(t)
and V (n) = S(nδt, (n+ 1)δt) are ergodic processes.
We have now established that the driving sequences of the
queue, A(n) and V (n) are ergodic and stationary. Since we
also assumed that they are independent of each other, these are
sufficient conditions to apply the theory of Loynes ([22]) to our
queue, and to obtain the main result of this section.
Theorem III.5. When v > 0, all network queues are stable
(i.e., their workloads have a finite limiting distribution) if and
only if λ = E[A(n)] < δE[s(0)].

Note that here E[s(0)] is a spatial average over the
PPP. As an example, if s(t) = log2[1 + SINR0(t)]
and assuming that σ2(t) = 0, fading is Rayleigh and
l(r) = (Ar)−β , A > 0, β > 2, then E[s(0)] =∫∞

0
exp(−2π2ΛR2v

2
β β−1(sin(2π/β))−1)/(v+1))dv (see Sec-

tion 16.2.3, [23]). While the structure of Theorem III.5 may
seem obvious, we would like to emphasize its significance.
What we have shown is that introducing any non-zero mobility,
however small, into the system causes the non-ergodic and
unchanging nature of the queue to vanish - leaving us with
a queue that can be stabilized and cope with all Poisson inter-
ferer configurations. Indeed, under the assumption of non-zero
mobility, it follows from mixing that the queue will eventually
see all possible Poisson interferer configurations. Motion in
the network has in a sense unified the spatial averages that
are traditionally associated with stochastic geometry and the
temporal averages that are traditionally associated with queueing
theory. Finally, we note the parallel to the infinite mobility
models often considered in the analysis of mean local delay -
in those models, the point process decorrelates in a single time
slot. In ours, the point process decorrelates after a sufficiently
long amount of time - which, as we show, is sufficient for a
well-behaved (i.e., stable) queue.

IV. MOBILITY ORDERS QUEUE WORKLOADS
Now that we are assured of the queue’s stability, we will

investigate the effect of increasing degrees of mobility on the
statistics of the queue workload. To begin, we define useful
partial orderings.
Definition IV.1. Convex order (≤cx): Consider two random
variables X and Y . X is said to be smaller than Y in the
convex order, denoted by X ≤cx Y , if E[f(X)] ≤ E[f(Y )] for
all convex functions f , provided expectations exist.
Definition IV.2. Increasing convex order (≤icx): Consider
two random variables X and Y . X is said to be smaller than
Y in the increasing convex order, denoted by X ≤icx Y , if
E[f(X)] ≤ E[f(Y )] for all increasing convex functions f ,
provided expectations exist.

For further results on convex orderings, see [24]. A useful
equivalent definition for these orderings is presented in the
lemma below (taken from [20], Chapter 4).
Lemma IV.3. Given two random variables X and Y , X ≤cx
(resp. ≤icx)Y if and only if there exist two random variables
A and B, identically distributed as X and Y respectively and
defined on a common probability space (Ω,F ,P), such that
A = (resp. ≤) E[B|G] a.s., for some sub σ-field G of F .

Now, we will consider 3 environments for a queue and
its moving interferers. These environments differ only in the



velocities of the interferers - they have the same arrival process,
A(1)(n) = A(2)(n) = A(3)(n) = A(n). Let the velocities be v1,
v2 and v3 respectively, with v2 = mv1 and v3 = nv1 and n > m
(n,m ∈ N, n > 1, m > 1), so that v3 > v2 > v1. Let s(i)(t)
be the instantaneous service rate that the queue can provide in
Environment i. Let the cumulative service that the queue can
provide in the time interval (t1, t2] for Environments 1, 2 and
3 be S(1)(t1, t2), S(2)(t1, t2) and S(3)(t1, t2) respectively. Let
the workloads of the queue at time slot n be W (1)

n , W (2)
n and

W
(3)
n respectively. The key observation now is that an increase

in the velocity of interferers is equivalent to an acceleration of
time while keeping velocity fixed. Consider a simple example
- the distance an interferer moving with velocity 2v will cover
in time ∆t is the same as the distance an interferer moving
with velocity v will cover in time 2∆t. In the context of the
environments described above, scaling velocities by a factor of
m ∈ N is equivalent to accelerating time by a factor of m.
Hence, we have

S(2)(t1, t2) =

∫ t2

t1

s(1)(mt)dt =
1

m

∫ mt2

mt1

s(1)(t)dt

=
1

m

m∑
i=1

∫ mt1+(i)(t2−t1)

mt1+(i−1)(t2−t1)

s(1)(t)dt

=
1

m

m∑
i=1

S(1)(mt1 + (i− 1)(t2 − t1),mt1 + i(t2 − t1))

=
1

m

m∑
i=1

Y
(2)
i ,

where the variables Y (2)
i = S(1)(mt1 + (i− 1)(t2 − t1),mt1 +

i(t2 − t1)) are identically distributed (since s(t) is stationary)
but not independent. Similarly, we have

S(3)(t1, t2) =
1

n

n∑
j=1

Y
(3)
j ,

for Y (3)
j = S(1)(nt1 +(i−1)(t2−t1), nt1 +(i)(t2−t1)), where

{Y (3)
j } is distributed identically to the variables {Y (2)

i }. Note
also that S(1)(t1, t2) = Y

(1)
j is identically distributed to {Y (2)

j }
and {Y (3)

j }. Henceforth, we will drop the superscript for the
variables Yi, and write

S(1)(t1, t2) = Yi, S
(2)(t1, t2) =

1

m

m∑
i=1

Yi,

S(3)(t1, t2) =
1

n

n∑
i=1

Yi. (3)

Now, let M
(i)
d ∈ Rd be a vector whose jth element is

S(i)(jδt, (j+1)δt), for d > j ≥ 0. Then, we have the following
lemma.
Lemma IV.4. M (3)

d ≤cx M (2)
d ≤cx M (1)

d for all d > 0.

Proof. From (3), we see that we can write M
(1)
d =

Zi,M
(2)
d = 1

m

∑m
i=1 Zi, and M (3)

d = 1
n

∑n
i=1 Zi, where Zi

is an d−dimensional vector, with each element of the vector
distributed identically to Y0 (but not necessarily independent of
the other elements in the vector). Further define Xn =

∑n
i=1 Zi

and Xn = Xn
n ∈ Rd. We will now show that Xn−1 ≥cx Xn.

The result will then follow by the transitivity of the convex
ordering.
First, note that E[Zi|Xn] is a function of Xn, and is independent
of i due to the stationarity of {Zi}. Let E[Zi|Xn] = Γ(Xn).

Then,

Γ(Xn) =
1

n

n∑
i=1

E[Zi|Xn] = E
[
Xn

n
|Xn

]
= Xn.

Since E[Zi|Xn] = Xn, we have that
E[Z1 + Z2 + ...+ Zn−1|Xn] = (n− 1)Xn,

which implies E[Xn−1|Xn] = Xn. From Lemma IV.3, we
have that Xn−1 ≥cx Xn.

The intuition behind Lemma IV.4 is straightforward - sample
means calculated using a larger number of samples will possess
lower variability, resulting in a convex ordering. Hence, an
accelerated service process will result in the queue ”seeing”
a larger number of samples of instantaneous service rate, which
in turn will achieve an averaging effect that results in more
reliable service being provided to the queue. It follows that this
increasing reliability of service will reflect in the performance
of the queue, a qualitative result that we will present in Theorem
IV.6.
Now, consider two sequences of variables {ỹi} and {yi}, i ≥ 0,
whose evolution is governed by the same stochastic recurrence
function h, and two sets of driving sequences {β̃n} & {βn} and
initial conditions ỹ0 & y0 respectively:

yn+1 = h(yn, βn)

ỹn+1 = h(ỹn, β̃n).

These sequences have the same dynamics, characterized by h,
and differ only in their driving sequences and initial conditions.
Then, we have the following lemma:
Lemma IV.5. ([20], Property 4.2.5): Assume that the driving
sequences and initial conditions are integrable, and that the
function y → h(y, β) is non-decreasing and that the func-
tion (y, β) → h(y, β) is convex. Then, (y0, β0, β1, ...) ≤cx
(ỹ0, β̃0, β̃1, ...) implies (y0, y1, y2, ...) ≤icx (ỹ0, ỹ1, ỹ2, ...).

We now present the main theorem of this section.
Theorem IV.6. For queues that start with initial workload
W i

0 = 0 and evolve according to the Lindley recursion (2),
and for environments as defined previously,

W (3)
n ≤icx W (2)

n ≤icx W (1)
n ,∀n. (4)

Further, the steady state workloads that the queues converge to
in the limit are also similarly ordered:

W (3)
∞ ≤icx W (2)

∞ ≤icx W (1)
∞ . (5)

Proof. The convex ordering is preserved by the operation of
multiplication by −1 and by the addition of an independent
random variable. Let An ∈ Rn be a vector whose jth element
is A(j), for n > j ≥ 0. From Lemma IV.4,

A(n)−M (3)
n ≤cx A(n)−M (2)

n ≤cx A(n)−M (1)
n .

Now, we define h(y, β) = (y + β)+, and set yn to be
queue workload Wn, initial conditions y0 = ỹ0 = 0 and
(β0, β1, ..., βn−1) = An − Mn. Then the proof of the first
part of the theorem follows from Lemma IV.5. Since we are
operating in the regime where the queue is stable, we know that
the queue workload will converge to a stationary steady state
variable W (i)

∞ . The second part of the theorem then follows from
a direct application of the Monotone Convergence Theorem (see
[20], Section 4.2.6 for more details).

We emphasize again here that this result holds for queues that
are driven by correlated service processes, and is a significantly
more general result than results of the Pollaczek-Khinchine type,
which hold only for independent service processes.



A first consequence of this theorem is the following corollary.
Corollary IV.6.1. E[W

(3)
∞ ] ≤ E[W

(2)
∞ ] ≤ E[W

(1)
∞ ].

It also follows that the mean delay that packets see are
similarly ordered. Let us assume that a packet is successfully
transmitted once all the data associated with it are transmitted
(assume a packet is of size k bits), and the delay a packet sees
is the length of the time interval from its arrival to its succesful
transmission. Then, at time slot n, the (fractional) number of
packets in the queue will be N∞ = W∞

k . N∞ is hence ordered in
expectation in a way similar to W∞. It follows from Little’s Law
that the mean delay, E[D] = E[N∞]/E[A(0)] is also ordered in
the same way, provided that it exists.
Corollary IV.6.2. E[D(3)] ≤ E[D(2)] ≤ E[D(1)].
A. Discussion

These results state that queues that see the same arrival
process see decreasing workloads and delays as they are placed
amongst interferers that move with increasing mobility. Hence,
the performance of queues in wireless networks improve as the
degree of mobility in the network increases. This performance
improvement can be intuitively thought of as a consequence of
mobility introducing diversity into the network. The diversity
that we refer to is with respect to interferer configurations -
faster moving interferers allow a larger number of configurations
to be seen at a higher rate. In other words, the network mixes
faster. An intuitive explanation that is a dual to the faster
averaging/mixing argument is the following scenario. Assume
the queue is surrounded by a ”bad” configuration of interferers
- namely, a large number of interferers are located close to the
origin. The interference seen at the origin will hence be large.
A slowly moving environment will cause the interference at the
origin to be large for a long period of time, which will result
in a build-up in the workload of the queue. On the flip side,
interferer configurations that are ”good” will also persist for
long periods of time, allowing the queue to drain effectively
during those periods. A fast-moving environment, on the other
hand, will result in shorter build-ups and drainings of the queue.
Fig. 1 shows the difference in the lengths of these cycles and
hence in the average queue workload for environments with
different degrees of mobility. From an expectation point-of-view,
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Fig. 1: Comparison of queue build-up-and-drain cycles for
different degrees of motion in the random direction model

it seems clear that longer build-up-and-drain cycles will result in
larger mean workloads and mean delays, which is what we see
in Corollary IV.6.1 and IV.6.2. Interestingly, the more general
result of Theorem IV.6 also holds - increasing convex functions
of workloads are also similarly ordered.
We would like to draw attention to the generality of results
presented in this section. First, the results presented are such
that in order to compare the workloads of two environments, the

velocity of one environment must be a rational multiple of the
other. Since the rationals are dense in the reals, we do not lose
any generality here. In terms of modelling, note that we make no
assumptions on the service process s(t) save that it is integrable
and a measurable function of I0(t). We only need a stationarity
assumption for the fading processes. These results hold for
all the mobility models described in Section II. Indeed, these
results will hold for any general mobility model that admits the
interpretation of an increase in velocity as an acceleration in
time. The case of the receiver at the origin and its corresponding
transmitter being mobile as opposed to static is subsumed under
this set of mobility models - the relative velocities of interferers
with respect to the tagged receiver will no longer be independent
of each other, but will still be amenable to the framework used
in this section. We briefly discuss the limiting case of infinite
velocity. Under this mobility assumption, the point process of
interferers will be resampled at every time instant. This will
decorrelate the service process - the variables Yi will now be
i.i.d. and the service process seen in a time interval (t1, t2) will
be a constant - the infinite averaging will result in the expected
service rate being seen. This results in a G/D/1 queue. Making
further assumptions on the arrival process and network model
could lead to analytical expressions for queue statistics, but we
will not pursue this here.
We have hence shown the existence of a continuum of queues
corresponding to the continuum of velocities between∞ and 0 -
which correspond to a stationary and ergodic G/D/1 queue and
a non-ergodic G/G/1 queue that sees infinite queue workload
in a subset of the sample space that has non-zero measure
respectively. We move from the former extreme to the latter
via a sequence of queue workloads that are increasingly convex
ordered - the expectation of any increasing convex function of
the queue workload decreases along this sequence.

V. CORRELATION STRUCTURES IN MOBILE NETWORKS
In this section, we formalize the correlations that we dis-

cussed while presenting intuition for the results in the previous
section. First, we consider SINR level set events - Lt is defined
as the event that at time t, SINR0(t) > T for some fixed
threshold T . We will show that if we see a level set event at
time t, there is an increased likelihood of seeing another level
set event in some neighbourhood of that time. Assume Rayleigh
fading between the transmitter and receiver of interest (modelled
by exponential random variables of mean 1/µ), and let all other
fading variables be generally distributed but with unit mean. We
then have the following theorem.
Theorem V.1. P(Lt+1|Lt) ≥ P(Lt+1) = P(Lt).

Proof. Presented in the appendix.
Theorem V.1 formalizes the intuition we presented in Section

IV. It implies that if we observe a high (resp. low) SINR, we are
likely to continue to observe a high (resp. low) SINR for a while.
The notion of buildup-and-drain cycles of the queue is a direct
consequence of this effect. This positive temporal correlation of
level-crossing events will decrease as the correlation between
the point processes Φt and Φt+1 decreases - or in other words,
as mobility increases.
Finally, for completeness, we will derive the correlation coef-
ficient between the interference shot-noise observed at times t
and t+ 1, γ(t, t+ 1), defined as:

γ(t, t+ 1) =
E[I0(t)I0(t+ 1)]− E[I0(t)]2

E[I0(t)2]− E[I0(t)]2
.



Lemma V.2.
γ(t, t+ 1) =

∫
l(x)

∫
l(y)p(x, dy)dx

E[h2]
∫
l(x)2dx

. (6)

Proof. We use Campbell’s formula (Thm 1.4.3, [4]) to calculate
the first and second moments of interference, and then use the
fact that E[I0(t)I0(t+ 1)] =

∂2(Lt,t+1(s1,s2))
∂s1∂s2

∣∣
s1=0,s2=0

.
We see that the correlation is highest when the probability

kernel that defines mobility is such that p(x, y) = 1 for x = y,
and is lowest in the limit of infinite mobility.

VI. SIMULATION STUDIES
Our simulation setup is as follows. We consider a 100 × 100

square whose edges are wrapped around to avoid edge effects.
In order to approximate continuous time, we let our overall
system evolve in very small intervals of discrete time, of length
∆ = 10−3 seconds. The queue associated with the bipole placed
at the origin evolves in time slots of length δ. We set δ = ∆
in simulations, which can be interpreted as approximating a
continuous time queue. The arrival process A(n) to the queue
is a Bernoulli process of rate λ, where at every time slot a
packet arrives with probability λδ, with λ chosen such that
λδ < 1. Interfering nodes are distributed as a PPP, and move
according to the mobility models described before. We assume
that the service process for the queue is the truncated Shannon
rate process described in Section II. The reduction in workload
that the queue sees at time t in the interval ∆ is hence
log2(1 + SINR0(t))1[SINR0(t) > T ]∆. The queue evolves
according to (2). From Theorem III.5, to guarantee stability of
the queue, we must ensure that E[A(n)] = λ < E[s(0)] (since
∆ = δ). We empirically estimate E[s(0)] for our system and set
λ accordingly. For our simulations, we set Λ = 0.1, noise power
σ = 0, R = 0.3, T = 8 and l(r) = (1 + r)−4. We consider
Rayleigh fades with mean 1.
To begin, we verify the ordering of mean queue workload that is
indicated by Corollary IV.6.1. We estimate the mean workload,
and 95% confidence intervals using the batch mean method
detailed in Chapter IV.5 of [25]. Fig. 2 shows the anticipated
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Fig. 2: Comparison of the effects of different mobility models.
λ = 1.2, E[s(t)] u 1.37, Λ = 0.1.

trend in mean workload, E[W ], for all mobility models. Mean
delay, E[D] = E[W ]/λ, will show the same trend. We see
an order of magnitude difference between the mean workload
for v = 1 and the mean workload for v = 1000. Next, we
compare the effects of different mobility models on mean queue
workload. This comparison can be thought of as a measure of
how fast each mobility model causes the PPP of interferers to

mix - the faster the network mixes, the lower the mean workload.
Fig. 2 shows the comparison of the mobility models presented
in Section II. We see the expected ordering of workloads.
Further, we see that workloads associated with Brownian motion
(BM) dominate those associated with the random waypoint
model (RWP), which in turn dominate those associated with
the random direction (RD) model. The faster mixing of the
RD model is explained by noting that all interferers travel with
a constant direction over time, while the directions of motion
change over time in the RWP and BM models, which will lead to
slower mixing. Further, the time-scale of this change in direction
is smaller for BM than RWP, which results in the slower mixing
of BM. Note that the RD model is used in the literature to model
vehicular networks (see [26]). In contrast, the BM and RWP
models have been used to model more erratic movement, such
as that of pedestrians. Our simulation studies suggest that the
former motion leads to better performance of wireless queues,
due to its more directed nature.
We also evaluate and plot the empirical CDF of latency (as de-
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Fig. 3: Empirical CDF of latency, observed at two different

scales. Legends are the same for both plots.
scribed before Corollary IV.6.2) for the random waypoint model.
We observe, via comparison with the CDF of the exponential
distribution, how the distributions of latency become heavier
with decreasing velocities. This observation has engineering
implications for communication networks - in the context of
our system, for example, this indicates that packets will often
see large latencies at low mobility levels. We hence conclude
that higher velocities will be advantageous in scenarios where
reliable service is required, such as in URLLC systems.

VII. CONCLUSION
We have shown that introducing mobility in a large wireless

network introduces mixing diversity that breaks non-ergodicity
and allows us to state universal stability guarantees for a
queue driven by the resulting interference process. We next
investigated the continuum of mobility scenarios that arise from
considering all velocities in the interval (0,∞). Accelerating the
motion of interferers accelerates the mixing of the interference
process, and the resulting averaging effect causes less variable
and more reliable service that improves mean queue workload
and mean delay. This effect can also be explained by considering
the structure of correlations of the SINR and interference
processes, which we have formalized. An interesting future line
of thought is generalizing this model to an interacting queue
model, where all interferers are themselves wireless queues.
We conjecture that a similar stability condition and a similar
ordering of workloads will exist in that model as well, for
similar reasons. Another problem that remains to be pursued
is to obtain (possibly approximate) closed-form expressions for
mean queue workload and delay, so that the explicit dependence



on the degree of mobility in the system can be studied. Finally,
ongoing work involves statistically testing the distributions of
latency for the occurrence of heavy tails, and investigating
whether increasing velocity alleviates this phenomenon.
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APPENDIX
A. Proof of Theorem V.1

We consider level-crossings spaced unit time apart for ease of
exposition, but the result will hold for any interval of time. That
P(Lt+1) = P(Lt) is clear from the stationarity of SINR0(t). Let
h1 and h2 be independent fading variables. The results in this
section hold for any motion that preserves the homogeneity of
Φt. We have:

P[Lt+1, Lt] = P[l(R)h1 > TI(t), l(R)h2 > TI(t+ 1)]

= E[exp(−µTI(t)/l(R)) exp(−µTI(t+ 1)/l(R))]

= Lt,t+1(s, s),

where Lt,t+1(., .) is the joint Laplace transform of I(t) and
I(t + 1), and s = µT

l(R) . We assume that the motion that
transforms Φt to Φt+1 can be represented by a probability kernel
p, where p(x,B) is the probability that a point at location x at
time t moves to region B at time t + 1. Denote by Lh the
Laplace transform of the general fading variables h that govern
the channel between inteferers and the receiver of interest.

Lt,t+1(s1, s2) = E

 ∏
Xi∈Φt

Lh(s1l(Xi))
∏

Yj∈Φt+1

Lh(s2l(Yj))


= E

[ ∏
Xi∈Φt

Lh(s1l(Xi))

∫
Lh(s2l(yi))p(Xi, dyi)

]

= exp

(
−Λ

∫
(1− v(x))dx)

)
,

where v(x) = Lh(s1l(x))

∫
Lh(s2l(y))p(x, dy)

= Lh(s1l(x)) + Lh(s1l(x))

[∫
(Lh(s2l(y))− 1) p(x, dy)

]
.

Setting s1 = s2 = s = µT
l(R) , we have that Lt,t+1(s, s) =

P(Lt, Lt+1).
Noting also that P(Lt) = exp

(
−Λ

∫
1− Lh(sl(x))dx

)
,

P(Lt+1|Lt) =
P(Lt, Lt+1)

P(Lt)
=
Lt,t+1(s, s)

P(Lt)

= exp

(
Λ

∫ ∫
Lh(sl(x))Lh(sl(y))p(x, dy)dx

)
× exp

(
−Λ

∫
Lh(sl(x))dx

)
.

=⇒ P(Lt+1|Lt)
P(Lt)

= exp

(
Λ

∫ [
1− 2Lh(sl(x))

+

∫
Lh(sl(x))Lh(sl(y))p(x, dy)

]
dx

)
. (7)

P(Lt+1) = P(Lt), which yields
∫ (∫

Lh(sl(y))p(x, dy)
)
dx =∫

Lh(sl(x))dx.
Substituting this in (7),

P(Lt+1|Lt)
P(Lt)

= exp

(
Λ

∫
[1− Lh(sl(x))]

×

[
1−

(∫
Lh(sl(y))p(x, dy)

)]
dx

)
> 1. �


