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Abstract—Future mobile networks are forecast as being in-
creasingly heterogeneous and dense. An aspect crucial to manag-
ing such networks is the existence of a flexible and effective back-
haul infrastructure. Since backhaul infrastructure is essential, it
becomes important to analyze the cost of its implementation.
This paper aims to realize a framework to estimate deployment
costs in a network which consists of users, two types of base
stations, and backhaul nodes that could either be microwave or
fiber optic backhaul nodes. The main contribution of this work
is the derivation of a framework using spatial point processes
that helps estimate the cost of deploying a backhaul node based
on the number of users and base stations connected to it. The
framework, along with assumptions of typical costs of various
network components, is utilized to examine whether there exist
an optimal number of backhaul nodes that can minimize the
overall deployment cost of a network while catering to a given
number of users in the area.

I. INTRODUCTION

An upsurge in the number of mobile Internet users and

machine to machine applications has lead to high traffic

volumes and dense networks (i.e., heterogeneous networks).

A salient aspect in managing these networks efficiently and

cost effectively, as presented in [1], is the existence of a sound

and flexible backhaul infrastructure. These (dense) networks

accompanied by backhaul infrastructure correspond to an

increase in the capital invested during their deployment, as

shown in [2] and [3]. Hence, it becomes important to be able

to estimate the cost of deploying such networks. Works such as

[4]–[6] analyze deployment costs of heterogeneous networks,

but do so from a more cursory point of view, where they

collect data from other sources and estimate deployment costs.

However, to the best knowledge of the authors, there have been

no efforts to establish a foundation upon which further analysis

and optimization of the deployment cost of a heterogeneous

network with backhaul infrastructure can be carried out.

Baccelli and Zuyev established such a framework for fixed

line telecommunication networks using stationary Poisson pro-

cesses in [7]. Similarly, this paper presents a method of com-

puting the deployment cost of a network consisting of users,

two types of base stations (i.e., macro and micro base stations),

and backhaul nodes (or remote network concentrators). The

backhaul nodes employ two popular technologies, namely, mi-

crowave backhaul and fiber optic backhaul. Influenced by [7],

we assume the network consists of 3 layers, each comprising

a particular network component (as illustrated in Fig. 1). The

users form the bottommost layer, while base stations are on

the middle layer, and backhaul nodes are on the topmost layer.

The users, base stations, and backhaul nodes are modeled

by a stationary Poisson process, a stationary Poisson cluster

process, and a stationary mixed Poisson process, respectively.

The point processes used to model each layer of the network

are defined later on (in Section II). There are three main types

of costs which are considered to contribute to the deployment

cost, i.e., equipment cost, capacity cost, and infrastructure
cost. Unlike equipment costs, the capacity and infrastructure

costs are functions of the distance between any two devices,

each of which is on a different layer.

Macro  
base stations 
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Fig. 1. Illustration of the model considered with users, base stations, and
backhaul nodes.

The main result of this work is the derivation of an expres-

sion for the total cost of deploying a network1 which is used to

observe fluctuations in the network’s deployment cost. Though

not proven theoretically, numerical evaluations in this paper

also show that there exist a small range of backhaul intensities

1Note: The term “network”, in this paper, implies a heterogeneous network
with backhaul.
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that can minimize deployment costs for a given number of

users in the area. The existence of a range of backhaul

intensities that minimize deployment costs for a particular user

intensity is surmised from the bowl shaped surfaces that are

obtained when figures of variations in deployment costs with

increasing backhaul and base station intensities are plotted.

This paper is organized as follows. Section II provides the

network model, i.e., a description of the point processes used

to model each network component as well as the types of

costs that constitute deployment costs. Section III contains the

expression for the total deployment cost, whose derivation is

detailed in Appendix A. Section IV lists the parameter values

assumed to calculate the deployment cost (using the expression

derived) along with reasons for the respective assumptions. It

also contains Subsection IV-A, which examines variations in

deployment costs as a certain subset of parameter values are

increased, while the others are kept constant.

II. SYSTEM MODEL

This work, inspired by the model in [7] and extending upon

our previous work in [8], uses a network model consisting of 3

layers where each layer is independent of the other. The lowest

layer consists of users represented by a stationary Poisson

process Φ0 ⊂ R
2 with intensity λ0 > 0. Both fiber optic

and microwave backhaul nodes which belong to the topmost

layer are modeled using a stationary mixed Poisson process

(see [9]) Φ2 ⊂ R
2 with a randomized intensity function X

having a two-point distribution

P (X = λ2MW) = p, P (X = λ2OF) = 1− p, 0 < p < 1,

where p is the probability of having a microwave backhaul

and (1−p) is the probability of having a fiber optic backhaul.

Hence, the intensity of Φ2 is

λ2 = pλ2MW + (1− p)λ2OF,

where λ2MW > 0 is the intensity of the microwave backhaul

and λ2OF > 0 is the intensity of the fiber optic backhaul. The

middle layer consists of base stations (macro and micro base

stations) represented by a stationary Poisson cluster process

Φ1 ⊂ R
2 consisting of two parts: cluster centers representing

macro base stations and cluster members representing micro

base stations. The cluster centers are modeled by a stationary

Poisson point process Φ1c ⊂ R
2 with intensity λ1c > 0,

and conditioned on Φ1c, the cluster members are modeled

by an inhomogeneous Poisson point process Φ1m ⊂ R
2 with

intensity function

ρ(y) = λ1m

∑
x∈Φ1c

f(y − x), y ∈ R
2,

where λ1m > 0 is the expected number of cluster members

around each cluster center and f(·) is a continuous density

function which describes how a cluster member (micro base

station) is distributed around a cluster center (macro base sta-

tion). Note that the cluster intensity and the normalized kernel

bandwidth2 are equal and fixed. Hence, Φ1m is a shot noise

Cox process (see [10]) and can also be seen as a Neyman-

Scott cluster process (see [11]). This implies Φ1m, when not

conditioned on Φ1c, is stationary with intensity λ1cλ1m. Thus,

the superposition Φ1 = Φ1c ∪Φ1m forms a stationary Poisson

cluster process with intensity λ1 = λ1c(1+λ1m). The network

model can be visualized as shown in Fig. 1. It is important

to note that this figure is merely an illustration and does not

represent actual realizations of the point processes. Another

important assumption is that only connections between adja-

cent layers are allowed, i.e., there is no direct communication

between the backhaul layer and the user layer. This paper also

does not explicitly consider costs incurred while connecting

backhaul nodes to each other via a mesh network, etc.

An important factor that determines the final cost is the

number of users that the network needs to cater to and

the number of users that are connected to a given network

component. The number of users (or the number of points of

Φ0) that are connected to a given point x in layer Φi for i ≥ 1.

This is denoted by Nx and gives the total number of points in

a subtree (as seen in Fig.1). The Voronoi tessellation (see [12])

determines which points of the lower layer are connected to a

particular point in the upper layer. In general, the cell centered

at a point x belonging to process Φi is denoted by Vx(Φi).
This structure used in the following sections to estimate the

cost of deploying a node in the backhaul layer. However, as

shown in [8], defining cell areas for associating users with

their respective base stations can also be based on a Signal-to-

Interference-plus-Noise (SINR) tessellation which is different

from the Voronoi tessellation. In this case, the cell associated

with x ∈ Φ1 determines the area covered by the base station

at x and is given by

Cx,Φ1 =
{
z ∈ R

2 : SINRz ≥ T
}
,

where T is the threshold and SINRz is the SINR at point z.

A cell of this SINR based tessellation is commonly known,

in the wireless engineering community, as a Voronoi cell (see

[13] for more information). This definition can then be used

to derive expressions for probability of coverage and spectral

efficiency which are functions of the user and base station

intensities. Hence, the base station intensities required to meet

the probability of coverage and spectral efficiency constraints,

for a given user intensity, can be calculated quite easily. This

can then be used as a factor that influences the deployment

cost of the network.

III. COST MODELING

Since we focus on estimating capital expenditure or de-

ployment cost, typical costs incurred by the service provider

can broadly be classified into equipment cost, capacity cost,

and infrastructure cost. The equipment cost Ci represents

the cost of a device deployed in a particular layer i. We

assume that users buy their handset, and hence, the cost (to

2Kernel bandwidth defines the spread of the cluster points around the
parent points and should not be confused with “bandwidth” as defined in
communications engineering.
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the service provider) C0 = 0. The equipment cost C1 is the

cost of deploying a typical base station cluster consisting of

one macro base station and λ1m micro base stations. The

equipment cost of a typical backhaul node is C2 which is

a linear combination of C2MW and C2OF, where C2MW and

C2OF are the equipment costs of a microwave backhaul device

and a fiber optic backhaul device, respectively. The equipment

costs of base stations and backhaul nodes can be written as

C1 =
Cmacro + λ1mCmicro

(1 + λ1m)
,

C2 = pλ2MWCMW + (1− p)λ2OFCOF,

where Cmacro and Cmicro are the equipment costs of a macro

base station and a micro base station, respectively. Note that

the cost C1 is the cost of deploying a single cluster consisting

of one parent (macro base station) and an average of λ1m

cluster members (micro base stations). Hence, the equipment

cost of the (entire) base station layer is

λ1C1 = λ1cCmacro + λ1cλ1mCmicro.

Since all point processes in our model are stationary, for

mathematical simplicity, a point under consideration in the

higher layer is assumed to be at the origin o. Then, the capacity
cost is the cost of connecting a device at point x in layer

i to another device at point o in layer i + 1 for a given

capacity requirement. This cost is considered to be of the form

Ai,i+1 g(‖x‖), where Ai,i+1 > 0 is the base cost to achieve

a certain capacity (or data rate) and g(‖x‖) is a function of

the distance ‖x‖ which determines how the base cost scales

with distance. For simplicity, g(‖x‖) can be considered to be

in power law form given by g(‖x‖) = ‖x‖βi,i+1 where ‖x‖
is the distance between the points o ∈ Φi+1 and x ∈ Φi,

and βi,i+1 > 0 is the exponent based on which the cost

increases. E.g., if βi,i+1 = 1, Ai,i+1 g(‖x‖) = Ai,i+1 ‖x‖
which implies that the capacity cost increases linearly with

distance. Similarly, the infrastructure cost is the physical cost

(or expense incurred) to ensure that a point x of layer i and

the point o in layer i + 1 are connected. It is considered to

be of the form Bi,i+1 h(‖x‖), where Bi,i+1 > 0 is a quantity

similar to Ai,i+1 (defined as the base cost for a particular type

of installation) and h(‖x‖) is a function of the distance ‖x‖
between the two points under consideration. Once again, for

ease of computation, h(‖x‖) is taken to be ‖x‖θi,i+1 where

θi,i+1 > 0 determines how fast the base infrastructure cost

increases with distance. Though the definitions of capacity and

infrastructure costs are similar, the reason for considering them

separately is as follows. Infrastructure cost is the cost incurred

while laying the cable or installing microwave equipment

which increases with the distance between the two points

to be connected (due to labor charges, etc.). Furthermore,

each technology has the ability to deliver a given data rate

(with minimal losses) up to a particular distance for a fixed

cost. Now, if the data rate desired is more than what a

single installation of a particular technology can provide, it

requires more than one installation of the same technology.

Since additional installations can use the same physical route

(e.g., cabling along the same path) as the initial installation,

there is no (or negligible) infrastructure cost but there is

added expenditure to meet capacity requirements, such as

upgrading certain components, spectrum costs (in the case of

a microwave backhaul), etc. Hence, the need for a separate

cost category which we term as the capacity cost.

Let CΦ2
be the expected cost of deploying a device in the

backhaul layer. Then, we have the following theorem.

Theorem 1. In a 3-layer model that uses power law functions
to describe capacity and infrastructure costs, the expected cost
of deploying a device in the backhaul layer is given by

CΦ2
=

λ1

λ2

[
C1 +

λ0

λ1
Ψ1

(
A1,2, β1,2, λ2MW, λ2OF, p

)
+

Ψ2

(
B1,2, θ1,2, λ2MW, λ2OF, p

)
+

λ0

λ1

[
Ψ3

(
A0,1, β0,1, λ1c, λ1m, f(·), σ2

)
+

Ψ4

(
B0,1, θ0,1, λ1c, λ1m, f(·), σ2

)]]

(1)

where Ψ1(·),Ψ2(·),Ψ3(·), and Ψ4(·) are given by the equations
(6), (7), (13), and (14), respectively.

The proof is derived in Appendix A. Therefore, the total cost

of such a network is given by

CTOT = C2 + λ2CΦ2
, (2)

where C2,as defined earlier, is the equipment cost of the

backhaul layer. Note that though expressions for Ψ3(·) and

Ψ4(·) are not closed form expressions like those for Ψ1(·)
and Ψ2(·), solving them numerically is quite easy.

IV. UTILITY OF THE FRAMEWORK

This work uses [14], [15], and [16] as the basis for all cost

values. The equipment costs are tabulated in Table I, while

Table II lists the values of the exponents, and Table III lists the

base infrastructure and capacity costs used in this paper. It is

important to note that the sources, [14]–[16], contain a whole

TABLE I
TABLE OF EQUIPMENT COSTS

Type of Cost Value (in $)
Cmacro 50000
Cmicro 20000
CMW 50000
COF 100000

TABLE II
TABLE OF EXPONENTS

Type of backhaul
Exponents Microwave Optic Fiber

β0,1 4 4
β1,2 2 1
θ0,1 2 2
θ1,2 2 1
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TABLE III
TABLE OF BASE COSTS

Type of Back-haul
Type of Cost (in $) Values Microwave Optic Fiber

Capacity Cost
A0,1 5000 5000
A1,2 9000 5000

Infrastructure Cost
B0,1 10000 10000
B1,2 20000 100000

range of values for each device and we consider the average

value of each type. These sources also provide the cost of a

particular device and the range (in terms of radial distance) it

can cover from which, the values of the exponents listed in

Table II have been extrapolated. The reasons for the choice of

values in Table II are as follows.

• The capacity cost between a user and base station is

assumed to scale with distance according to the pathloss

exponent. We assume a dense urban scenario for which

the pathloss is approximately 4 (see [17]). Therefore,

β0,1 = 4.

• Data in [16] indicates that the capacity cost for a fiber

optic backhaul scales linearly with distance, i.e., farther

the distance a given capacity has to be provided to, greater

would be the cost. Therefore, β1,2 = 1.

• In case of a microwave backhaul, extrapolation from data

collected in [15] shows that the capacity cost between a

base station and a backhaul node scales quadratically with

distance. Therefore, β1,2 = 2.

• Comparing the costs of base stations and their respective

coverage areas in [14], we infer that the infrastructure

cost between a user and a base station scales quadrati-

cally with distance. Hence, θ0,1 = 2 irrespective of the

backhaul technology chosen.

• From [16], we assume that the infrastructure cost for

a fiber backhaul scales linearly with distance. Hence,

θ1,2 = 1.

• As in the case of the capacity cost for a microwave

backhaul, from [15], it can be concluded that infrastruc-

ture cost increases quadratically with distance. Therefore,

θ1,2 = 2.

It is also important to note that these values merely serve

an illustrative purpose in highlighting the usefulness of the

expression derived and the accuracy of the values is not our

primary concern. Another salient parameter in this framework

is the user density λ0, the value for which can be found based

on [17]. In [17], Auer et al. state that the maximum rate

density for a dense urban area is 120 Mbps/km2. Therefore,

considering an average user demand of 1 Mbps for illustrative

purposes, results in a user intensity λ0 = 120/km2. The cluster

distribution, f(·), also plays a significant role and we assume

f(·) to be a radially symmetric zero-mean Gaussian density

with variance σ2 = 0.5 (except in Fig. 7 and Fig. 8). A rather

large variance is chosen to ensure that the micro base stations

are fairly widely spread out around the macro base station.

Thereby, reflecting a relatively realistic deployment scenario.

The probability of occurrence of either type of backhaul

infrastructure is assumed to be equally likely, i.e., p = 0.5.

Using all of the above values in equation (1) results in the

figures in Subsection IV-A.

A. Examination of the Figures

The expression in equation (1) has a lot of parameters which

can be varied. The tables I – III assign values for most of

the costs except for macro and micro base station intensities,

intensities of the microwave and fiber optic backhaul, and the

cluster variance. It is important to note that, since we deploy

base stations in clusters (i.e., one macro base station with λ1m

micro base stations on average), increasing the macro base

station intensity is equivalent to increasing the overall base

station intensity. An aspect that is immediately obvious from

the figures (in this section) is that the deployment cost of the

network can be computed quite easily, for any given set of

cost and parameter values. A closer examination of the figures

reveals the following.

Fig. 2 shows variations in the total deployment cost when all

other values except the microwave backhaul intensity and the

macro base station intensity are kept fixed. The cost “surface”

obtained takes a sort of a bowl shape. The shape of the

surface highlights the existence of a small range of microwave

backhaul intensity values that can minimize the network’s

deployment cost. A similar observation can be made in Fig. 3

where the bowl shaped surface is obtained by varying the fiber

optic backhaul intensity and the macro base station intensity,

while keeping all the other parameters fixed. The reason for

the bowl shaped curves in Fig. 2 and Fig. 3 can be explained

as follows. At very low base station and backhaul intensities

(though the intensity of one of the backhaul technologies is

kept fixed), the distance between devices in the backhaul layer

and the base station layer tend to be quite large. This increases

the capacity and infrastructure costs, and hence, results in

very high deployment costs. As the intensities of base stations

and one of the backhaul technologies in the backhaul layer

are increased, the distance between devices in the two layers

decreases leading to lower deployment costs. However, above

a certain base station and backhaul intensity, the equipment

cost begins to play a more decisive role due to the sheer

number of devices. This ultimately leads to an increase in

the deployment cost of the network.

Fig. 4 illustrates deployment cost when both microwave

and fiber optic backhaul intensities are varied, with all other

parameters and costs kept constant. As in Fig. 2 and Fig. 3,

deployment costs are high when the intensities are low due

to high capacity and infrastructure costs caused by large

distances between devices in the two layers. The deployment

cost decreases as the intensity of the backhaul technologies

increase and sort of plateaus beyond a particular value. The

plateauing effect is because the base station intensity as well as

the other parameters are fixed. This plateauing effect, however,

is only illusory as seen in Fig. 5, which depicts much higher

(and rather unrealistic) intensities for both types of backhaul

technologies and base stations. Fig. 5 clearly illustrates that

a bowl shaped surface is obtained in this case as well. The
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Fig. 2. Variation of deployment cost of a network with increasing macro
base station and microwave backhaul intensities.

existence of a small range of backhaul intensities that can

minimize network costs is further corroborated by Fig. 6 which

is a contour plot of Fig. 5. It should be noted that contour

plots for the other figures have not been shown because the

equipment costs considered in this work are rather low and,

for intensities of practical interest considered in the figures,

they do not illustrate the minimal cost region as clearly as

in Fig. 6. Another important reason for the omission is the

brevity of the paper.

The variation in deployment cost corresponding to an in-

crease in the cluster variance and the microwave backhaul

intensity (while all other cost and parameter values are fixed)

is shown in Fig. 7. This figure illustrates that deployment costs

are extremely high at low microwave backhaul intensities due

to high infrastructure and capacity costs, which in turn are

due to large distances between devices in the backhaul and

base station layers. Initially, the deployment cost decreases

quite rapidly for a small increase in backhaul intensity. After a
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Fig. 3. Variation of deployment cost of a network with increasing macro
base station and fiber optic backhaul intensities.
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Fig. 4. Variation of deployment cost of a network with increasing macro
base station and microwave backhaul intensities.
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Fig. 5. Variation of deployment cost of a network with very large fiber optic
backhaul and microwave backhaul intensities.

particular backhaul intensity value, the decrease in deployment

cost ultimately slows and starts to increase very gradually as
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Fig. 6. Variation of deployment cost of a network with very large fiber optic
backhaul and microwave backhaul intensities as a contour plot.
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Fig. 7. Variation of deployment cost of a network with increasing microwave
backhaul intensity and cluster variance.

equipment costs start to play a more significant role. However,

it is important to note that for a given microwave backhaul

density, the deployment costs increase as the cluster variance

increases and this behavior can be explained as follows. An

increase in cluster variance implies that the micro base stations

are more widely spread out around the macro base station,

which results in an increase in the capacity and infrastructure

costs, and consequently, in a higher deployment cost. Fig. 8

shows that a similar behavior is seen when the fiber optic

backhaul intensity and the cluster variance are increased. The

reasons for the surface obtained in Fig. 8 are the same as those

stated for Fig. 7.

V. SUMMARY

This paper details a method of modeling heterogeneous

networks along with their backhaul infrastructure using spatial

point processes. The main contribution of this work is the
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Fig. 8. Variation of deployment cost of a network with increasing fiber optic
backhaul intensity and cluster variance.

derivation of an expression using a point process model that

allows us to compute the total cost of deploying such a

network when there are a given number of users in the area that

need to be catered to. The expression establishes a relation-

ship between the intensities of different network components

(users, macro and micro base stations, and microwave & fiber

optic backhaul nodes), the base costs (capacity, equipment, and

infrastructure costs), and the manner in which these costs scale

with distance between two different network components. This

framework is then used to compute the deployment cost of

a network when the intensities of its components increase.

Observing these figures indicates that there exists a backhaul

intensity (or a small range of backhaul intensities) that can

minimize deployment costs while catering to all base stations

and their respective users.
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APPENDIX A

PROOF OF THEOREM

Proof: The aggregate average cost of the back-haul node

layer, CΦ2
, for a 3-layer model can be defined as

CΦ2 =

E
o
Φ2

[ ∑
y∈Φ1∩Vo(Φ2)

{
C1 +NyA1,2‖y‖β1,2 +B1,2‖y‖θ1,2 +

∑
x∈Φ0∩Vy(Φ1)

(
A0,1‖x− y‖β0,1 + B0,1‖x− y‖θ0,1)}

]
,

where E
o
Φ2

[·] is the expectation over the Palm distribution of

the process Φ2. Separating the terms after using the exchange

formula of Neveu (see [18]) results in

CΦ2
=

λ1

λ2

[
C1 + E

o
Φ1

[NoA1,2‖zo‖β1,2
]
+ E

o
Φ1

[
B1,2‖zo‖θ1,2

]
+

E
o
Φ1

[ ∑
x∈Φ0∩Vo(Φ1)

(
A0,1‖x‖β0,1 +B0,1‖x‖θ0,1

) ]]
, (3)

where the point of observation is shifted to the origin ‘o’ and

‖zo‖ is the effective distance between a point in the backhaul

layer and a point in the base station layer.

Since the point processes in each layer are independent

of the others, we can write the second term of the RHS

of equation (3) as E
o
Φ1

[No] E
o
Φ1

[
A1,2‖zo‖β1,2

]
. From [13],

we get E
o
Φ1

[No] = λ0

λ1
. The terms E

o
Φ1

[
A1,2‖zo‖β1,2

]
and
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E
o
Φ1

[
B1,2‖zo‖θ1,2

]
can (both) be simplified as shown below.

E
o
Φ1

[
A1,2‖zo‖β1,2

]
(a)
= A1,2E

∫
R2

‖a‖β1,21 (Φ2 (b(o, ‖a‖) = 0))Φ2(da)

(b)
= A1,2 λ2

∫
R2

‖a‖β1,2P
o
2 (b(−a, ‖a‖)) da (4)

Here, equality (a) is (once again) due to independence of the

processes and Φ2(·) is the stationary random measure on R
2.

The equality (b) is due to the Refined Campbell theorem (see

[18]) where P
o
2(·) is the Palm distribution with respect to the

point process Φ2, which is defined as shown in equation (5)

(see [9]). After substituting equation (5) in equation (4) and

integrating, we obtain equation (6). Similarly, the third term

of the RHS of equation (3) can be written as equation (7).

Finally, the Palm expectation of the last term of the RHS of

equation (3) can be simplified by using the exchange formula

of Neveu once again. This results in

E
o
Φ1

[ ∑
x∈Φ0∩Vo(Φ1)

(
A0,1‖x‖β0,1 +B0,1‖x‖θ0,1

) ]
=

λ0

λ1

[
E
o
Φ0

[
A0,1‖ao‖β0,1

]
+ E

o
Φ0

[
B0,1‖ao‖θ0,1

] ]
, (10)

where ‖ao‖ is the effective distance between the base station

at o and a user (under consideration). Then, following up with

the use of the Refined Campbell theorem (see [18]) similar to

equation (4), we obtain

E
o
Φ0

[
A0,1‖zo‖β0,1

]
= A0,1 λ1

∫
R2

‖a‖β0,1P
o
1 (b(−a, ‖a‖)) da

(11)

for the first term on the RHS of equation (10). The Palm

distribution P
o
1(·) can be found by means of the J-function

(see [19]) and the “empty space function”, F (see [10]). The

Palm distribution is

P
o
1(b(o,R)) = 1− [

1− FΦ1(R)
]
JΦ1(R), (12)

where R is the random distance from o to the nearest point in

Φ1 (due to the stationarity of Φ1). Note that for a realization

r of the distance R, the Palm distribution can be obtained by

taking the derivative of equation (12) with respect to r. The

J-function of JΦ1
(R), is given by

JΦ1
(R) = JΦ1c∪Φ1m

(R)

=
λ1c

λ1c + λ1cλ1m
JΦ1c(R) +

λ1cλ1m

λ1c + λ1cλ1m
JΦ1m(R),

since the processes Φ1c and Φ1m are independent stationary

point processes (see [19] and [20] for details). As shown in

[19], since Φ1c is a stationary Poisson process, JΦ1c
(R) = 1

and JΦ1m
(R) can be derived as

JΦ1m
(R) =

∫
R2

f(x) exp
(
−

∫
‖y‖≤R

λ1mf(y + x)dy
)
dx,

from the general expression for stationary Cox processes

provided in [10]. Hence, the J-function can be written as

equation (8). Then, recalling that
[
1 − FΦ1(R)

]
is the void

probability, we get equation (9) (see [9]). Hence, the Palm

distribution can be found by substituting equations (8) and (9)

in equation (12). Therefore, recalling that Φ1 is stationary, for

a realization R = r, equation (11) becomes

Ψ3

(
A0,1, β0,1, λ1c, λ1m, f(·), σ2

) ≡ E
o
Φ0

[
A0,1‖zo‖β0,1

]
= A0,1 λ1

∫
R

rβ0,1P
o
1 (b(o, r)) dr.

(13)

Similarly,

Ψ4

(
B0,1, θ0,1, λ1c, λ1m, f(·), σ2

) ≡ E
o
Φ0

[
B0,1‖zo‖θ0,1

]
= B0,1 λ1

∫
R

rθ0,1Po
1 (b(o, r)) dr.

(14)

Then, substitute equations (13) and (14) in equation (10).

Finally, substituting equations (6), (7), and (10) in equation

(3) results in equation (1). It is important to note that though

closed form expressions similar to equations (6) and (7) cannot

be obtained for equations (13) and (14), they can be solved

quite easily using numerical integration. Numerical integration

is especially simple if the cluster distribution f(·) is a zero-

mean radially symmetric Gaussian density with variance σ2.
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