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Abstract—The exponential growth of video traffic in mobile
networks calls for the deployment of advanced video admission
control (VAC) and resource management (RM) techniques in
order to provide the best quality of experience (QoE) to the
end user according to the available network resources. The
degradation of the QoE perceived by the user when reducing
the source rate of a video typically depends on the content
of the video itself. In this paper, we analyzed the QoE of a
group of test video sequences encoded with H.264 advanced
video codec at different rates, i.e., quality levels. The QoE is
objectively expressed in terms of the average structural similarity
(SSIM) index. Based on empirical results, we propose a 4-degree
polynomial approximation of the SSIM as a function of the
coded video rate. We hence propose to tag each video with these
polynomial coefficients that provide a compact description of
its specific SSIM behavior, and to use this information in VAC
and RM algorithms to optimally manage a shared transmission
medium. As a proof of concept, we report selected simulation
results that compare QoE-aware and QoE-agnostic algorithms
in a scenario with a single link shared by multiple concurrent
video flows.

Index Terms—QoE; video delivery; SSIM; resource manage-
ment; video admission control.

I. INTRODUCTION

Mobile data and video services are quickly becoming an

essential part of consumers lives. In 2012 the mobile video

traffic already exceeded 50% of the total data traffic in the

Internet. The latest global mobile data traffic forecast from

[1] foresees a further increment of the video traffic growth

of 75% between 2012 and 2017, accounting for over 66% of

the total mobile data traffic by the end of the forecast period.

Because mobile video contents are highly bit-rate demanding

they will generate most of the cellular traffic growth in the

near future. Backhaul capacity must increase so that mobile

broadband, data access, and video services can effectively

support consumer usage trends and keep mobile infrastructure

costs at a reasonable level.

At the current stage, mobile network operators face the issue

of supporting high quality video services with the available

network resources. The widespread high-speed wireless cov-

erage, e.g., by means of femto-cells and WiFi hotspots, will

likely increase the number of users that require high quality

mobile video services, making the support of such a traffic in

the access networks a challenging question.

An attractive solution in this scenario consists in dynami-

cally adapting the QoE perceived by the final video consumers

to the available transmission resources by adjusting the video

code rates. As observed in [2], in fact, reducing the encoding

rate of a video is much less critical in terms of QoE degrada-

tion than increasing the packet loss probability or the delivery

delay. However, the perceived QoE at a certain encoding rate

depends on the specific characteristics of the video, e.g., scene

and source dynamics and frame-by-frame motion.

In this paper, we propose a novel approach to handle

under-provisioned video traffic scenarios that is based on the

possibility of dynamically adjusting the video encoding rate

and that takes into account the different QoE behaviors of

video sequences, expressed in terms of, e.g., SSIM index

[3]. QoE-based full-reference metrics such as Video Quality

Model (VQM) [4] and MOtion-based Video Integrity Evalu-

ation (MOVIE) index [5] suit well for catching the temporal

consistency of the video frames. Nevertheless, for the sake of

simplicity, we adopt SSIM as human visual system-similarity

measure to assess the video quality, since it is widely adopted

for video quality testing in the community [6]–[8]. We stress

the point that the framework we design in this paper is

independent of the QoE-based metric in use, thus it can be

straightforwardly adapted to metrics which take into account

specific video features of interest.

We measure the SSIM of a large set of H.264-AVC [9] video

clips coded at different rates, which correspond to different

perceived quality levels. After a suitable normalization and

rescaling of the metrics of interest, we are able to analytically

approximate the perceived quality characteristic of each video

by means of a simple 4-degree polynomial expression. We

hence associate each video to its polynomial coefficients in

order to compactly describe how the SSIM degrades for

lower transmit rates. To reduce the complexity of the video

tagging, we also proposed a class-based approach where

videos showing similar SSIM vs rate relations, inspected via

quasi-real time investigation methods such as, e.g., neuronal

networks, are grouped in a class and tagged with a set of

polynomial coefficients that characterize that class. We then

define RM and Video Access Control VAC algorithms that

take into account this QoE-based information associated to

each video to maximize a certain utility function. As a proof of

concept, we apply our approach to a simple network scenario

with a congested link shared by multiple video streams. By

means of simulation, we show promising results for realistic

deployments of video streaming services over wireless and

cellular networks.

The remainder of the paper is organized as follows. In Sec-

tion II we review the related work. Our analysis is presented
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in Section III, followed by the design of our algorithms in

Section IV. The simulation results are reported in Section V

and we conclude the paper in Section VI.

II. RELATED WORK

Prior works on video classification mainly focus on ex-

tracting objective networking and quality metrics. In [10] the

authors classify videos based on selected common spatial-

temporal audio and visual features described by the MPEG-7

compliant content descriptors. Due to the complexity of the

method, the authors make use of the principal component

analysis to reduce the set of features. Nevertheless, this work

is strictly dependent on the MPEG-7 format. Scene detection

mechanisms were developed based on predictive analytical

models as in [11]. The authors propose a scene-change detec-

tor for video-conference traces that works based on the average

number of bits generated during the scenes, and it is modeled

with a two-state Markov chain. The proposed low complexity

method comes at the cost of requiring full knowledge of the

type of video to properly set the thresholds for the scene

recognition. Further related works focus on quality prediction

models to capture the behavior of video scenes. In [12], an

objective model to predict the quality of the lost frames for

3D videos is designed based on the header information of

the video packets at different ISO/OSI layers. This model

roughly captures the SSIM of some video clips based on

the size of the lost frames and via deep packet inspection,

which is usually avoided by operators due to the complexity

and national privacy rules. Nevertheless, in [13], the authors

claim that the frame loss probability provides only a limited

insight into the video quality perceived by the user. Moreover,

the authors state that the rate distortion curves drawn using

the Peak Signal-to-Noise Ratio (PSNR) provide a limited

representation of the perceived video quality, thus improved

quality metrics to better represents videos are needed.

In our work, we group video sequences based on the

relation between video compression rate and SSIM. As widely

recognized, SSIM improves traditional objective QoS metrics

like PSNR and mean square error (MSE), which have been

proven to be inconsistent with the human eye perception.

SSIM is widely used to assess the video quality [6]–[8],

specially when the scope of the work is to express the

perceived quality of sequential static images coded at different

levels of compression, as in our work. However, it does not

take into account the impact of the temporal consistency of

video frames on the perceived quality [14], which is out of the

scope of this paper. We show that the SSIM characterization

of a video sequence can be compactly represented by means

of only four polynomial coefficients, which can be associated

to the video. Tagged videos can then be handled by simple

traffic shaping mechanisms in case of network congestion or

under-provisioned network resources. Furthermore, to reduce

the complexity of the RM and VAC unit, we propose to

cluster the videos into a small number of QoE-based classes,

at the cost of a marginal performance degradation. We observe

that the brute-force computation of the SSIM coefficients for

each video can actually be computationally expensive since it

requires to evaluate the SSIM index for the entire video for

TABLE I
MAPPING SSIM TO MEAN OPINION SCORE SCALE

SSIM MOS Quality Impairment

≥ 0.99 5 Excellent Imperceptible
[0.95, 0.99) 4 Good Perceptible but not annoying
[0.88, 0.95) 3 Fair Slightly annoying
[0.5, 0.88) 2 Poor Annoying
< 0.5 1 Bad Very annoying

the different encoding schemes. However, we speculate that

machine learning techniques can make it possible to estimate

these coefficients based on macroscopic characteristics of the

video clip, with much lower computational complexity, though

this approach is still under investigation.

III. EMPIRICAL ANALYSIS OF VIDEOS

A. Setup

We evaluate the QoE of the videos with the SSIM index.

From the human eye perspective, SSIM improves the represen-

tation of the perceived video quality compared to traditional

metrics such as PSNR and MSE. These pure mathematical

metrics estimate the perceived distortion based on analytical

pixel-by-pixel comparison. On the contrary, SSIM measures

the image degradation in terms of perceived structural in-

formation change, thus taking into account the tight inter-

dependence between spatially close pixels which contain the

information about the objects in the visual scene. SSIM is

calculated via statistical metrics (mean, variance) computed

within a square window of size N×N (typically 8×8), which

moves pixel-by-pixel over the entire image. The measure

between the corresponding windows X and Y of two images

is computed as follows:

SSIM(X,Y ) =
(2µXµY + c1)(2σXY + c2)

(µ2
X + µ2

Y + c1)(σ2
X + σ2

Y + c2)
(1)

with µ and σ2 the mean and variance of the luminance value

in the corresponding window, and c1 and c2 variables to

stabilize the division with weak denominator (we refer the

interested reader to [3] for more details on the computation).

For practical reasons, we take the average values of SSIM

for each video. The range of the SSIM index goes from 0
to 1, which represent the extreme cases of totally different

or perfectly identical frames, respectively. Tab. I shows the

mapping between SSIM and Mean Opinion Score (MOS)

scale, as reported in [15]. We remark that SSIM captures

the spatial differences between two representations of the

same frame and, hence, is particularly suitable to express the

perceived quality of a static image when coded at different

levels of compression. This metric does not consider the effect

of the temporal correlation between consecutive frames in

a video clip, which may alleviate the perceptual impact of

compression artifacts in the video frames. Nonetheless, many

studies have shown that the average SSIM computed over a

sequence of frames of a video clip is generally a good QoE

index for the video as well [6]–[8]. This is also confirmed by

the result of our study, as discussed next.

B. Video evaluation

We consider a pool of V = 38 CIF video clips, taken from

standard reference sets.1 Each video has been encoded with the

1Video traces can be found in [16], ftp://132.163.67.115/MM/cif
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Fig. 1. Logarithm of the normalized rate ρv(c) versus compression level c
for different video clips.
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Fig. 2. SSIM of the different video clips when varying the RSF.

Joint Scalable Video Model (JSVM) reference software [17]

into H.264-AVC format at C = 18 increasing compression

rates, which correspond to as many quality levels. The list of

video names, full quality transmit rate, duration and classifi-

cation of video motion is provided in Tab. II at the end of the

paper. We denote by c ∈ {1, . . . , C} the available compression

rates and by rv(c) the transmit rate of video v ∈ {1, . . . , V }
encoded at rate c, with rv(1) being the maximum (i.e., full

quality) rate. To ease the comparison between different video

clips, it is convenient to normalize the video rates to the full

quality rates. Moreover, following the Weber-Fechner’s law

that speculates a logarithmic relation between the intensity

and the subjective perception of a stimulus, we introduce a

logarithmic measure of the normalized rate, here named Rate

Scaling Factor (RSF), which is defined as

ρv(c) = log(rv(c)/rv(1)) , (2)

and shown in Fig. 1 when varying the compression level c for

the different videos.

We can see that the compression level, i.e., the number of

quantization points considered in the H.264-AVC encoding,

determines the rate of the video sequence depending on the

content of the video itself. For a given compression level c, the

larger the RSF ρv(c) the more dynamic the video sequence.

Indeed, dynamic sequences exhibit lower spatial and temporal

correlation of consecutive video frames and, hence, are less

amenable to compression. The dynamics of the video content

also impact the perceived QoE for a certain RSF value, as

clearly shown in Fig. 2 that shows the average SSIM of each

video clip when varying ρv . At visual inspection, indeed, we

first observe that the perceived degradation of video quality

when reducing the source rate is generally coherent with the

decrease rate of the SSIM, which confirms that the SSIM is

a good performance index for the QoE of video sequences.

Second, we notice that, reducing the source rate, the more

dynamic the video, the lower the perceived video quality. In

Fig. 2, markers correspond to empirical SSIM values for the

V videos in the test set, while the lines are obtained from a 4-

degree polynomial approximation of such values. We observe

that the polynomial approximation is, in general, acceptably

accurate for the range of ρ of practical interest. Therefore, the

SSIM characteristic of a video v can be approximated as

Fv(ρ) ≃ 1 + av,1ρ+ av,2ρ
2 + av,3ρ

3 + av,4ρ
4 . (3)

The vector of coefficients av = {av,i} provides a compact

description of the relation between the perceived QoE and the

RSF of a video v. It is hence conceivable to tag each video

or, when optimizing at a finer granularity, each single Group

of Picture (GoP), with such a compact representation of its

QoE characteristic, which can then be used by RM and VAC

algorithms as discussed in the next section.

IV. SSIM-BASED RM AND VAC ALGORITHMS

In this section we investigate how the QoE characterization

of a video sequence can be used to optimally allocate trans-

mission resources to different video sessions and to decide

whether or not a new video shall be admitted into the system.

We consider a framework where different video clips are

multiplexed into a shared link of capacity R by a control unit

that performs RM and VAC. More specifically, the RM module

detects changes of the link capacity (e.g., due to concurrent

data flows or fading phenomena in wireless channels) and

triggers an optimization procedure that adapts the video rates

to maximize a certain QoE-related utility function. Similarly,

the VAC module determines whether or not a new video

request can be accepted without decreasing the QoE of any

videos below a threshold F ∗ negotiated, for instance, between

operator and video consumers. To this end, the VAC invokes

the RM module to get the best resource allocation policy for

all the videos potentially admitted into the system and, then,

computes the SSIM of each video through (3) and checks

whether it is above the aforementioned quality threshold. If

not, the last video admission request is refused, otherwise the

new video is accepted into the system, transmission resources

are reallocated as determined by the RM module, and video

sources are required to adapt their source rate to such a

new allocation. To alleviate the RM from the burden of

computational costs when dealing with a high number of active

videos in the channel and to make the inspection of video

features feasible in practice for quasi-real time applications,

we further consider a clustering approach where videos are

grouped based on their SSIM vs. rate similarity. Hence, we

partition the videos in K classes, depending on the value of

ρ for which the SSIM crosses the threshold F ∗. Each class

is then associated to a reference F curve, expressed as in

(3), with polynomial coefficients equal to the mean of the
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coefficients of the videos in that class:

F C
k (ρ) = 1 +

4
∑

i=1

aCk,iρ
k , with aCk,i =

∑

v∈Ck
av,i

||Ck||
,

where Ck denotes the set of videos in the kth class, and ||Ck||
is the cardinality of the class. Class-based QoE functions F C

can be used by the RM and VAC algorithms in place of

the actual F of each video, thus reducing the computational

complexity at the cost of suboptimal resource allocation and

possible violation of the SSIM constraints, due to the coarse

approximation of the QoE characteristic of the videos.

A. Optimal resource allocation problem

Let fi denote the SSIM function associated to a video

i, which can correspond to either F C
i or Fi, depending on

whether or not the class-based solution is considered. Fur-

thermore, let R denote the transmission capacity that needs

to be allotted to the videos, and by Γ = {γi} an allocation

vector that assigns to the ith video a fraction γi of R, with

γi = 0 indicating that the video is not accepted into the

system. Although the H.264 encoding can only offer a discrete

set of transmit rates (see Fig. 1), in the formulation of the

optimization problem we assume that video rates can change

in a continuous manner. Under this assumption, the RSF of

the ith video can be expressed as

ρ̃i = log

(

γiR

ri(1)

)

. (4)

The optimization problem addressed by the RM module can

then be defined as follows:

Γopt = argmax
Γ

U(Γ, R, {fi}) s.t.
∑

i

γi ≤ 1 (5)

where U(·) denotes the utility function considered by the

optimization algorithm.

We consider two utility functions that reflect different

optimization purposes:

Rate Fairness (RF): Resources are distributed to all active

videos proportionally to their full quality rate, without con-

sidering the impact on the perceived QoE. In this case, the

optimal rate allocation for the ith video is simply given by

γopt,i =
ri(1)

∑

j rj(1)
(6)

so that the RSF of each video equals ρ̃ = log(R/
∑

j rj(1)).
SSIM Fairness (SF): Resources are allocated according to

a max-min fairness criterion with respect to the SSIM of the

different videos:

U(Γ, R, {fi}) = min
i

fi(ρi) . (7)

Note that, under the assumption of continuous rate adaptation,

the SF criterion yields the same SSIM, say σ, to all active

videos. Given this target SSIM, the RSF for each video can

be easily found as ρ̃i = f−1
i (σ), where f−1

i is the inverse of

the QoE monotonic function fi. Therefore, the optimization

problem can be easily solved by searching for the maximum

σ that satisfies the rate constraint in (5), i.e., such that

1

R

∑

i

ri(1)10
f
−1

i
(σ) ≤ 1 . (8)
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Fig. 3. Mean and standard deviation of videos’ SSIM when varying the
normalized channel rate R/G, for different RM algorithms.

Since the left-hand side expression is monotonic, the maxi-

mum σ can be easily and quickly found via numerical method

(e.g., binary search). The optimal resource allocation is then

given by

γopt,i =
ri(1)

R
10f

−1

i
(σ) .

B. RM and VAC algorithms

Based on these utilization functions, we can define three

possible RM algorithms, namely

RF, based on (6);

SFE based on (7) with exact (E) QoE characterization.

i.e., fi = Fi;

SFC based on (7) with class-based (C) QoE characteriza-

tion., i.e., fi = F C
i .

Given the channel capacity R and the set of videos to

be allocated, each tagged with the polynomial coefficients

associated to {fi} and the available encoding rates {ri(c)},

the RM algorithm finds the optimal allocation Γopt under the

continuous rate assumption and, then, looks for a feasible rate

allocation at minimum distance from Γopt that satisfies (5).

As mentioned before, the VAC algorithm can be built

upon any RM since it simply calls the RM to perform its

computations on the set of active videos.

V. SIMULATION RESULTS

We implement in Matlab a video delivery framework in

which a shared transmission channel with capacity R is

controlled by an access unit that provides i) resource allocation

to the different video sources and ii) video admission control

functionalities.

To begin with, we compare the performance of the RM

algorithms in Section IV by assuming that all V = 38
videos in our test set are simultaneously active when varying

the capacity R of the channel. Fig. 3 reports the average

SSIM when varying R for the three RM schemes. Note that

the channel capacity has been normalized to the maximum

aggregate traffic rate generated by the video sources, given by

G =
V
∑

v=1

rv(1) . (9)
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Fig. 4. VAC performance with different RM algorithms, when varying the
normalized channel transmit rate R/G.

The vertical bars represent the standard deviation of the SSIM

for the different videos. As expected, SFE and SFC show

smaller standard deviation than RF. However, we note that the

approximation introduced by the class-based approach is paid

in terms of a larger variability of the SSIM of the active videos

compared to the exact per-video approach of SFE. Overall,

SSIM-based resource allocation schemes tightly reflect the

expected behavior of the system for any given SSIM threshold

and can further benefit in terms of computational savings when

partitioning videos into classes.

Successively, we test the VAC algorithm with the different

RMs. To this end, we simulate a Poisson video request process

with λ = 0.66 requests/s. Each video request refers to a video

randomly and uniformly picked among the 38 videos of our

test set, so that the average offered load is λT = 10 videos,

where T is the average duration of a video, with an aggregate

rate request (at full video quality) of about G = 150 Mbit/s.

At every new video access request, the VAC invokes the

RM algorithm to get the optimal rate allocation in case the

new video flow gets accepted. Then, the VAC estimates the

SSIM for each active video when applying such allocation

policy to the system and checks whether the quality of any

video drops below the threshold that we set to F ∗ = 0.95,

i.e., the minimum SSIM value to reach a MOS value of

4 (good) (see Table I). In this case, the new video access

request is rejected and that video flow is dropped, i.e., not

activated in the network. When an active video session is over,

the related channel resources are released and immediately

reallocated by the RM to the active video sequences. Note that,

in case of SFC, the class-based SSIM approximation is only

considered in the VAC and RM algorithm, while simulations

are performed considering the real SSIM characteristics of

each video.

Fig. 4(a), Fig. 4(b), and Fig. 4(c) report video dropping

probability Pdrop, average number of active videos, and av-

erage SSIM of the active videos, respectively, for the three

RM algorithms when varying the rate R of the transmission

channel. We observe that when R/G is close to one, the

channel rate is large enough to support basically all video

requests with full rate, so that the three algorithms perform in

a similar manner. When progressively decreasing the channel

rate, the RF algorithm scales uniformly down the RSF ρ of

all active videos, which determines a non-uniform decrease of

the SSIM of the different videos. In this way, the SSIM of

more dynamic videos get close to the SSIM threshold when

others are still enjoying much higher SSIM. Considering again

the curves in Fig. 2, we observe that the most dynamic videos

reach the SSIM threshold F ∗ = 0.95 for values of ρ from −1.5
to −1, which correspond to a normalized channel rate R/G in

the range from 0.02 to 0.1. In these conditions, a single high

dynamic active video will prevent the entrance of new videos,

since any further reduction of the rate allocated to the ongoing

videos will decrease the SSIM of some of them below the

threshold. The average SSIM remains approximately constant

and equal to the mean SSIM of the videos in the test set

for ρ ∈ [−1.5,−1]. For even smaller channel rates, the most

dynamic videos are likely not accepted into the system, and the

rate of the others will be proportionally reduced, determining

a progressive decrease of the average SSIM and increase of

the dropping rate.

On the other hand, the SFE and SFC algorithms can admit

new videos even at low channel rates (lower dropping proba-

bility compared to RF), at the cost of a slight decrease of the

quality delivered to the users, though within the constraint of

minimum acceptable SSIM. Actually, this constraint cannot be

strictly enforced by SFC, whose admission decision is based

on the class-based approximation of the SSIM characteristic

of a video and, indeed, the average SSIM of active videos

is slightly lower for SFC than for SFE. Furthermore, from

Fig. 5, we see that the percentage of admitted videos that

actually experience an SSIM lower than the threshold is always

less than 10%. This non-ideal behavior of SFC, however, can

be dealt with by slightly increasing F ∗, or making a more

conservative choice for the reference SSIM F C of each class.

VI. CONCLUSIONS

In this work, we proposed resource allocation and video

admission control algorithms based on the QoE degradation of
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Fig. 5. Percentage of active videos with SSIM lower than threshold because
of SFC’s class-based VAC policy.

TABLE II
VIDEO TEST SET

Name Full quality Duration Class

rate [kbit/s] [s] #

3inrow 11856 12 1
5row1 11135 12 1
Akiyo 5387 10 2
Boblec 11504 12 2
Bowing 10325 10 1
Bridge close 18246 66 4
Bridge far 18304 70 4
Vtc1nw 11210 12 1
Bus 16954 5 4
CaesarsPalace 17001 12 3
Cheerleaders 21757 12 4
City 14139 10 3
Coastguard 16570 10 4
Container 12229 10 3
Crew 16179 10 4
FlamingoHilton 25622 12 4
Flower 16335 8 3
Football 15806 3 4
Football ext 18092 12 4
Foreman 14642 10 3
Hall Monitor 16291 10 4
Harbour 17929 10 3
Highway 17529 66 4
Husky 24065 8 4
Ice 9517 8 2
Sign Irene 14091 18 3
Washdc 12948 12 2
Mobile 19172 10 3
Mother Daughter 11348 10 2
News 7824 10 2
Pamphlet 10917 10 1
Paris 12450 35 2
Redflower 14168 12 2
Silent 11586 10 3
Soccer 14063 10 4
Stefan 17589 3 3
Tempete 17850 8 3
Waterfall 14950 8 3

video clips for slower source rates. We found that, measuring

the QoE of a video in terms of SSIM, and expressing it as

a function of the logarithm of the source rate, normalized to

the full quality rate, it is possible to accurately approximate

the quality vs. rate distortion curve of the video as a 4-

degree polynomial function. The polynomial coefficients can

be tagged to the video and used for QoE-aware resource allo-

cation. To ease the job of RM and VAC algorithms, we further

proposed to group the videos with similar SSIM features into

classes and to tag each video with its QoE class rather than its

SSIM coefficients. We compared the performance of different

resource management schemes and we observed that knowing

the SSIM vs. rate curve of the videos is beneficial for a real

delivery system with strict QoE requirements. Furthermore,

the approximation introduced by the class-based tagging of the

videos is negligible compared to the performance of the system

where the exact knowledge of the SSIM vs. rate curve of each

video is given. This is a promising result towards the design of

scalable solutions where a network operator has to deal with

a very large number of concurrent video flows congesting the

links, as forecasted by the latest video growth trend analysis.

As a final remark, we observe that the extraction of the SSIM

of a video for different encoding rates is computationally

expensive. However, from Fig. 2, we observe that certain

videos exhibit a relatively large SSIM (> 0.94) even when

the transmission rate is decreased to 1% of their full quality

rate (e.g., bowing, pamphlet), while others suffer a quick drop

of SSIM already when the rate is reduced to 10% of the

full rate (e.g., husky, cheerleaders). Videos with similar SSIM

behaviors appear broadly homogeneous in terms of scenes

dynamics, with most dynamic videos exhibiting a quicker drop

of SSIM as the RSF decreases. Thus, it is conceivable to

train an automata video classifier that, based on some easy-

to-get video features (e.g., frame samples, frame size) can

automatically assign the videos to the most suitable QoE class.

Our study is a first step towards the design of automated

video classification schemes that opportunistically manage the

network resources when critical network conditions occur.
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