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Abstract—This work proposes to model city maps with a par-
ticular family of random tessellations: Crack STIT tessellations.
This family of tessellations allow the generation of realistic city
maps with a reduced number of parameters: the Anisotropy
Ratio (ξ) and the Mean Building Block Area (MBBA). These
city models are then used as input to a 3D ray tracing simulator
to compute received power distributions. The objective of this
investigation is to identify the impact of random tessellation
parameters on wireless propagation.

For this purpose, path loss exponent γ is estimated from
received power distributions obtained by simulation for different
values of ξ and MBBA pairs. Simulations results clearly show a
linear dependency between path loss γ, ξ and MBBA. Path loss γ
increases with ξ while it decreases with MBBA. Furthermore the
evolution of the surface occupation ratio between outdoor and
overall surface is also investigated. This ratio is named Free Area
Ratio (FAR) in the sequel. It decreases with MBBA according to
a power law. The results obtained are particularly promising as
they provide a parametric relation between path loss exponent
γ and terrain topology. This considerably simplifies the radio
planning and dimensionning process of cellular networks.

Index Terms—random tessellations, crack STIT, anisotropy
ratio, mean building block area, propagation impact, path loss
exponent

I. INTRODUCTION

The development of modern wireless communication tech-
nologies, such as LTE and LTE advanced, will require the
use of more tractable and accurate propagation models. More
realistic estimations of the received power and of the interfer-
ence levels will be needed for a better capacity estimation and
planning. One of the major issues in propagation modeling is
the design of a model that integrates the impact of the terrain
topology in wireless propagation. Many statistical propagation
models already exist in the literature but they are obtained
from experimental measurements and cannot be transposed to
different urban environments.

Stochastic geometry can be a valuable tool in modeling
terrain topology in a urban context. Some families of ran-
dom tessellations, namely crack STIT tessellations, can be
used to model and generate realistic city maps and building
deployments. They concentrate topology description of terrain
in a small set of parameters: Anisotropy Ratio (ξ) and Mean
Building Block Area (MBBA). They are also quite easy to
simulate. These features makes them particularly attractive for
investigating the effects of terrain topology on wireless prop-
agation channel. As a matter of fact it is possible to classify

different cities according to their ξ and MBBA. Conclusions
on wireless propagation for that specific deployments can then
be drawn.

This work proposes to model building deployments in cities
by using crack STIT tessellations. It investigates the impact
of crack STIT tessellations parameters on received power and
path-loss exponent. The research carried out in this work relies
on a two step methodology: a) generation of city according to
a crack STIT tessellation model; b) use of 3D ray tracing
algorithms to compute received power distributions in the
generated city map.

The rest of the paper is organized as follows. Section II
introduces some theoretical background about crack STIT
tessellations. Their generation process will be outlined. The
anisotropy and the MBBA parameters will also be defined.
Section IV investigates the practical impact of ξ and MBBA
on path-loss exponent γ by simulations. It also studies the
evolution of outdoor to overall area ratio (Free Area Ratio,
FAR) versus ξ and MBBA. Finally some future directions of
investigation and conclusions are drawn in section V.

II. CRACK STIT TESSELLATIONS BACKGROUND

A. Preliminaries

Let L be a line in the Euclidean plane with origin oL and
direction vector uL. It divides R2 into two disjoint regions:
L+ = {x ∈ R2,det(ul, (x − ol)) > 0} and L− = {x ∈
R2,det(ul, (x− ol)) < 0}.
The set of lines in the plane is written H and the set of
polygons possibly infinite is P. In the following we consider
the function:

D : P×H → P× P
(P,L) → (P ∩ L+, P ∩ L−)

(1)

This function can be extended to a set of convex polygons:
{Pi}: D({Pi}, L) =

⋃
i{Pi ∩ L+, Pi ∩ L−}. It separates one

set of polygons crossed by one random line into two smaller
sets of polygon-es.

B. General definitions

Definition 1: A tessellation Ξ is a countable family of
convex polygons {Ci}i∈N (the cells) whose interiors do not
intersect.

The dual definition can also be adopted: a tessellation is a
straight planar graph whose vertexes are the cells’ vertexes and
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edges are cell’s. When considered as a family of polygons, the
tessellation writes Ξ and when considered as a graph ∂Ξ. To
handle randomness with tessellation, the set of tessellations
is equipped with the σ-algebra generated by sets {Ξ, ∂Ξ ∩
K = ∅} where K is a compact part of R2 [1]. Generally, a
tessellation is deducted from a point process. For instance, if
X =

∑
Xi is a Poisson Point Process in the plane and if

to each point Xi is associated its Voronoı̈ zone V (Xi||X),
{V (Xi||X)}i is then a random tessellation named Poisson
Voronoı̈ Tessellation [2].

C. Model choice

Many random tessellation models have been proposed to
represent street systems in the cities. For instance, [3], [4]
suggests to use Poisson Voronoı̈. [1], [2], [5] and [6] propose
models based on Poisson Line Tessellation and Crack STIT
Tessellation. More recently, it has been shown in [7], [8] that
a city’s morphology can result from two growth mechanisms.
The first one is an organic like growth: independent agents
divide sequentially plots of land to settle in. Agents do not
consult each other, consequently axis they create are not
coherent and street intersections are T-shaped. Conversely in
the case of a planned deployment of cities, agents act under
an authority and draw long transportation axis to optimize
displacements within the city. Crack STIT tessellations can
mimic these different situations (Fig.1).
These two models are quite similar and can be treated in
the same theoretical framework. Indeed they both result from
sequential divisions of polygons and if edges in a Crack STIT
were extended into infinite line, one would obtain a Poisson
Line Tessellation. This has for consequence that the typical
cell of the tessellations are equal in distribution [9]. They both
depend on two parameters: an intensity parameter λ ∈ R+ and
a probability measure R that describes the anisotropy of the
street system [9].

Fig. 1: Realization of tessellations into a disc. The first row
shows PLT with from left to right an anisotropy of 0, 0.5 and 1.
The second row shows Crack STIT with the same anisotropy
distributions.

D. Construction

Random Line and Poisson Line Tessellation: We start by
describing the construction of a Poisson Line Process. To a
line L is associated πd(o), the projection of the plane’s origin
o onto this line. The signed distance between the line L and
the origin is define by ||πd(o)− o||.sgn(〈πd(o)− o | t(1 , 0)〉).

Definition 2: The Poisson Line Process (PL) ∂Ξ of inten-
sity measure λ and anisotropy measure R is the Poisson
Point Process on the cylinder R × [0, π[ of intensity L(.) =
λµ(.)⊗R(.), λ > 0.
The associated Poisson Line Tessellation (PLT) Ξ is the
random set of the connected components of R2\∂Ξ.
These two processes (generically written Ξ in what follows)
have two fundamental properties:

Property 1: Ξ is stationary: if . + ~v is the translation of
vector ~v then Ξ

dist
= Ξ +~v. The statistical properties of a PL or

a PLT are the same wherever they are observed.
Property 2: Ξ is locally finite: if W is a compact of R2

then L(H ∩W ) = L({h ∈ H, h ∩W 6= ∅}) <∞.
Consequently to simulate the intersection of an infinite PLT
with a compact window W : Ξ ∩W , Ξ ∼ L, is the same as
to simulate the intersection of W with the finite process of
intensity LW (.) = L(. ∩W ).

Property 3: If C is a circle with radius r then ]LC(.)
follows a Poisson Law of parameter λ.2.r whatever R is and
conditionally to it cuts C, a line of the process has a distance
to the center of C uniformly distributed.
Furthermore, if W ⊂ C then LW (.) = LW∩C(.) = LC(. ∩
W ). It is sufficient to draw a Poisson Line in C and keep only
lines that cross W which leads to the simple algorithm 1 to
simulate the intersection of a PLT with W .

Algorithm 1 Ξ = PLT(λ,W ) Poisson Line Tessellation
process intersected by W

1: INPUT λ ∈ R+, W
2: OUTPUT: Tessellation Ξ
3: Tessellation T0 = {W}
4: Inscribe W in a circle C of center 0′ and radius r.
5: N ∼ P(λ.2r) ; n = 1
6: while n ≤ N do
7: r0 ∼ U[−r,r] ; α ∼ R
8: Consider the line l = (r0, α) + 0′

9: if d ∩W 6= ∅ then
10: Ξn = D(Ξ, l)
11: n+ +
12: else
13: Ξn = Ξn−1
14: end if
15: end while
16: Ξ = ΞN

The choice of the smallest circle circumscribed to W per-
mits to minimize line rejections and thus to improve running
time.
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Algorithm 2 l ∼ LW Random line in W

1: INPUT W
2: Inscribe W in a circle of center 0′ and radius r..
3: while do
4: r0 ∼ U[−r,r] ; α ∼ R
5: Consider the line l = (r0, α) + 0′

6: if d ∩W 6= ∅ then return l
7: BREAK
8: end if
9: end while

Crack STIT: A Crack is a division of space process. Unlike
PLT, it is defined sequentially in a bounded window and [6]
shows that this bounded process can be extended to a random
tessellation in the whole plane.

Informally, at a time t, the tessellation is Ξt = {Ci}
and dt, each cell Ci in the tessellation has a probability
λ.ν(Ci).dt, λ > 0 to be divided into two new cells and
a probability o(dt2) to be divided twice. ν(.) is a positive
measure on the set of convex bodies, invariant under rigid
motion (for instance area, perimeter, number of vertexes) [10].
The tessellation is observed at a finite time τ , the homogeneous
quantity λ.τ describes the intensity of the process in such
a way one can come down to τ = 1. If the measure ν
is the perimeter (which is the case under consideration in
what follows), the resulting tessellation process has interesting
properties: it is STable under ITeration (STIT) and its typical
cell is equal in distribution to the PLT’s one.

Algorithmic-ally the Crack’s construction can be made
recursively with the function division D and a generator of
the law Lω with ω a compact set.
To do this, we define the auxiliary function of evolution of a
cell C belonging to a tessellation Ξ from a time t > 0:

Algorithm 3 evolution(C, t,Ξ, τ, λ)

1: δt ∼ E(λ.ν(C)
2: if t+ δt < τ then
3: L ∼ RC , (C+, C−) = D(C,L)
4: Ξ = (Ξ− {C}) ∪ {C+, C−}
5: evolution(C+, t+ δt,Ξ, τ, λ)
6: evolution(C, t+ δt,Ξ, τ, λ)
7: end if

Definition 3: There exist a stationary, locally finite tes-
sellation whose intersection with a convex and com-
pact window W is the result of crack(W, τ, λ) =
evolution(W, 0|{W}, τ, λ). It is called the Crack STIT tes-
sellation.

E. Mean formulae
Mean formulae (Tab.I, [9]) are known for topological fea-

tures of PLT and Crack STIT in a disc of area 1 in function
of their intensity λ and of the so called anisotropy parameter:

ρ
def
=

∫∫
| sin](u, v)|R(du)R(dv) (2)

(these formulae remain true for all Borelian of area 1 if the
tessellation is isotropic i.e. if R is uniform or if ρ = 2/π).
Knowing these mean formulae permits to calibrate the models
to fit real data.

Parameters Notation Mean value
per u.a for
PLT

Mean value
per u.a for
Crack

Total edge length LA λ λ.τ
Number of vertices N0

1
2
ρλ2 L2

Aρ

Number of edges N1 λ2ρ 3
2
L2
Aρ

Number of cells N2
1
2
λ2ρ 1

2
L2
Aρ

Length of the typical edge U1 2/(3λρ) 2/(3LAρ)
Perimeter of the typical cell U2 4/(λρ) 4/(LAρ)

Area of the typical cell A2 2/(λ2ρ) 2/(L2
Aρ)

TABLE I: Expectancies of various morphological features of
PLT and Crack STIT in function of their intensity λ and their
anisotropy parameter ρ.

In a city modelling context, the particular family of angular
distribution Rξ, ξ ∈ [0, 1] is under consideration with:

Rξ = (1− ξ)U[0,π] +
ξ

2
(δθ + δθ+π/2) (3)

Where θ is a constant tessellation initial direction vector.
Samples can be generated easily from Rξ and this family
allows to go continuously from an isotropic network (ξ = 0)
to an anisotropic Manhattan-like one (ξ = 1). For this family
of distributions, ρ writes:

ρ(ξ) = ξ2(
1

2
− 2

π
) +

2

π
(4)

III. BUILDINGS GENERATION

The tessellation represent the street axis (alignments of
edges), the city skeleton (Fig.2,1). From this, axis are thick-
ened with a Minkowski’s sum ⊕ε, ε > 0. If A is a subset of
the plane,

⊕εA = {x ∈ R2, d(x,A) ≤ ε} (5)

Property 4: If {Ai} are the axis of a tessellation, i.e subsets
of edges that are aligned, the connected components of R2 \
⊕ε ∪Ai, ε > 0 are polygons Bi that do not intersect.
If {Ci} is the set of cells of the tessellation then each Bi is
the image of a cell Ck by the operator

	ε/2(C) = {x ∈ C, d(x, ∂C) >
ε

2
} (6)

We can thus shape building blocks (Fig.2,2) by applying
	ε/2 independently to each cell in T .
Computational, 	ε/2C is equivalent to the sequential division
of C by its edges shifted of a distance ε/2 toward its interior.

Once blocks obtained, we associate to each block B its
image by the dilatation of center its center of mass and ratio
η: B̃ (Fig.2,3).

A Poisson Point Process of intensity 1/(b.η) is drawn on the
external frontier of B, ∂B̃: b̃1, ..., b̃N , b̃N+1 = b̃1, these points
being sorted clockwise (Fig.2,4). We write bi the projection
of b̃i on ∂B (internal frontier of B) and qi,1, qi,2..qi,ni

the
vertices of ∂B sorted clockwise from bi to bi+1.
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We then create polygons b̃i, pi, qi,1, qi,2..qi,ni
, bi+1, b̃i+1, b̃i to

represent buildings’ footprints (Fig.2,5).
Finally, to each building is associated a random height from

a distribution E(h), h > 0.
From now, we can generate buildings whose mean façade

length and mean height are known: b and h. Figure 3 shows
two city maps obtained by applying the previous computa-
tional steps.

Fig. 2: Steps in the building generation. From a tessellation
(1) we apply an erosion operator to axis (2) in each new cell,
we compute its dilated polygon with respect to its center of
mass (3) we draw on this polygon a Poisson Point Process (4)
whose points are projected to create buildings’ footprint (5)

(a) ξ = 0.1,
MBBA= 10000m2

(b) ξ = 0.9,
MBBA= 10000m2

(c) ξ = 0.5,
MBBA= 2500m2

(d) ξ = 0.5,
MBBA= 40000m2

Fig. 3: Map examples: White for buildings and red for outdoor
region

IV. TERRAIN TOPOLOGY IMPACT MECHANISM
ASSUMPTION

From the above introduction, we can clearly find out that
Anisotropy Ratio ξ (also called AR) basically controls the
tessellation of the city, which includes the direction of the
streets and the shape of divisions and building blocks. In a
sense, it also determines the potential propagation channel
orientations. MBBA is the average area of a block. It controls
the size of the obstacles directly, which would further influence
the “free space/occupation”ratio and the length of the walls
that forming the propagation channels as it is illustrated in in
Fig.3.

A. Key Propagation Term

Based on this power map, two variables are selected as
the evaluation criteria related to the propagation. One is the
Free Area Ratio (FAR), the other one is the general path-loss
exponent γ. FAR is the ratio between the area of all free grids
which have receiving values (denoted as Afi) and all scanned
grids area (denoted as AH ). FAR can tell us the vacancy of the
region, and the outdoor user mobiles can only be assumed to
deploy in these free receiving regions. It is a highly user related
criteria that we will go further researches in future works.
Meanwhile, γ is derived from the spatial relationship itself.
It is also a key parameter of evaluating the wireless service.
In our assumption, FAR is clearly affected by environmental
parameters like AR and MBBA, so it can be expressed as
follow in Eq.7:

FAR =

∑
iAfi
AH

(%) = f (MBBA,AR, . . .) ,

orFAR ∼
{
f (MBBA)
g (AR)

(7)

The general path-loss exponent γ is also calculated for each
map. It can reveal the difficulty of the overall propagation
process under certain environmental settings. It is estimated
from the relation of obtained receiving power Pri and direct
transmitter-receiver Euclidean distance Di in Eq.8. It is also
assumed to be related to MBBA and AR like Eq.9 shows.
Smaller γ means slower attenuation and easier propagation
and better signal intensity and service.

Pri =
G× C
Dγ
i

(8)

γ = f (MBBA,AR, . . .) (9)

Where G is the constant of antenna gain, and C is the
constant part including frequency.

1) Impact Mechanism Assumption: In the generation pro-
cess using Crack Tessellation, MBBA will directly influence
FAR via controlling the block size, while the main factor
brought by AR is the map randomness. Smaller AR brings
bigger randomness. And randomness can affect the building
Generation Step (GS) of Crack Tessellation termination and
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building Coverage Efficiency of Grids (CEG) which means
the easiness and efficiency of how many building blocks can
cover a grid. Combining the grid size, AR may affect FAR in
the following ways:
• Smaller AR means more messy trivial shape of building

blocks and space occupation, while big AR means neater
and more unified space utilization. The irregularity of the
block shape can interference and waste some neighbor
free grids, and may bring “fake” high CEG, like Fig.4
shows.

• AR may also affect GS according to specific MBBA
requirement. If MBBA is large enough, the random con-
vex may fulfill “big area” division easier than rectangles,
and bring less blocks and more inner free space (like
stadium), since the center of blocks may also be free
according to logical design of building thickness. The
simple illustration is shown in Fig.5.

Fig. 4: Two more neighbor grids (G2 and G3) are interferced
to be occupied due to smaller ξ for small MBBA

Fig. 5: More GS and blocks by bigger ξ when MBBA is big,
which squeeze the free space

For analyzing γ, it is better to study the propagation process
in detail. Firstly, Eq.8 can transform into logarithm mode:

logPri = log

(
G× C
Dγ
i

)
= C ′ + [(−γ) logDi] (10)

The receiving power can also be expressed hop by hop when
considering M reflection steps:

logPri = C ′′ +

[
(−1) log

∑
M

d2i + (−M) logATTi

]
(11)

Where di is the propagation distance between each two
reflections, and each reflection brings a reflection attenuation
coefficient ATTi. C ′ and C ′′ are the sum of the transformed
constant parts. Thus, for reaching a fixed mobile position,
shorter di with more reflection number M results to smaller
Pri because of more frequent reflections. And these accumu-
lated attenuations ATTi will decrease Pri rapidly. Meanwhile,
Di of this mobile is fixed for different city structures and
propagation. Thus, combining the right side of both Eq.10 and
Eq.11, we can conclude that the fast fading away power will
make the observing γ seem to be bigger according to Eq.12.

γ ∝ log
∑
M

d2i +M logATTi + C ′′′ (12)

Where C ′′′ is the transformed general constant part.
Back to each reflection, we believe that di and M is

influenced by the randomness brought by ξ and Continuous
Wall (CW) length of building block mainly brought by MBBA.
Longer CW and bigger randomness bring less (bigger M )
and longer di due to less frequent short reflections. So, the
assumption about γ is the following:
• For MBBA, although bigger building seems to be more

space assuming, bigger MBBA will bring longer CW
which can ensure better continuous space for less and
longer di to destiny. The propagation within the com-
pressed space could be better guided channels (smaller
M and longer di) rather than frequent free reflections on
small trivial building blocks, like in Fig.6. So the general
γ in these canyons could be smaller.

• For AR, smaller AR means more randomness. Com-
pared with more unified rectangular tessellation, random
division may generate more “corner plaza” with more
flexible reflection angles. More rigid monotonous 90◦

block corners may be harder for a radial propagated non-
zero incident signal, and thus brings shorter di, bigger M
and bigger γ. It can also be called as “corner hardness”,
like in Fig.7.

(a) furthest distance is red after 3
reflections at the road end

(b) furthest distance is blue after
3 reflections at the road end

Fig. 6: Longer CW ensures longer guided canyon, longer
maximal radial propagation distance and faster to destiny with
less reflections: red lines are the same radial lengths

V. SIMULATION AND ANALYSIS

The simulations will compute the receive power in outdoor
regions of generated city maps using a 3D ray tracing simu-
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(a) 4 reflections to destiny
with rigid corner degree

(b) 2 reflections to destiny with ran-
dom corner degree

Fig. 7: Bigger ξ and rigid corner brings more reflections to
destiny: red lines are the same radial lengths

lator. The area of study will be a circular region with 1 km
radius. The received power will be computed in the horizontal
plane corresponding to an elevation of 1.5 m. The street width
is fixed to 20 m, and the building height is fixed to 25 m.
Antenna is set to the top of the closest building with extra
6 m tower height. The leaning angle of the antenna is 40◦

with ±40◦ scanning range, while the rays resolution is set to
107 beams. The transmitter has 40 W transmission power and
0.15 m wavelength (for 2 GHz frequency) with a fixed 50%
reflection absorption coefficient. The background noise power
is set to 10−12 W . A single ray will experience at most 100
reflections to stop.

The simulator will compute the receiving power values
for the entire region. Then the data will be sorted by grids
according to the 2D radial distance to the antenna position
“ring” by “ring”. The grid can be rectangular as well, but
the radial grid has been selected for identifying the relation
between the radial distance and the pathloss exponent γ.
Considering the acceptable coverage estimation and effective
power, we only count the receiving power of area within
300 m radius. In the following groups of simulations, the
anisotropy ξ is scaled to 0.1, 0.3, 0.5, 0.7 and 0.9, while
MBBA is scaled in square root from 25 m to 300 m with
25 m interval, which is from 625 m2 to 90000 m2. More
than 10000 power maps are generated for each ξ-MBBA .
The curve fitting results provide the coefficients fitting and
the Sum Standard Error (SSE) as well.

A. Impact on Free Area Ratio

In this section, the FAR evolution is studied along with the
changing of ξ and MBBA. The same data are sorted into two
types of curves. One is group of curves with fixed ξ, and the
other one group with fixed MBBA.

From Fig.8, we can see that the MBBA can strongly affect
FAR. As MBBA grows larger from 625 m2 to 90000 m2,
FAR is monotonically decreasing, which leads to less free
propagation space and user deployment space. It is clear that
bigger building blocks will bring less free space. Meanwhile,
Fig.8 also implies that ξ can slightly affect FAR at certain
circumstances. The curves show that bigger ξ will bring bigger

FAR roughly before 10000 m2 MBBA. When MBBA grows
larger, this phenomenon becomes more blur.
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Fig. 8: FAR vs MBBA curves for different fixed ξ

Fig.9 reveals the ξ-FAR relation and supports our above
assumptions about it. When MBBA is small at first, smaller
ξ brings bigger randomness, and FAR is increasing with
bigger anisotropy. Compared with 20 m street width, small
ξ with small MBBA brings huge randomness and division
irregularity, which makes the fake high CEG dominates the
FAR changing. Then, for moderate MBBA, the larger block
size and less GS weaken the fake CEG effect of randomness
until it reaches a balance like the “V” shape in a small range.
Finally, when MBBA is very big, less GS brings less blocks
and more free inner space due to small values of anisotropy.
The block size surpasses the grid size, and makes rigid division
establishing high CEG, and thus, big rectangles are over-
covering. FAR turns to decrease with bigger ξ.
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Fig. 9: FAR vs ξ curves for different MBBA

Since the ξ-FAR relation has multiple patterns and changes
gradually, no easy fitting has been selected to fit all the
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TABLE II: MBBA-FAR power law fitting

ξ a b c SSE

0.1 3.223 -0.2109 0.09088 0.001613
0.3 3.003 -0.1808 -0.0126 0.001576
0.5 2.81 -0.1313 -0.2719 0.001466
0.7 2.943 -0.08922 -0.7057 0.001729
0.9 6.547 -0.02303 -4.677 0.001249

patterns. However, the Power Law fits well the MBBA-FAR
data in Fig.8. It means that the FAR can be fitted with a power
law with MBBA like in Eq.13 with specific coefficient fitting
results in Table.II.

FAR = a×MBBAb + c+ o [g (ξ)] (13)

B. Impact on Path-loss Exponent

In this section, the general evolution of path loss exponent
γ is studied along with the changing of ξ and MBBA. γ is
the average of more than 10000 maps for each ξ-MBBA pair.
The same data are also sorted with fixed ξ and fixed MBBA.

Fig.10 and 11 shows the general γ sorted by increasing
MBBA and increasing ξ separately. Despite the 625m2 data
(labeled 25 in Fig.10 and decreasing curve in Fig.11), γ is
monotonically decreasing with increasing MBBA. Bigger ξ
will mostly bring slightly bigger γ. These results support our
guided channel assumptions about MBBA-γ relation and ray-
entrance variety versus corner hardness assumptions about ξ-γ
relation.
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Fig. 10: General γ vs MBBA curves for different ξ

The potential reason about the inconsistent data at 625 m2 is
that the blockage size is too small when compared with 20 m
street width. Rather than generating continuous reflections, the
small blockages might be “invisibly bypassed”. These may
result to the increase at 625 m2 in Fig.10. Moreover, for these
small “gapping” obstacles, more rigid corner closer to 90◦

(bigger anisotropy) might be easier to proceed propagation in
certain directions and encounter less reflections due to easier
been bypassed. And this might be the reason of the decreasing
dotted curve of 625 m2 in Fig.11.
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TABLE III: MBBA-γ linear fitting

ξ
2500m2 ∼ 90000m2 2500m2 ∼ 40000m2

p(10−6) q sse p(10−6) q sse

0.1 -9.637 3.464 0.04711 -13.7 3.532 0.02019
0.3 -9.695 3.49 0.04297 -13.31 3.553 0.01798
0.5 -9.582 3.52 0.04516 -13.25 3.581 0.02311
0.7 -9.879 3.587 0.04707 -14.17 3.656 0.01847
0.9 -10.99 3.687 0.05051 -15.05 3.755 0.02184

ξ
2500m2 ∼ 50625m2 5625m2 ∼ 50625m2

p(10−6) q sse p(10−6) q sse

0.1 -12.43 3.515 0.02419 -10.71 3.455 0.00216
0.3 -12.35 3.54 0.02028 -10.76 3.484 0.001516
0.5 -11.86 3.563 0.02792 -10.03 3.498 0.002961
0.7 -12.83 3.639 0.02295 -11.18 3.581 0.002679
0.9 -13.79 3.739 0.02579 -12.13 3.681 0.005378

The simple linear fitting seems enough to describe the
overall evolution of γ with MBBA and ξ, especially for the
common moderate block size part from 2500m2 to 50000 m2.
Thus, it possible to convert the relation in previous Eq.9 into
Eq.14:

γ ∼
{

p×MBBA+ q
p′ ×MBBA+ q′

, γ ≥ 2 (14)

The coefficient fitting results for Eq.14 are listed below in
Table.III and IV. Table.III is divided into different MBBA
fitting ranges to find most linear-like segment. Table.IV is
consistent except for the 625 m2 data in the first row.

Since both ξ and MBBA shows a linear relation with γ,
the joint relation function in Eq.9 can also be concluded as
a single plane function in Eq.15 by merging these two linear
relations. The joint γ-MBBA-ξ surface is shown in Fig.12.
Again, for more common moderate building block size from
2500m2 to 50000m2, the surface is almost a flat plane. The
whole surface can also be regarded as a piecewise plane with
3-4 linear stages like example shown in Fig.13. The following
Table.V and VI list the coefficient fitting of Eq.15 for both
single plane and piecewise plane.

γ = p1 ×MBBA+ p2 × ξ + q, γ ≥ 2 (15)
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TABLE IV: ξ-γ linear fitting

MBBA Linear fitting result
(m2) p′ q′ sse

625 -0.5457 3.761 0.01405
2500 0.2664 3.555 0.002457
5625 0.2889 3.372 0.00334

10000 0.2528 3.295 0.002782
15625 0.24 3.227 0.001123
22500 0.2135 3.17 0.0009285
30625 0.2255 3.082 0.0005435
40000 0.2137 2.994 0.0008599
50625 0.1984 2.902 0.0003695
62500 0.2054 2.815 0.004217
70625 0.1454 2.745 0.0007508
90000 0.1434 2.652 0.0001438

TABLE V: ξ-MBBA-γ surface fitting (overall)

MBBA p1(10−6) p2 q sse

625m2 ∼ 90000m2 -9.773 0.1540 3.462 0.4915
2500m2 ∼ 90000m2 -9.957 0.2176 3.441 0.2517

TABLE VI: ξ-MBBA-γ surface fitting (4-stages)

MBBA p1(10−6) p2 q sse(10−3)

625m2 ∼ 2500m2 106.5 -0.1396 3.492 148.4
2500m2 ∼ 10000m2 -34.69 0.2694 3.617 20.80
5625m2 ∼ 50625m2 -10.96 0.2333 3.423 25.64
50625m2 ∼ 90000m2 -7.101 0.1732 3.274 7.038
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Fig. 12: General γ vs ξ vs MBBA joint surface

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed a new modeling of city
maps based on crack STIT tessellations. That models allow
to generate easily city maps to study the impact of terrain
topology on studied wireless propagation.

This work has shown that path loss exponent γ depends
linearly on anistropy ξ and MBBA. γ increases linearly with
anisotropy while it decreases with MBBA. FAR is monotoni-
cally decreasing with MBBA according to a Power Law.

Future work will add stotastic mobile distributions on the
power map, and compute the effect of terrain topology on
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Fig. 13: Piecewise fitting for MBBA 5625m2 ∼ 50625m2 in
stage 3

resource allocation performance (for example the number of
resource blocks allocated in one area for a distribution of base
stations and mobiles).

We plan also to develop new methods that will help to infere
anisotropy and MBBA for real cities maps or differant areas
in a city. This will allow the identification of geoagraphical
areas with common path loss exponent. Such classification will
considerably ease the dimensionning and planning process of
cellular networks.
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