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Abstract—OFDMA has been selected as the multiple access
scheme for emerging broadband wireless communication
systems. However, designing efficient resource allocation
algorithms for OFDMA systems is a challenging task, es-
pecially in the uplink, due to the combinatorial nature of
subcarrier assignment and the distributed power budget for
different users. Inspired by Glauber dynamics, in this paper,
we propose a randomized iteration-based uplink OFDMA
resource allocation algorithm. We show that our algorithm
is near-optimal in the sense that by increasing the number of
iterations (which scales up the complexity), with arbitrarily
large probability, the algorithm can converge to the subcar-
rier/power allocation pattern with the maximum sum-utility.
We also show that this algorithm can be generalized to solve
a joint uplink-downlink allocation problem in full-duplex
OFDMA systems. Simulations are conducted to compare the
performance of our algorithm with existing ones.

I. INTRODUCTION

Orthogonal frequency division multiplexing has been
the key technology for most wide-band communication
systems due to its low-complexity implementation, ef-
ficient and flexible spectrum management, and robust-
ness against frequency selective fading. By dividing the
available spectrum into many parallel subcarriers and
allowing adaptive modulation techniques on each subcar-
rier, OFDMA scheme inherently permits both multi-user
diversity and frequency diversity at a fine granularity.
To fully exploit such promising gains, it is essential to
have a radio resource allocation algorithm that efficiently
manage both subcarrier and power assignment among all
users.

However, designing resource allocation algorithms is
a challenging task, especially in the uplink, due to the
following reasons: 1) The exclusive nature of the sub-
carrier assignment leads to an integer optimization prob-
lem, which is generally hard to solve. 2) Different users
may have different power constraints, average channel
qualities, or even rate-utility functions, which makes the
problem even harder.

Due to these inherent difficulties, most existing works
have focused on using the insight gained from either the
necessary condition of optimality, or the optimal solution
for a relaxed version of the integer optimization problem
to develop suboptimal algorithms. For example, in [1],
the Lagrangian method is used to obtain a necessary

condition for the resource allocation pattern with the
maximum sum-rate, then two greedy allocation algo-
rithms are developed based on the intuition obtained from
the necessary condition. In [2], the authors generalize
the necessary condition to the sum-utility maximization
problem and develop a new algorithm. They further show
that the algorithm is Pareto-optimal within a large neigh-
borhood. In [3], the authors relax the exclusive subcarrier
assignment constraint, allow different users to access the
same subcarrier using orthogonalization, and derive an
optimal solution to this relaxed problem. This optimal
solution, in turn, is used to guide the design of a sub-
optimal algorithm that maximize the sum weighted rate
of all users.

Different from existing algorithms which are mostly
derived from the Lagrangian methods, our work is based
on the so-called Glauber dynamics from statistical physics
[4], [5]. Glauber dynamics, originally a model of how
physical systems reach equilibrium, has been well-studied
for its use as a Markov Chain Monte Carlo (MCMC)
algorithm, which samples from probability distributions
by constructing a Markov chain that has the desired
distribution as its unique stationary distribution. It is
a versatile tool with many applications such as graph
coloring, approximate counting, and sampling of inde-
pendent set. Glauber dynamics also leads to the recent
development of throughput-optimal queue-length-based
dynamic CSMA algorithms [6], [7], which has become
a very active research area (a good survey is presented
in [8]).

In our work, the idea of Glauber dynamics is used to
develop a randomized resource allocation algorithm for
single-cell OFDMA systems. Starting from any resource al-
location pattern, our algorithm tries to alter the allocation
pattern in a randomized and iterative fashion, where the
alteration in each iteration is limited to only two or three
users, and the probability of each alteration is carefully
chosen such that the optimal allocation pattern is found
with high probability when the Markov chain representing
the iterations reaches steady state.

The main contribution of this paper is the following:
• We propose an iterative randomized joint-subcarrier-

power allocation algorithm for uplink OFDMA sys-
tems, in which the allocation pattern evolves as a
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Markov chain, and the steady state probability of
the allocation pattern with the maximum sum-utility
can be made arbitrarily close to one, which we term
“near-optimal”. (Section III)

• By integrating some changes into this randomized
algorithm, we develop an enhanced version of the
randomized algorithm that has better performance
under finite number of iterations. (Section IV)

• Unlike existing uplink resource allocation algorithms
that have fixed complexity and performance, our
proposed algorithms can trade off complexity against
performance, in the sense that by increasing the
number of iterations, the optimal allocation can be
found with higher probability. Also, given that our
algorithm is near-optimal as the number of iterations
approaches infinity, it can also be used to benchmark
the performance of other algorithms for different
network configurations. (Section VI)

• We show that the randomized algorithm can be easily
generalized to solve a joint uplink-downlink resource
allocation problem in a OFDMA system where the BS
and all users have wireless full-duplex capabilities.
(Section V)

II. SYSTEM MODEL

We consider the problem of joint subcarrier assign-
ment and power allocation in a single-cell uplink OFDMA
system with K mobile users and S subcarriers. Since
each subcarrier can only be assigned to a single user,
the total number of all possible subcarrier assignment
patterns is KS . To represent an allocation pattern, we
use an S−dimension vector such that the sth element is k
if the sth subcarrier is allocated to the kth user. We use V
to denote such a vector, and use superscripts (e.g., V (x)

and V (y)) to differentiate between different allocation
patterns.

The set of all possible subcarrier allocation patterns
is denoted as V = {1, 2, . . . ,K}S =

{
V (x)

∣∣x ∈ N, 1 ≤
x ≤ KS

}
, where V (x) =

[
V (x)(1), V (x)(2), . . . , V (x)(S)

]
for any x. Without loss of generality, when K ≤ S,
we assume that the first S!/(S −K)! allocation patterns
are the ones that assign at least one subcarrier for each
user, and denote the set of all such allocation patterns as
W =

{
V (x) ∈ V

∣∣x ∈ N, 1 ≤ x ≤ S!/(S −K)!
}

We assume an AWGN channel for each user in every
subcarrier, and denote the normalized signal to noise ratio
for user k in subcarrier s as gs,k. We also assume that the
scheduler has the complete knowledge of all the channel
SNRs {gs,k|1 ≤ s ≤ S, 1 ≤ k ≤ K}. The power budget for
user k is denoted as Pk and the utility function Uk of user
k is assumed to be a non-decreasing function of the rate
of user k.

For a fixed subcarrier allocation pattern V (x), it is well-
known that the optimal power allocation for user k is
the water-filling solution over its assigned subcarriers.

More precisely, the optimal power allocation of user k
on subcarrier s is

ps,k

(
V (x)

)
= 1{V (x)(s)=k} [νk − 1/gs,k]

+
,

where [x]+ = max{0, x}, and νk is a constant which is
commonly called the water level of user k and satisfies

S∑
s=1

ps,k

(
V (x)

)
= Pk, for any 1 ≤ k ≤ K.

Based on the water-filling solution, we can then calculate
the maximum utility for user k under a fixed allocation
pattern V (x), which is

U
(
k, V (x)

)
= Uk

(
S∑
s=1

log
(
1 + gs,kps,k

(
V (x)

)))
.

Finally, the joint subcarrier and power allocation problem
for the uplink OFDMA system can be formulated as the
utility maximization problem below.

max
1≤x≤KS

K∑
k=1

U
(
k, V (x)

)
. (1)

Note that the above formulation is quite general in the
sense that (a) We do not assume either concavity or
differentiability on the utility function, and thus our results
can be applied to a large class of utility functions. (b)
Even though we are dealing with instantaneous sum-
utility maximization, this formulation can be used to solve
the sum-utility maximization problem for the long-term
average user rate through a gradient-based scheduling
framework [3], given that the utility function of the long-
term average rate is concave and differentiable.

III. RANDOMIZED ALGORITHM

Next, we propose a randomized iteration algorithm
in which the allocation pattern keeps evolving, where
the pseudo-code is provided in Algorithm 1. We use
superscripts in square bracket (e.g., V [t]) to indicate the
allocation pattern in different iterations.

A. Algorithm Description

At the beginning of the algorithm, we pick an initial al-
location pattern V [0] by letting all subcarriers sequentially
and randomly choose a user among the ones that have
the least number of associated subcarriers to associate
with. Then, the system enters an iteration loop, where
the allocation pattern at the beginning of the tth iteration
is denoted as V [t]. In each iteration, the system tries to
generate a new allocation pattern V

[t]
, also called the

candidate allocation for the next iteration, by following
some simple steps. Initially, V

[t]
is set to be a replica

of V [t].
[Step 1] Based on V [t], the base-station picks a user-
pair {kA, kB} according to the following procedure: pick
a subcarrier uniformly at random, and denote the user it
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Algorithm 1: Randomized Algorithm [T iterations]

Data: S subcarriers, denoted as S = {1, 2, . . . , S}; K
users, denoted as K = {1, 2, . . . ,K};
Pflip ∈ (0, 1); α > 0.

1 Initialization
2 for s = 1→ S do
3 randomly pick a user k with the least number

of subcarriers and set V [0](s) = k;

4 for every allocation iteration t = 0→ T − 1 do

5 set V
[t]

= V [t];
6 Step-1 [pick a user-pair {kA, kB}]
7 randomly pick s from S and set kA , V [t](s);
8 pick kB from K\{kA} uniformly at random;

9 set p1 =

{
1 with probability Pflip
2 otherwise ;

10 if p1 = 1 then
11 Step-2a [flip operation]
12 pick sAB from

{
s ∈ S

∣∣V [t](s) = kA or
kB
}

uniformly at random;

13 set V
[t]
(sAB) = kB if V [t](sAB) = kA;

14 set V
[t]
(sAB) = kA if V [t](sAB) = kB;

15 else
16 Step-2b [swap operation]
17 if

{
s ∈ S

∣∣V [t](s) = kA
}

and{
s ∈ S

∣∣V [t](s) = kB
}

are both nonempty
then

18 pick sA from
{
s ∈ S

∣∣V [t](s) = kA
}

uniformly at random;
19 pick sB from

{
s ∈ S

∣∣V [t](s) = kB
}

uniformly at random;

20 set V
[t]
(sA) = kB and V

[t]
(sB) = kA;

21 Step-3 [self-transition or not]

22 p2 =

{
1 w.p. P3

(
V

[t]
; kA, kB , V

[t], α
)

0 otherwise
;

23 set V [t+1] = V
[t]

if p2 = 1;
24 set V [t+1] = V [t] if p2 = 0;

Result: V = V [T ].

is associated with in V [t] as kA. Then, from the rest of the
users, randomly pick one and denote it as kB .

Next, the algorithm follows either Step 2a or Step 2b.
It follows Step 2a with probability Pflip, and Step 2b
with probability 1 − Pflip. Both of these two steps try to
modify V

[t]
.

[Step 2a] Among all the subcarriers that are allocated to
user kA or kB in V

[t]
, randomly pick one and toggle its

associated user between {kA, kB}.
[Step 2b] If both user kA and user kB have subcarriers
that are associated with them in V

[t]
, then both users

randomly pick one of its associated subcarriers, and the
two chosen subcarriers switch their associated users. Oth-
erwise, no operation is performed.

After the above steps, Step 3 is carried out to determine
if V

[t]
is accepted as the next allocation or not.

[Step 3] The system computes the maximum utility that
can be achieved by user kA and kB under V

[t]
by finding

the water-filling solution according to their power budgets
as well as the channel qualities of their associated subcar-
riers in V

[t]
. In other words, the system finds U(kA, V

[t]
)

and U(kB , V
[t]
). Then, the candidate allocation pattern

V
[t]

is accepted to be V [t+1] with probability P3. Here P3

is calculated according to the equation below.

P3

(
V

[t]
; kA, kB , V

[t], α
)
=∏

k=kA,kB
e
α
(
U
(
k,V

[t]
))

∏
k=kA,kB

e
α
(
U
(
k,V

[t]
))

+
∏
k=kA,kB

eα(U(k,V
[t]))

, (2)

where α > 0 is a parameter of the algorithm which we
will talk about later. In the case when V

[t]
is rejected,

V [t+1] is set to be the same as V [t].

B. Algorithm Analysis

In this part, we establish the near-optimality property
of the randomized algorithm. First, we show in the lemma
below that the iterations in Algorithm 1 follow a Markov
chain.

Lemma 1. {V [t]}t in Algorithm 1 evolves as an irreducible
and aperiodic discrete-time Markov chain, with the state
space being 1) V, if Uk(0) 6= −∞ for all k; 2) W, if K ≤ S
and Uk(0) = −∞ for all k.

Proof. Because V [t+1] is constructed based on the pre-
vious allocation pattern V [t] as well as some random
variables determined by V [t], {V [t]}t forms a Markov
chain. In the following proof, we first focus on the case
when Uk(0) 6= −∞.

To show that the chain is irreducible, assume w.l.o.g.
that V (a) is an S−dimension vector with all the entries
equal to 1. This means that all the subcarriers are al-
located to the 1st user under allocation V (a). Since the
utility function will never be negative infinity, we know,
according to Equation (2), that any candidate allocation
pattern V

[t]
can be accepted with a non-zero probability.

Then, starting from any arbitrary allocation pattern, by
following Step 2a in Algorithm 1, we can flip the user
association of all the subcarriers to the 1st user, which
means V (a) is accessible from any allocation pattern in V.
Similarly, any allocation pattern in V is accessible from
V (a). Therefore, all states in V communicate with each
other and the chain is irreducible.

In case when Uk(0) = −∞ for all k, Equation (2)
indicates that if the allocation pattern in any iteration
belongs to W, the transition probability to any allocation
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pattern in V\W will be zero. Then by a similar argument
as the previous paragraph, we can show that the states
in W communicate with each other by following a com-
bination of flip and swap operations, and have positive
self transition probabilities, which implies that W forms
a closed communicating class and the chain is irreducible
over state space W.

By Lemma 1 and Theorem 4.3.3 in [9], we know that
the Markov chain has a unique stationary distribution. In
the next proposition, we find the stationary distribution
of this Markov chain.

Proposition 1. The stationary distribution of the discrete
time Markov chain {V [t]} is

π
(
V (x)

)
, P

(
V [∞] = V (x)

)
=

1

Z

K∏
k=1

e(αU(k,V
(x)))

=
1

Z
e(α

∑K
k=1 U(k,V

(x))),

where

Z =

KS∑
y=1

K∏
k=1

e(αU(k,V
(y))).

Proof. We demonstrate the correctness of this product-
form stationary distribution by verifying the local balance
equations below.

π
(
V (x)

)
P
(
V (x) → V (y)

)
=π
(
V (y)

)
P
(
V (y) → V (x)

)
,∀1 ≤ x, y ≤ KS ,

where P
(
V (x) → V (y)

)
denotes the one-step transition

probability from state V (x) to V (y), and it is the product
of two probabilities,

P
(
V (x) → V (y)

)
=P
(
V

[t]
= V (y)

∣∣V [t] = V (x)
)

× P3

(
V (y); k

(x,y)
A , k

(x,y)
B , V (x), α

)
,

where k
(x,y)
A and k

(x,y)
B denote the two users that have

different subcarrier allocations in V (x) and V (y). The first
two steps in Algorithm 1 are designed such that

P
(
V

[t]
= V (y)

∣∣V [t] = V (x)
)

=P
(
V

[t]
= V (x)

∣∣V [t] = V (y)
)
,∀1 ≤ x, y ≤ KS .

Note that P
(
V (x) → V (y)

)
= 0 when there are more than

two users that have different subcarrier allocations in V (x)

and V (y).
Then, it is easy to check that the local balance equation

holds by plugging in the expression of P3 in Equation (2).
A detailed version of the proof can be found in [10].

In the following proposition, we show that, by tuning
the parameter α, the stationary distribution for the alloca-
tion pattern with the maximum sum-utility can be made

arbitrarily close to one, which justifies our claim that the
randomized algorithm is near-optimal.

Proposition 2. Define

x∗ , argmax
1≤x≤KS

K∑
k=1

U
(
k, V (x)

)
.

x∗ is the index of the allocation pattern for which the system
achieves the maximum sum-utility. Assume x∗ is unique,
then for any ε > 0, we can find an α large enough such
that π

(
V (x∗)

)
> 1− ε.

Proof. Let

β ,
K∑
k=1

U(k, V (x∗))− max
x 6=x∗

K∑
k=1

U(k, V (x)).

Since x∗ is unique, β is strictly positive. For any positive
ε > 0, let α = 1

β log (1−ε)KS

ε . We have

π
(
V (x∗)

)
=

∏K
k=1 exp

(
αU

(
k, V (x∗)

))∑KS

x=1

∏K
k=1 exp

(
αU

(
k, V (x)

))
≥ 1

1 + (KS − 1) exp (−αβ)

≥ 1

1 +KS ε
(1−ε)KS

= 1− ε.

C. Algorithm Complexity

We adopt a coarse measurement of the complexity
by simply counting the number of times the function
for obtaining the water-filling solution is invoked. As
in Algorithm 1, it is clear that, for each iteration, the
function for water-filling solution is invoked at most twice
to compute P3 when the candidate allocation pattern V
is different from the previous allocation pattern in user
kA and kB .

Although Proposition 2 suggests that as the number of
iterations approaches infinity, the algorithm will converge
to the optimal allocation with high probability, in practical
implementation, the number of iterations is limited by the
computational power of the scheduler. To account for such
limitation, we set the number of water-filling operations
as an argument of Algorithm 1, and denote the algorithm
as RA(w). In other words, the iterations in RA(w) will
terminate after the algorithm has invoked the water-filling
operation for w times.

In the following section, we propose an enhanced ver-
sion of this randomized algorithm by adding some new
features. We denote the enhanced algorithm as ERA(w),
and show through simulations in Section VI that under
the same complexity constraint w, ERA(w) has a better
performance than RA(w).
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IV. ENHANCED ALGORITHM

In this part, we obtain an enhanced version of the
randomized algorithm, namely ERA, by adding some fea-
tures, where the pseudo-code is provided in Algorithm 2.
We will use Figure 1 to illustrate the benefits of these
features at a conceptual level.

1

3 5

1

3 5

1

3 5

(a)

(b)

(c)

Fig. 1. Three discrete-time Markov chains with the same stationary dis-
tribution. The number on each state represents its utility. The stationary
distribution for state 1, 3, and 5 is ~π = [0.090, 0.244, 0.665] for α = 0.5
and ~π = [0.0000, 0.0003, 0.9997] for α = 4.

In the DTMC shown in Figure 1(a), there are three
states, with the number on each state representing its util-
ity. Since each state has at most two neighboring states,
we set the probability of selecting any neighboring state
as the candidate state to be 0.5. According to Equation (2)
and Proposition 1, by choosing the transition probability
as shown in the figure, the stationary distribution for each
state is proportional to the exponential of its utility. More
precisely, by choosing α = 0.5, the stationary distribution
for state 1, 3, and 5 is ~π = [0.090, 0.244, 0.665], while for
α = 4, ~π = [0.0000, 0.0003, 0.9997], which shows that the
steady state distribution of the state with the maximum
utility can be made arbitrarily close to 1 by tuning α.

Central to the performance of our randomized algo-
rithm under finite number of iterations is the mixing time
of the underlying Markov chain, i.e., the time it takes
for the chain to converge to the stationary distribution
we want. Smaller mixing time indicates less iterations
and less complexity. While the analysis of the mixing
time is out of the scope of this work, here we use
several techniques to improve the performance of our
randomized algorithm under finite iterations.

A. Initial Condition

Instead of randomly choosing the subcarrier assignment
for each user as the initialization step in Algorithm 1, we
can allow each subcarrier to greedily choose the best user
to associate with. This technique, to some extent, would
reduce the distance of the initial allocation to the optimal
allocation in terms of number of jumps, compared with
the random initial allocation, and thus has the potential
to decrease the number of iterations needed to reach the
optimal allocation.

B. Transition Probability

From the proof of Proposition 1, we know that the key
design trick that makes the underlying Markov chain of
the randomized iteration reversible and has desirable sta-
tionary distribution is to make sure the following equation
holds.

P3

(
V

[t]
; kA, kB , V

[t], α
)

P3

(
V [t]; kA, kB , V

[t]
, α
) =

∏
k=kA,kB

e
α
(
U
(
k,V

[t]
))

∏
k=kA,kB

eα(U(k,V
[t]))

,

where P3 is the probability of the transition from one state
to another, when a certain transition direction is chosen.
While it is easy to check that the expression of P3 in
Equation (2) satisfies the above equality, we can find a
new transition probability larger than P3 that gives the
exact same stationary distribution. We denote it as P3E

and it is given as

P3E

(
V

[t]
; kA, kB , V

[t], α
)
=∏

k=kA,kB
e
α
(
U
(
k,V

[t]
))

max

{∏
k=kA,kB

e
α
(
U
(
k,V

[t]
))
,
∏
k=kA,kB

eα(U(k,V
[t]))
} .

Since P3E ≥ P3, we know that the transition proba-
bility for each pair of neighboring states increases after
changing P3 to P3E . As a result, the conductance of the
Markov chain, which is a measure of how well connected
the state space graph is, is larger with P3E than that
with P3. [11] shows that the mixing time of a reversible
Markov chain can be upper bounded by a value that is
inversely proportional to the square of the conductance
of the Markov chain. Therefore, by changing P3 to P3E ,
the mixing time of the Markov chain could be shortened,
which would improve the performance of the algorithm
under finite number of iterations.

Taking the DTMC in Figure 1(b) as an example, it is
easy to check that Figure 1(a) and 1(b) have exactly
the same stationary distribution. However, by choosing
α = 0.5 and fixing the initial state of both chains to be
state 3, the distributions of the two chains after 20 it-
erations are ~π(a, 20) = [0.098, 0.329, 0.571] and ~π(b, 20) =
[0.096, 0.293, 0.610], respectively. It is obvious that ~π(b, 20)
is closer to ~π = [0.090, 0.244, 0.665] than ~π(a, 20).
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C. Rotation Operation

Again, let us focus on the Markov chain in Figure 1(a).
It is clear that state 3 is a local optimal state since all
its neighbors (state 1 in this case) have a lesser utility.
Then according to the way the transition probability is
chosen, when the initial condition is picked as state 3, it
may take a long time before state 5, the optimal state,
can be reached. One way to alleviate this problem is
to expand the number of states that a single state can
jump to in one step. For example, we can introduce
an edge between state 3 and state 5, as shown in Fig-
ure 1, and pick the transition probability according to
Equation (2). While the two chains in Figure 1(a) and
1(c) have exactly the same stationary distribution, the
distribution of chain (a) with α = 0.5 after 5 iterations
is ~π(a, 5) = [0.129, 0.649, 0.221], while the one for chain
(c) is ~π(c, 5) = [0.090, 0.252, 0.655], which is closer to the
stationary distribution.

Similarly, in the randomized algorithm, we expand the
number of neighboring allocation patterns by introducing
another operation called rotation. Different from flip or
swap operation in which at most two users’ allocations
could be modified after a single iteration, in the rotation
operation, we randomly pick three users kA, kB , and kC
by following Step-1E in Algorithm 2, then, the algorithm
decides which operation to carry out in a randomized
fashion. If the rotation operation is chosen, each of these
three users randomly pick an associated subcarrier and
then randomly permute the association of these three sub-
carriers among the three users. This way, each iteration
could at most modify the allocation pattern for three users
instead of two, which expand the number of allocation
patterns that a state can jump to in a single iteration.

While the rotation operation could be easily extended
to involve more than three users as a way to further
improve the connectivity of the Markov chain, it comes at
a cost of increased computational complexity and longer
execution time at each iteration. If we keep involving
more and more users in a single iteration, it will reach a
point where further improvement in the connectivity no
longer justifies the corresponding increase in the complex-
ity at each iteration. Therefore, we restrict our rotation
operation to only three users in our algorithm.

D. Tracking

Finally, we modify Algorithm 1 such that the final
allocation decision is the allocation with the largest sum
utility for all iterations, instead of simply picking the al-
location in the last iteration to be the allocation decision.

V. JOINT UPLINK-DOWNLINK ALLOCATION IN FULL-DUPLEX

OFDMA SYSTEMS

Recent breakthroughs in full-duplex wireless communi-
cation [12]–[14] show that it is possible for a wireless
device to simultaneously transmit and receive in the

Algorithm 2: Enhanced Randomized Algorithm
Data: Pflip,Pswap ∈ (0, 1) with Pflip + Pswap < 1.

1 Initialization
2 V [0](s) = argmaxk{gs,k, 1 ≤ k ≤ K} for any s;
3 Uo = Umax =

∑K
k=1 U(k, V [0]) and Vmax = V [0];

4 for every allocation iteration t = 0→ T − 1 do

5 set V
[t]

= V [t];
6 Step-1E [pick a user-triplet {kA, kB , kC}]
7 randomly pick s from S and set kA , V [t](s);
8 randomly pick kB and kC from K\{kA};

9 set p1 =

 1 with probability Pflip
2 with probability Pswap

3 otherwise
;

10 Step-2a [flip operation] if p1 = 1;
11 Step-2b [swap operation] if p1 = 2;
12 Step-2E [rotation operation] if p1 = 3
13 set (k′A, k

′
B , k

′
C) to be a random permutation

of {kA, kB , kC};
14 if all three users have at least one subcarrier

then
15 randomly pick s′A, s′B , and s′C from{

s ∈ S
∣∣V [t](s) = k′A

}
,
{
s ∈ S

∣∣V [t](s) = k′B

}
,

and
{
s ∈ S

∣∣V [t](s) = k′C

}
, respectively;

16 set V
[t]
(s′A) = k′B , V

[t]
(s′B) = k′C , and

V
[t]
(s′C) = k′A;

17 Step-3 [self-transition or not]

18 p2 =

{
1 w.p. P3E

(
V

[t]
; kA, kB , kC , V

[t], α
)

0 otherwise
;

19 set V [t+1] = V
[t]

if p2 = 1;
20 set V [t+1] = V [t] if p2 = 0;

21 if p2 = 1 then
22 Uo = Uo +

∑
k=kA,kB ,kC

(
U(k, V

[t]
)− U(k, V [t])

)
;

23 set Vmax = V
[t]

& Umax = Uo if Uo > Umax;

Result: V = Vmax.

same frequency band by using advanced signal processing
techniques. If we assume that this full-duplex capability is
available on both the base station and all the users in the
single-cell OFDMA system we consider, then bidirectional
transmissions are feasible for each user on its allocated
subcarriers. In other words, we can use a single resource
allocation pattern for both uplink and downlink transmis-
sion. In this section, we formulate a joint uplink-downlink
resource allocation problem for full-duplex OFDMA sys-
tems, and point out that our randomized algorithm can
be easily modified to find the optimal resource allocation
pattern.

Assuming the power budget for the base station is
PBS and the rate-utility function for the base station
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is UBS(.), then the maximal downlink utility under a
certain allocation pattern V (x), denoted as UD(V (x)), can
be achieved using water-filling solution on all the user-
subcarrier pairs in V (x). More precisely,

UD

(
V (x)

)
= UBS

(
S∑
s=1

log
(
1 + gs,kps

(
V (x)

)))
,

where

ps

(
V (x)

)
=

K∑
k=1

1{V (x)(s)=k} [ν − 1/gs,k]
+
,

and
S∑
s=1

ps

(
V (x)

)
= PBS .

Then, the joint uplink-downlink subcarrier and power
allocation problem can be formulated as

max
1≤x≤KS

(
K∑
k=1

U
(
k, V (x)

)
+ UD

(
V (x)

))
.

By changing the transition probability in Equation (2) of
the randomized algorithm to be

P3F = P3E ×
e
αUD

(
V

[t]
)

max

{
e
αUD

(
V

[t]
)
, eαUD(V [t])

} ,
it is easy to show that our randomized algorithm can
approach the allocation pattern that achieves the maxi-
mal sum-utility of the base station and all its users by
following the same prove technique we have used in
Proposition 1 and Proposition 2.

VI. SIMULATION RESULT

In this section, we conduct simulations to evaluate the
performance of our randomized algorithm and compare
the results with that achieved by existing algorithms. In
particular, we choose four existing low-complexity sub-
optimal uplink allocation algorithms as shown in Table I
to compare with. Among the four existing algorithms,
MaxCh is the simplest one as it simply allows each
subcarrier to choose the user with the largest channel
gain to associate with, while all the other three follow
a similar greedy structure where one (user, subcarrier)
association is chosen at a time until all the subcarriers are
allocated. These existing algorithms are developed base
on the insight gained from either the necessary condition
of optimality of the original resource allocation problem,
or the optimal solution for a relaxed version of the integer
optimization problem.

We consider a model of the i.i.d. Rayleigh block fading
channel, where the channel gain for each subcarrier
follows an independent Rayleigh distribution across both
different users and different time-slots. In other words,
at each time-slot, the normalized SNR {gs,k} follows an
exponential distribution with mean 1 for all s and k. In

order to account for the difference in path loss across
different users, for each simulation setting (each (S,K)
pair), we assume that the normalized power budget Pk for
different user k is uniformly distributed in [3S/K, 6S/K].

TABLE I
SUMMARY OF SOME EXISTING SUB-OPTIMAL ALGORITHMS

Ref. Computational
Complexity

Number of
water-fillings

Objective:
Maximization of

MaxCh [1] O(S) K Sum-rate
MaxRt [1] O(KS2) KS Sum-rate
NS1 [2] O(KS logS) KS Sum-utility

SOA2 [3] O(KS logS) K Sum-weighted-rate

Since some existing algorithms can only deal with
sum-rate maximization, we only focus on the case when
Uk(u) = u for all k. For each (S,K) pair, we run each
algorithm over 100 time-slots and present the average
achieved sum-rate in Table II. In Table II, we show the
average sum-rate achieved by three versions of the ran-
domized algorithm, RA(ω), ERA(ω), and SOA+ERA(ω),
where SOA+ERA(ω) denotes the algorithm when the
initial allocation pattern of ERA(ω) is chosen to be the
outcome of the SOA algorithm. For RA algorithm, we set
Pflip = 1/2, and for ERA and SOA+ERA algorithm, we set
Pflip = Pswap = 1/3.

Since our algorithm is near-optimal when ω is large
enough, it can be used to benchmark the performance
of sub-optimal algorithms. From Table II, we have the
following observations:
• With the water-filling budget w set to be SK, the

enhanced randomized algorithm ERA(w) always per-
forms better than the original RA(w) algorithm.

• A larger sum-rate can be achieved by increasing w,
the number of times the water-filling solution can be
invoked, for the randomized algorithms.

• Both ERA(S2K) and SOA+ERA(S2K) have a consis-
tently better performance than all the other existing
sub-optimal algorithms.

• While SOA is outperformed by ERA(S2K) in all
settings, the performance gap is small, especially
under the case when K < S, which shows that
SOA is a desirable low-complexity algorithm when
the number of subcarriers is larger than the number
of users. Note, however, that the SOA algorithm is
not proven to be optimal and can only deal with the
sum-weighted-rate maximization problem, whereas
our randomized algorithm can deal with any utility
function of the instantaneous rate.

• We can combine the sub-optimal algorithm with the
randomized algorithm to achieve a better perfor-
mance. For example, by setting the initial allocation

1We use the authors’ last-name initials to denote the algorithm in [2].
2There are several variations of the SOA algorithm in [3]. Here we

pick SOA1-4B5A as it consistently achieves better performance than the
other variations.
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TABLE II
SUM-RATE MAXIMIZATION, WHERE THE SUM-RATE IS AVERAGED OVER 100 TIME-SLOTS (100 SAMPLES OF THE CHANNEL MATRIX) WITH α = 10.

Average Existing Algorithms RA(w) ERA(w) SOA+ERA(w)
sum-rate MaxCh MaxRt NS SOA w = SK w = SK 5SK S2K w = SK 5SK S2K
(K = S)

20 20 58.8 66.4 65.6 67.0 63.3 66.1 68.3 69.1 67.9 68.7 69.3
40 40 122.6 141.6 136.7 142.6 137.0 140.4 144.5 146.9 143.6 145.4 147.2
60 60 175.9 208.9 197.1 210.3 210.8 208.9 212.5 215.7 211.3 213.4 215.8
80 80 237.1 285.0 264.6 287.0 276.9 284.0 289.0 292.7 288.4 290.1 292.7
100 100 296.7 358.6 329.3 360.7 349.9 356.5 361.9 365.7 362.0 363.3 365.7

(K < S)
20 40 130.1 136.3 137.3 137.7 130.7 135.4 138.6 140.2 138.3 139.1 140.0
20 60 201.4 209.4 211.0 211.1 200.7 208.1 211.6 213.5 211.7 212.4 213.5
20 80 269.0 276.3 278.0 277.9 265.1 273.9 277.9 280.2 278.4 279.2 280.2
20 100 350.6 356.8 357.8 358.0 341.0 353.7 357.7 360.1 358.5 359.0 360.2

pattern of the enhanced randomized algorithm to be
the allocation obtained by SOA, the performance of
SOA+ERA(w) is always better than ERA(w).

VII. CONCLUSION

We propose a new iteration-based randomized uplink
joint power-subcarrier allocation algorithm for single-
cell OFDMA systems that solves the instantaneous sum-
utility maximization problem. The randomized algorithm
is near-optimal and can trade-off complexity against per-
formance in the sense that a better performance can
be obtained by increasing the number of iterations, and
the optimal allocation can be found with high proba-
bility as the number of iterations approaches infinity.
An enhanced version is also presented that can achieve
a better performance under finite number of iterations.
Further, we show that this randomized algorithm can be
easily modified to solve a joint uplink-downlink resource
allocation problem in a full-duplex OFDMA system where
the bidirectional transmission is feasible for every user-
subcarrier pair. Finally, we conduct extensive simulations
to compare the performance of our proposed algorithm
with some existing low-complexity sub-optimal ones, and
show that our algorithm can achieve a consistently better
performance than existing ones by increasing the number
of iterations. For future work, we plan to generalize this
algorithm to solve the utility maximization problem under
a multi-cell OFDMA scenario.
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