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Abstract—A vehicular backbone network (VBN) has the po-
tential to augment the Internet with high-throughput data flows
for delay-tolerant traffic. High-throughput flows require a joint
utilization of transportation capacity for carrying data packets
through physical mobility and wireless capacity for switching
data packets from one route to another. This paper establishes a
model that incorporates both transportation mobility and wireless
switching. Then, it characterizes the network capacity based on
flow conservation, wireless communication capacity constraints
and data storage limits, and solves a convex optimization that
results in joint routing and congestion control. A variant with
cost minimization reduces delay while maximizing throughput.
Next, this paper develops a distributed algorithm that achieves
the global objective with limited infrastructure support. Lastly, a
packet-level simulation platform using real-world road map and
traffic statistics is used to evaluate the distributed algorithm, and
demonstrate the significant performance enhancement achieved.

I. INTRODUCTION

Big data challenges are not limited to data processing and
analysis. It has become a challenging issue to transfer large
volumes of data for storage, and the broadband Internet alone
is not sustainable for big data transfers. As reported in [1],
2.5 quintillion (1018) bytes of data were created daily in 2012.
While new technologies are necessary to address this challenge,
in this paper, we advocate a combination of “old” and “new”
methods to alleviate this immediate issue — a high-throughput
backbone network based on the existing transportation networks
upgraded with any wireless communication technology. Below
is a simple example that demonstrates the potential data rate
that a vehicular network may provide.

Example: Consider a two-lane national highway with a
volume of 360 cars/hour, i.e., 0.1 cars/s. If each car has a 1
TB hard drive, which costs around $100 today, the aggregated
rate of the data flows carried by the cars is 800 Gbps. �

We note that only a small fraction of the Internet backbone
network today has bandwidth of 100 Gbps. So with a rather
minimal investment on each car (a hard drive and a wireless
card), a nationwide vehicular backbone network (VBN) can be
used for big data transfers with much higher aggregate through-
put than today’s Internet. While this vehicular backbone cannot
replace the broadband Internet because the transmission latency
is orders of magnitude larger (hours versus milliseconds), it is
a valuable alternative for delay-tolerant data transfers and can
be used to deliver high quality videos to households, upload
large volumes of data created by businesses/enterprises to cloud
computing clusters, or transfer data between data centers at
different geographical locations.

Apart from providing an alternative high-throughput network,
a vehicular backbone network has a rather unique advantage
of being a reliable post-disaster communication network. After

disasters such as earthquakes and hurricanes, vast geographical
areas could be in power outage with possible damages to
communication equipment including routers and wireless base
stations. For example, during hurricane Sandy, the most de-
structive hurricane of 2012 Atlantic hurricane season, millions
were left without power for many days. In such scenarios, since
vehicles have high capacity batteries and mostly use petroleum
for fuel, we can rely on a VBN to provide a high-throughput
and reliable data-delivery network. Again, this may not be
appropriate for delay-critical traffic.

upload
download

U-turn switching

intersection switching

Figure 1: The basic architecture of a VBN

One possible approach to utilize this transportation-based
capacity is to have dedicated vehicles (e.g., trucks from FedEx
or UPS) to deliver high capacity disks from sources to desti-
nations. However, this approach incurs a significant overhead
(fuel, labor, maintenance, etc.), and only utilizes a small fraction
of the vehicles on the road, resulting in significant under-
utilization of available transportation capacity. In this paper,
we propose an architecture as shown in Figure 1. In this
architecture, end-users upload and download their data to and
from vehicles using wireless communication. These vehicles
are not dedicated for data transfers so their destinations and
travel routes are determined by their own transportation needs.
Since the mobility of these vehicles is uncontrollable from the
perspective of data transfers, the vehicle which first receives
the data may not be able to deliver them to their destination
if it is not on the route of this vehicle. Hence, if we rely
only on the vehicle mobility to transfer data, the packet loss
rate will be very high. We propose to solve this problem
by wireless switching. The wireless switching contains two
components: intersection switching and U-turn switching as
shown in Figure 1. Under the proposed architecture, a vehicle
maintains a routing decision table for each destination and each
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intersection. These routing decision tables are computed based
on vehicle traffic and data traffic statistics, and are distributed
to vehicles periodically in a relatively slow time scale. When
a vehicle passes a road intersection, it will look up its routing
decision table and possibly hand off data to the vehicles on
neighboring road segments chosen by the routing decision,
called intersection switching. When a vehicle is moving away
from the data destination, it may also hand off packets based on
routing decisions to the vehicles that are moving in the opposite
direction, called U-turn switching.

Figure 2 shows a simulation result on a “Manhattan map.”
The network throughput under joint utilization of transportation
and wireless capacities (solid line) increases significantly as
the wireless capacity increases, and it largely outperforms the
schemes which only use the wireless capacity (dotted line as
an upper bound). Details will be described in Section IV.

The focus of this paper is to propose a basic architecture for
a VBN. The main contributions of this paper include:

• We establish a practical and holistic model that incorpo-
rates both transportation mobility and data packet routing
through wireless. In particular, we characterize the capacity
of a vehicular backbone network based on flow conserva-
tion constraints, data storage limits and wireless capacity,
and then formulate a convex optimization problem for joint
routing and congestion control.

• We further introduce a cost minimization problem. The
joint congestion control/routing algorithm for cost mini-
mization improves delay performance while guaranteeing
throughput and fairness.

• Based on the optimization formulation, we develop a
distributed routing/congestion control algorithm which is
capacity achieving, guarantees fairness among different
flows and has good delay performance.

• We build a packet-level simulator with real-world road
map and traffic statistics to evaluate distributed algorithms
against the benchmark, and demonstrate the significant
performance improvement of the developed algorithms.
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Figure 2: Throughput affected by wireless capacity

A. Related Work

Many aspects of routing in mobile ad hoc networks
(MANETs) [2] and delay-tolerant networks (DTNs) [3] apply
to vehicular ad hoc networks (VANETs), but the challenges
and objectives could be different. A comprehensive survey on
distributed routing algorithms in VANETs can be found in [4].

Capacity scaling results show that mobility can significantly
increase the overall capacity for multiple unicasts [5] and
multicasts [6]. Physical mobility, i.e., the ability to carry data
from one location to another, is not fully exploited by many

routing algorithms. However, depending on vehicular mobility
alone for data delivery could result in very large packet delays
and packet drops. Hence, both physical mobility and wireless
capacity have to be jointly utilized to achieve higher throughput
with reasonable delay performance. Wireless capacity could be
used for switching data packets from one route to another in
an intelligent manner. Since typical routing algorithms do not
solve this problem of joint utilization of physical mobility and
wireless capacity, new framework and algorithms are required.
In this paper, we develop a new framework that exploits
multiple paths for each flow in an optimal manner based on
source rates, road topology, aggregate traffic parameters and
source-destination locations. We design distributed algorithms
based on this framework.

We envision the utilization of the vehicular network as a
backbone network for multiple flows between fixed sources
and destinations. In contrast to data delivery to vehicles, a
vehicular backbone network demands very high throughput.
Hence, flooding-based approaches used for data delivery such
as gossip [7] [8] may not be suitable. Gossip-based routing
is primarily for geocast or multicast and could result in a
broadcast storm. Hence, broadcast storm mitigation techniques
are required [9]. In this paper, we focus on unicast and hence
there are no packet duplications. Packet drops are expected to be
handled by adaptive source coding or rateless codes [10]. There
are also similarities with the problem of data delivery to or
from vehicles [11] [12]. We utilize a mobility-centric approach
as in [11] and intersection switching as in [12]. However, our
primary objective is throughput maximization instead of delay
minimization used in [11] and [12]. In [13], the authors provide
a throughput optimization framework that is vehicle-centric in
contrast to our mobility-centric approach. In [14], the authors
propose a delay-optimal scheduling policy under a simple two-
hop vehicular relay network model. There also exist prior
wireless systems like “Infostations” [15] and “Daknet” [16],
which are relevant to our VBN but mainly focus on improving
connectivity and coverage for mobile terminals.

In [17], static nodes are used to temporarily store packets
in the network, which could be a fairly stringent assumption.
In our distributed algorithm, we assume the presence of road-
side units or limited cellular connectivity for exchanging control
messages, i.e., limited infrastructure support. This assumption is
easier to realize in practice due to the low overhead for control
messages compared to data packets.

II. MODEL AND SYSTEM DESCRIPTION

A. Road Network: A Graph-Theoretic Description

A road network is defined as a directed graph G(V, E)
where V and E are respectively the sets of vertices and edges.
This graph G models real-world roads through the following
abstraction. Each road-intersection (intersection for short) is
represented as a vertex u ∈ V and each directed road-segment
(segment for short) between any two intersections is represented
as an edge i ∈ E .

Next, we introduce some notations that are used in the rest
of this paper. Let ωi and ω̄i denote the start vertex and end
vertex of edge i. Since many roads have two directions1, we
define ī as the reverse edge of edge i, i.e., ωi = ω̄ī, ωī = ω̄i,

1Typically, each direction could have several lanes. Since the width of a road
is much smaller than the communication range, all the lanes can be regarded
as one “aggregate” lane.
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and ¯̄i = i always hold. Note that for a one-way road i, ī does
not exist. In all the formulations we use in this paper, ī can be
treated as a null index if it does not exist. We define Ou as
the set of outbound edges at each u ∈ V . Furthermore, Ni is
defined as the set of potential “next-hop” edges of edge i ∈ E ,
i.e., ω̄i = ωj for all j ∈ Ni. In a dual-way road, ī ∈ Ni holds.

In short, the road network describes the edge connectivity of
the roads. However, connectivity is only a necessary condition.
There may not be any vehicle that go directly from i to an edge
in Ni if the probability of this event is zero. Possible examples
include temporarily blocked roads and illegal U-turns. This is
captured by a mobility model that is described next.

B. Markovian Mobility Model for Vehicles

Real-world traffic patterns are quite complicated to model
using simple mobility models. Even though traffic traces could
be used for simulation purposes, it is difficult to use such
traces for analysis and algorithm design. Hence, we make a few
assumptions to arrive at a simple mobility model. All vehicles
are assumed to be homogeneous and independently follow the
same mobility pattern. Each vehicle’s random movement at
every intersection follows a Markov chain. The state of this
Markov chain is the current edge the vehicle is staying on,
and the transition matrix is denoted as P , [pij ], i.e., pij is
the probability of switching from edge i to edge j when this
vehicle reaches the end of edge i, such that

∑

j∈Ni
pij = 1.

Markovian mobility assumptions are used frequently in the
VANET research (e.g. [18] [19]). These assumptions are also
motivated by the need for a causal and memoryless model to
develop algorithms that are robust.

Remark 1: The modeling of mobility patterns can be easily
generalized to include heterogeneity by dividing vehicles into
different classes. Vehicles of the same class follow their own
mobility pattern. This approach can also be used to model buses
and shuttles with fixed routes. The Markovian model applies to
them if we set all the transition probabilities along the fixed
route (of a certain class) as 1.

C. Traffic Splitting of Transportation Flows

We utilize a flow-level model for throughput analysis and
optimization. Given the simplicity of the Markovian mobility
model, it is fairly straightforward to obtain the flow-level model.
Instead of treating {pij} as transition probabilities, under the
flow-level model, {pij} can be regarded as the splitting fractions
of the transportation flows (which “fluidizes” the real-world
vehicles). Defining the transportation traffic rate on edge i as νi
(in vehicle/sec), the rate of the traffic switching to edge j ∈ Ni

will be pijνi under this splitting rule.

D. Data Delivery Model

Next, we describe the data delivery model built upon the
transportation network composed of moving vehicles. There
are M independent data flows2 (flows for short) between M
sources and M sinks with arbitrary but fixed locations. These
flows are assumed to be long-term data flows. All sources and
sinks can transfer data to/from nearby vehicles through wireless
connectivity, for example, Wi-Fi (802.11n, 802.11ac and so on).
Data transmission from a source to nearby vehicles is referred
to as loading data and from nearby vehicles to a destination
is referred to as unloading data. In addition, vehicles can also

2Data flows should not be confused with transportation flows.

talk to nearby vehicles using wireless connectivity, for example,
DSRC (i.e., 802.11p). Hence, data packets can move from one
geographical location to another using both physical mobility
and wireless transmissions.

We assume that packet transmissions use unicast mode,
i.e., although all the vehicles in the transmission range can
receive the transmitted packet, only one vehicle will keep
it. Hence, packet duplications are avoided. An ARQ scheme
is used and hence we assume perfect channel and entirely
reliable data transmission for the flow-level model. Broadcast
is an interesting extension and has the potential to improve
throughput. Similarly, network coding is a powerful technique
that could improve throughput. In this paper, we restrict to
unicast to simplify both analysis and algorithm design.

Consider a flow f . The source and destination (or sink) are
located on edges sf and df , respectively. Since the width of a
road is usually shorter than typical Wi-Fi communication range
(100 m), on a dual-way road where the source is located, both
edge sf and its reverse edge s̄f are considered as targets for
loading data from the source. Similar rule applies to edge df
and reverse edge d̄f when vehicles are unloading data to the

destination.3 For each flow f , define λf
i as its flow rate on edge

i, and its throughput then equals the sum of the flow rates on

the destination edges, i.e., λf
df

+λf

d̄f
. The four basic operations

on data packets are explained in more detail next.
1. Loading from a source to a nearby vehicle: The source

node of flow f transmits packets to vehicles traveling on road i
at rate yfi for i ∈ {sf , s̄f} (if s̄f exists). The source can select
any vehicle among the vehicles in the wireless range. The total
loading rate is upper bounded by θf , which is determined by
the wireless scheme at the source.

2. Transportation through physical mobility: Vehicles store
received packets in a buffer and carry it along when they move.
When a packet is transmitted to another vehicle or destination,
it is removed from the storage buffer. Each vehicle is assumed
to have a large hard disk with storage capacity denoted by B
bits. This leads to a “transportation capacity” upper bound given

by
∑

f∈[1,M ] λ
f
i ≤ νiB on each edge i, where νi is the rate of

vehicles on edge i.
3. Wireless switching between vehicles: Vehicles can utilize

wireless transmissions to switch packets from one vehicle to

another. Define Xf , [xf
ij ] (xf

ij ≥ 0) as the “wireless

switching matrix” for each flow f , where xf
ij indicates the

flow rate switched from edge i to edge j through wireless
transmission. The total transmission rate at each vertex u ∈ V
cannot exceed the wireless capacity cu at that vertex. The
wireless capacity constraints are motivated from the following
observations: Since a vertex is a road intersection in the real
world, all vehicles near that intersection share the same wireless
spectrum. A conservative assumption is that at each intersection
there can only exist one data transmission for which the rate
is limited by the DSRC rate c. Since intersections are far apart
compared to typical wireless range, wireless transmissions at
one intersection do not interfere with the wireless transmissions
at another intersection. Thus, full spatial reuse is possible across
intersections. Hence, we assume that cu = c at all intersections.
These assumptions are made only for the flow-level model. In
packet-level simulations, CSMA is used to determine successful

3For a dual-way road, our convention is to name the edge nearer to where
the Wi-Fi access point is located as sf or df .
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parallel transmissions.
Limited by the communication range, wireless intersection

switching can only involve neighboring edges. We have a
further “non-greedy” restriction on the switching scheme.

Scheme 1: At each vertex u, wireless switching can only
happen between two different outbound edges i, j ∈ Ou. �

Without the above restriction, a vehicle could relay packets
to another vehicle moving ahead on the same edge, or greedily
relay the packets to an edge j which is “nearer” (under a
certain metric) to the destination even before reaching the
intersection. This “greedy relay” to some extent benefits the
delay performance, but when wireless capacity is a bottleneck,
especially when the number of flows grows, only switching
packets from “wrong” paths to “right” paths is an approach
which can better utilize capacity resource.

4. Unloading from a vehicle to a destination: When a vehicle
is within the communication range of the destination of flow f ,
it will send packets at a certain transmission rate (usually the
maximum possible rate θ̄f ) to the destination. The maximum
rate is determined by the wireless scheme used.

E. Wireless “U-Turn” Switching inside Dual-Way Roads

Vehicles can switch packets using wireless connectivity even
if it is not at an intersection. A useful scenario is that of switch-
ing packets between vehicles on different directions (forward
and reverse) on a dual-way road. In particular, when a vehicle
travels along a dual-way road and calculates that the reverse
direction is preferable, it could transmit packets to vehicles
travelling in the reverse direction. We call this wireless “U-

turn” switching, of which the capacity has to be modeled
differently due to the potential for spatial reuse. Specifically,
we add a virtual vertex υi between the two vertices ωi and
ω̄i of edge i (which are two real intersections). The edges are
then relabeled, and for the new transition matrix P, old inter-
edge probabilistic transitions are kept and new deterministic
intra-edge transitions are added (details omitted). The wireless
capacity at each new virtual vertex υi is denoted as cυi

, which
is usually larger than the wireless capacity at an intersection due
to possible space reuse on the whole road. One approximation
is to use a reuse factor that is proportional to the length of this
road li normalized by the DSRC range r with exclusion regions
at the two intersections, i.e.,

cυi
= [li/r − 1]

+ · c, (1)

where c represents the DSRC rate.

III. JOINT TRANSPORTATION-WIRELESS CAPACITY

UTILIZATION

First, we characterize the joint transportation-wireless
throughput region of VBN, and formulate a convex optimization
problem for throughput maximization and delay reduction.
Next, we develop a packet-level distributed routing/congestion
control algorithm for fair resource allocation.

A. Throughput Characterization & Fair Resource Allocation

A VBN’s throughput region can be characterized as follows:

λf
i =

∑

j: i∈Nj ,

j 6∈{df ,d̄f}

pjiλ
f
j +

∑

j:j∈Oωi

(

xf
ji − xf

ij

)

+ yfi ,

∀i ∈ E , f ∈ [1,M ]; (2)

λf
i ≥ yfi , ∀i ∈ {sf , s̄f}, f ∈ [1,M ]; (3)

and

M
∑

f=1

∑

i,j∈Ou

xf
ij ≤ cu, ∀u ∈ V; (4)

M
∑

f=1

λf
i ≤ νiB, ∀i ∈ E ; (5)

yfsf + yfs̄f ≤ θf , ∀f ∈ [1,M ]; (6)

λf
df

+ λf

d̄f
≤ θ̄f , ∀f ∈ [1,M ]; (7)

yfi = 0, ∀i 6∈ {sf , s̄f}, ∀f ∈ [1,M ]; (8)

xf
ij = 0, ∀f ∈ [1,M ], ∀i, j ∈ E

s.t. i = j or ωi 6= ωj ; (9)

xf
ij , λf

i , yfi ≥ 0, ∀i ∈ E , f ∈ [1,M ]. (10)

Note that equality constraint (2) describes the flow conservation
on each edge i for each individual flow f . Constraint (3) is
imposed in order to push as much data as possible onto the
right path during the data loading phase. Inequalities (4), (5),
(6) and (7) are the constraints due to wireless capacity (for
switching), hard disk storage, maximum loading rates at sources
and maximum unloading rates at destinations, respectively, as
described in Subsection II-D.

Now given this throughput region, the problem of fair re-
source allocation can be formulated as

max
{Xf ,yf ,λf}M

f=1

M
∑

f=1

Uf

(

λf
df

+ λf

d̄f

)

(11)

subject to (2)-(10). In the network utility maximization formu-
lation above, Uf (·) is a non-decreasing concave utility function
for flow f , which measures the “happiness” of end users.
Maximizing the network utility results in some form of fair
resource allocation among the end users. In particular, the utility
functions can be chosen as the functions in the “α-fairness”
family (e.g., log utility for proportional fairness).

Without loss of generality, we next assume the utility function
is linear, i.e., Uf (x) = x for all f, and derive a centralized
congestion control and routing algorithm. For other utility
functions, the algorithm can be derived similarly. With the linear
utility functions, the objective of the network utility maximiza-
tion problem is to maximize the aggregate data throughput.
We have noticed from the simulations that an undesirable
consequence of maximizing the aggregated throughput is that
the packets are “flooded” unnecessarily onto too many paths.
To resolve this issue, a certain form of “network cost” must
be added as a penalty function in the optimization objective.
A natural cost we come up with for each edge i is the “bits
on-the-fly” which equals the product of the data rate and a
vehicle’s traveling time on that edge. The new network utility
maximization problem is:

[OPT]

max
{Xf ,yf ,λf}M

f=1

M
∑

f=1

(

λf
df

+ λf

d̄f

)

− w ·
∑

i∈E

li
vi

M
∑

f=1

λf
i (12)

subject to (2)-(10). �
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B. Distributed Routing/Congestion Control

We consider CSMA/CA with flow arrivals/departures that
happen at a slower time scale compared to the time scale for
physical mobility between sources and destinations.4 The chal-
lenges in developing a distributed routing/congestion control are
two-fold: (i) Flow-level optimization has to be translated to an
algorithm running on each vehicle, and (ii) the algorithm has
to be distributed. In order to simplify the algorithm design, we
assume that the mobility pattern {pij} and data flows (locations
and maximum loading rate) are known a priori. This assumption
can be realized in practice due to the following: The statistics
change slowly and vehicles can obtain updated statistics from
a centralized entity (e.g., cloud) using low-overhead wireless
transmission, either through roadside units (RSUs) or cellular
connectivity. Note that the map information can be pre-loaded
or obtained in a similar fashion.

Next, we describe our algorithm.

Distributed Routing/Congestion Control Algorithm

The wireless switching matrices {Xf} for all flows f ∈
[1,M ] and the data loading vectors {yf} can be computed by
solving OPT. We use slotted time t. RSUs at each edge i (or a
cloud) maintain some information, i.e., variables which track the
average capacity usage of successful wireless switching events
from this edge i to each edge j ∈ Oωi

\{i} for each flow f up to

time slot t, expressed as x̄f
ij(t) ,

1
t

∑t

τ=1 x̂
f
ij(τ), where x̂f

ij(τ)
represents the actual effective rate for successful transmissions
during time slot t. Maintaining these variables has the following
small control overhead:

• At the beginning of time slot t, the information about

{x̄f
ij(t), ∀j ∈ Oωi

\ {i}, f ∈ [1,M ]} is broadcast to
vehicles on edge i to help them make routing decisions.

• At the end of time slot t, a nonzero x̂f
ij∗(t) is fed back

from the vehicle (on the same edge i) which has made a
successful transmission to edge j∗.

Based on the above pre-computation and information dis-
semination actions assisted by RSUs or a cloud, below are
two separate descriptions of algorithm operations respectively
at vehicles and sources.

- Operations at Each Vehicle

A vehicle at edge i performs the following at time slot t:

1. Give higher priority to “unloading” operations: Before
competing for the channel, the vehicle checks whether
there exists a destination in the DSRC range for any flow
f the vehicle carries. If yes, perform CSMA backoff with
higher priority compared to regular wireless switching.
After getting channel access, go to Step 4, i.e., unload
data to the targeted destination.

2. Routing decision: The next-hop candidate set is defined

as Ci , {(j, f) : xf
ij > 0, and at least one vehicle

within the DSRC range is on edge j}. If Ci = ∅, stay
idle; otherwise, find the lowest “achieved rate fraction”
against the benchmark (OPT’s solution), i.e., (j∗, f∗) ∈

argmin(j,f)∈C

{

x̄f
ij(t)/x

f
ij

}

(solving ties uniformly at

random). Then, if x̄f∗

ij∗(t)/x
f∗

ij∗ ≥ 1, stay idle.

4In practice, a small portion of the wireless capacity can be reserved to serve
short-lived flows.

3. CSMA priority adjustment: Unless staying idle in the

previous step, the value x̄f∗

ij∗(t)/x
f∗

ij∗ is used to adjust the
CSMA backoff priority (details depend on how backoff
is implemented) when competing for the channel, where
a smaller value indicates a higher priority.

4. Packet transmission: Once getting access to the channel,
pick the geographically nearest vehicle on edge j∗ (or the
destination if nearby) and broadcast packets of flow f∗

with that receiver’s ID (e.g., MAC address) included in
the packet header. In the DSRC range, only the node with
that ID will keep received packets.

- Operations at Each Source

Every time slot, the source of flow f loads data to vehicles on
edge i, where i = sf with probability ysf /θf and i = s̄f with
probability ys̄f /θf . If 1 − (ysf + ys̄f )/θf > 0 (i.e., whenever
flow control is needed), with this remaining probability, the
source will keep idle. Loading operations get higher priority
over regular wireless switching operations.

Remark 2: In the above algorithm, every vehicle assumes
knowledge of the IDs and locations of the other vehicles within
its DSRC range. This information is collected based on a
“neighbor discovery” mechanism. �

Since vehicles are not really “flows,” the following issues
are present: First, a vehicle may not find any other vehicles
on the “optimal” edges calculated from the optimal algorithm.
Second, channel sharing among neighboring edges are no longer
uniform as implicitly assumed in the flow-level model, due to
different densities of vehicles on different edges, and different
durations of link connectivity (determined by the DSRC range)
caused by the fact that each pair of neighboring edges forms a
different angle. These issues motivate us to use a CSMA priority
adjustment scheme in the algorithm.

The benchmark rates provided by the optimal solution are
long-term averages. Hence, there might exist bursty flows that
flood out of the “controlled area” defined by the optimal
solution (the mathematical definition of an “uncontrolled area”
is a vertex set {u ∈ V : λf

i = 0, ∀i ∈ Ou} and switching

variables xf
ij are not assigned in this area, while its complement

is named “controlled area”). To solve this issue, we apply
shortest-path routing in the uncontrolled area to switch those
“leaked” flows back to the controlled area.

IV. SIMULATION RESULTS

In this section, we evaluate the performance of our algorithms
using flow-level and packet-level MATLAB simulations. Unless
mentioned explicitly, the following default parameters are used
in the simulations. The hard disk storage size at each vehicle
is 1 TB. The constraint (5) (with B = 8 × 1012 bits) is not
a bottleneck except for the “national highway” scenario in
Subsection IV-C. For each vehicle’s speed, we use a constant
value of v = 11.2 m/s (25 mph) for the two urban-area maps
(Subsections IV-A and IV-B), and v = 29.1 m/s (65 mph)
for the national highway map (Subsection IV-C). We set both
the maximum loading rate and the maximum unloading rate
to θ = 400 Mbps, and the DSRC wireless switching rate
to c = 200 Mbps. The DSRC and Wi-Fi (for loading and
unloading) communication ranges are both set as 200 m.
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Throughput (Mbps)

Flow ID c = 0 c = 100 c = 200

1 34.8 160.3 275.9

2 32.2 180.9 283.3

3 42.9 146.6 216.3

4 1.3 101.7 222.3

Total 111.2 589.5 997.8

Table I: Throughput affected by wireless capacity in the

multi-flow scenario (Manhattan map)

A. Manhattan Map

We numerically solve the optimization problem OPT and
demonstrate flow-level performance gains. As shown in Figure
3, we use a 4 × 4 grid road network with one-way streets in
alternating directions. Since this is a simplified model of the
Manhattan area in New York City, we call it “Manhattan map”.
At each intersection, a vehicle goes straight with probability
0.75 and makes a turn with probability 0.25.

S1

D1

(a) Single Flow

S1 S2

S3

S4

D3

D1

D2

D4

(b) Multiple Flows

Figure 3: Manhattan map: 4× 4 grid road network

First, we consider the single-flow scenario shown in Figure
3(a). The weight affiliated with cost minimization is chosen
as w = 0. Throughput as a function of the wireless capacity at
intersections is given in Figure 2 (Section I). This clearly shows
that joint utilization of transportation and wireless networks,
i.e., OPT algorithm, is better than utilizing one network alone.
If wireless capacity alone is used (for example, multi-hop
relaying), wireless capacity (y = x line) will be an upper
bound. If transportation capacity alone is used, only 6.75% of
θ is achieved. However, with joint utilization, wireless capacity
equal to 10% of θ improves the throughput to 40% of θ (6.4x
gain), and wireless capacity equal to 37% of θ is sufficient to
achieve the full data loading rate at the source (16x gain). Note
that the “transportation” part of capacity will decrease when
the number of hops between the source and the destination
increases, and the “wireless” part of capacity will decrease when
the number of flows grows.

Next, we consider the multi-flow scenario shown in Figure
3(b). Table I also demonstrates that adding a small amount of
wireless capacity results in significant throughput gain under
OPT algorithm over the “transportation-only” scheme (5.3x
gain with c = 100 Mbps and 9.0x gain with c = 200 Mbps).

We investigate the congestion control ability of OPT al-
gorithm by comparing it with shortest-path routing, which is
“congestion-unaware.” Specifically, we compare the flow-level
results between OPT and shortest-path routing for the four-
flow scenario in Figure 3(b), using c = 100 Mbps. In the two

(a) Flow 2 uses a lower loading rate

Throughput (Mbps)

Flow ID θf (Mbps) Shortest-Path OPT

1 400 171.21 167.15

2 400 124.41 184.64

3 400 124.02 147.86

4 100 28.20 81.91

Total 1300 447.83 581.5

(b) Flow 4 uses a lower loading rate

Throughput (Mbps)

Flow ID θf (Mbps) Shortest-Path OPT

1 400 174.37 178.14

2 100 40.28 100.00

3 400 120.28 146.14

4 400 42.39 100.00

Total 1300 377.33 524.29

Table II: OPT vs shortest-path (Manhattan map)

cases in Table II, we respectively let flow 2 and flow 4 use a
lower loading rate than the others. With shortest-path routing,
the low-source-rate flow almost gets starved, while under our
OPT scheme, all flows are quite fairly treated. In case (a), Jain’s
fairness index [20] improves from 0.8224 to 0.9332, and in case
(b) the improvement is even higher: from 0.7370 to 0.9402. The
aggregate throughput also increases under OPT.

B. Boston Map

We provide flow-level and packet-level simulation results
for the Cambridge urban area in Boston, MA (called “Boston

map”) with real-world traffic statistics data5 for each major road
segment within this area (see Figure 4), reported online by Mas-
sachusetts Highway Department in the United States [21]. With
these data, we calibrate vehicles’ Markovian mobility model
which further matches a common real-world phenomenon that
most of the traffic tends to go in a straight line and drivers try
their best to avoid U-turns, based on an optimization framework
detailed in Appendix A.

Figure 4: The Cambridge area of Boston: map and daily

traffic volume data from [21]

A single-flow scenario is shown in Figure 5. The yellow
triangle and rectangle respectively represent the source and des-
tination. Each value shown near one vertex of a road indicates
the data rate in Mbps on the edge of which this vertex is the
end vertex. Figure 5 demonstrates the effect of cost penalty

5The data is recorded for annual average daily traffic (ADDT).
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Figure 5: Cost minimization with w = 0 for top and

w = 5× 10−5 for bottom (Boston map, flow-level)

w appended to the throughput maximization objective. When
w > 0, the algorithm reduces “data flooding” by using fewer
and shorter paths. If w is below an appropriate level, maximum
throughput can be achieved. However, once w becomes too
large, the loading rates at sources have to be lowered to avoid
cost, and as a result, the throughput will be negatively impacted.
In this example, both cases achieve the full capacity, but with
w = 5×10−5 (bottom) data flows are limited to two main paths.
Note that this Boston map is a “closed world,” so even relying
on the transportation network only will result in full capacity
(but with large delay). In a real-world network, the throughput
improvement seen in Manhattan map and delay improvement
seen in Boston map can be achieved using OPT algorithm.

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Delay: d (sec)

F
(d

)

 

 

(shortest−path dedicated delivery)

D−OPT

Shortest−Path

Min−MHT

Figure 6: CDF of the packet delivery delay (Boston map)

Next, we perform packet-level simulations to evaluate the
performance of our distributed routing/congestion control al-

Figure 7: National highway map
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Figure 8: National highway map: throughput vs. storage, and

the advantage of wireless U-turn switching

gorithm, called D-OPT for short. In this simulation, road
intersections are placed on Cartesian coordinates according to
their latitudes and longitudes and connected by roads. The
number of vehicles placed on each edge i before a simulation
starts is calculated as part of the mobility model calibration
process, and totally 1636 vehicles are placed on the map. We
run the simulation for 2000 sec with each time slot equal to
0.5 sec. The single-flow source-destination pair is the same as
in Figure 5. We use the penalty weight w = 5× 10−5 to solve
OPT a priori for our distributed algorithm. By comparing the
achieved data rates on all edges with the corresponding flow-
level result, we find that D-OPT approximates OPT’s solution
quite well. The figure is omitted here due to space limitation.

We compare three distributed algorithms: shortest-path, Min-
MHT and D-OPT. Min-MHT (“minimum mean hitting time”)
routes packets to the neighboring edge with minimum expected
delay (counted in hops). Specifically, for each flow f , we
change df and d̄f to two absorbing states in the transition
matrix P and solve a system of linear equations to obtain the
expected hitting time on either absorbing state from every other
edge. Hence, this algorithm requires knowledge of the mobility
model and pre-computation of expected delay values (similar to
the one in [12]). D-OPT requires some more system information
to do pre-calculation and further requires limited infrastructure
support in online decision-making. In Figure 6, CDFs of end-
to-end packet delivery delay are plotted for the three distributed
algorithms. The dotted brown line represents the time Tsp for a
dedicated vehicle (e.g., UPS truck) to physically deliver a hard
disk which stores infinite data through the shortest path (and
assuming continuous data flow), used as a benchmark time. D-
OPT algorithm operates more conservatively within the “low-
delay” region in this figure, since it is not as greedy or “delay-
oriented” as the other two. However, it limits the delay of 90%
of the packets under 1.26 ·Tsp, which is much better than Min-
MHT and shortest-path routing.
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C. National Highway Map

Last, we perform a flow-level simulation on the “national
highway map” in Figure 7. The real-world traffic data used for
mobility model calibration are collected from [22]. An inter-
state highway is much longer than an urban road, so equation
(1) indicates that a rich wireless capacity resource is available
for U-turn switching and will support much higher throughput
than only relying on intersection switching. Among all the
highways, the median of the wireless capacity is around 250
Gbps (with a 200 Mbps DSRC rate). We measure the VBN
capacity from New York City to San Diego (using a very large
source loading rate). As claimed in Section I, VBN provides
an “information pipe” with a capacity of the order of Tbps.
For example, with a 1 TB hard disk installed in each vehicle,
a capacity of 2.47 Tbps can be provided by the VBN between
these two cities (with wireless U-turn enabled). Figure 8 shows
the capacity scaling with the hard disk storage size (at least
1 GB). Wireless U-turns can achieve a gain as high as 3.4
(with about 100 GB storage size) in this example. When storage
decreases, the need of U-turn switching is reduced since the data
rates on wrong paths might not be that high. When storage
increases, the improvement due to U-turn switching can be
ignored compared to the huge transportation capacity.

V. CONCLUSION

In this paper, we build a model and design the architecture
for a new type of backbone network composed of vehicles
with uncontrolled mobility, which can jointly utilizes both
transportation and wireless capacity to provide high-throughput
data delivery service. We characterize its network capacity and
apply convex optimization to seek a joint routing/congestion
control scheme that achieves both throughput maximization and
delay reduction. A distributed algorithm is also developed to
approximate the optimal resource allocation. Simulations based
on real-world maps and traffic statistics demonstrate significant
gains over existing routing algorithms in different aspects, such
as throughput, fairness and delay performance.

APPENDIX

A. Mobility Model Calibration Based on Real Traffic Data

Let π = [πi] denote the steady-state distribution of the
Markov chain. Statistically, πi equals the fraction of vehicles
on edge i. To get πi, we calculate the steady-state amount
of vehicles ni = νili/vi by Little’s Law [23], obtain πi =
ni/

∑

j∈E nj , and formulate the following linear program:

max
{P, α∈[0,1], β∈[0,1]}

α− β (13)

s.t. π = πP; (14)
∑

j∈Ni

pij = 1, ∀i ∈ E ; pij ≥ 0, ∀i, j ∈ E ; (15)

∑

j∈N s
i

pij ≥ α, ∀i s.t. N s
i 6= ∅; (16)

∑

j∈N r
i

pij ≥ α, ∀i s.t. N s
i = ∅, N r

i 6= ∅; (17)

∑

j∈Nu
i

pij ≤ β, ∀i s.t. N u
i 6= ∅, N u

i ⊂ Ni; (18)

Given π, only solving the system of linear equations (14) usu-
ally results in an infinite number of solutions for P. Constraints

(15) will limit P to the given graph structure. The motivation of
adding the other constraints and choosing (13) as the objective
function is to jointly maximize the probability of a straight-line
move α and minimize the probability of a U-turn β. Whether a
road switching from edge i to edge j is regarded as a straight-
line move, regular turn or U-turn is determined by the angle of
switching ϑij for a vehicle to make. For each i, N s

i , N r
i and

N u
i represent the sets of edges, to which a road switching re-

spectively correspond to the above three switching types. More
specifically, N s

i , {j : |ϑij | ≤ ϑs}, N u
i , {j : |ϑij | ≥ ϑu}

and N r
i , Ni − N s

i − N u
i . In our simulations, we pick the

boundary angle values as ϑs = 45◦ and ϑu = 170◦.
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