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Abstract—We derive some bounds on the Optimum Asymptotic
Multiuser Efficiency (OAME) of randomly spread CDMA as
extensions of the result by Tse and Verdú. To this end, random
Gaussian and random binary antipodal spreading are considered.
Furthermore, the input signal is assumed to be Binary Phase Shift
Keying (BPSK). It is shown that in a CDMA system with K-user
and N chips when K and N → ∞ and the loading factor, K

N
,

grows logarithmically with K, the OAME converges to 1 almost
surely under some condition. It is also shown that a Gaussian
randomly spread CDMA system has a performance close to the
single user system at high Signal to Noise Ratio (SNR) when
the loading factor is kept less than log3 K

2
. Moreover, for random

binary antipodal matrices, we show that the loading factor cannot
grow faster than log2 3

2
log3 K.

Index Terms—Code division multiple access (CDMA), random
spreading, multiuser detection, optimum asymptotic multiuser
efficiency (OAME), detecting matrices, compressive sensing.

I. INTRODUCTION

Multiuser efficiency [1] is an important performance mea-

sure which shows performance loss of CDMA detectors in

comparison with the single user system. One interesting

asymptotic limit of multiuser efficiency is when the back-

ground noise vanishes [1], [2]. This parameter shows the

performance of the considered detector when Signal to Noise

Ratio (SNR) is very high. For the optimum detector, this

parameter is called Optimum Asymptotic Multiuser Efficiency

(OAME).

Tse and Verdú in [2] prove that the OAME for a CDMA

system with Binary Phase Shift Keying (BPSK) input signal

and independent and identically distributed (i.i.d.) random

spreading with N chips approaches 1 as the number of users,

K, tends to infinity and the loading factor, K
N , is kept equal to

an arbitrary nonzero constant β. This case, i.e., N,K → +∞
when β = K

N , is known as the large system limit. Tanaka in

[3] has derived the performance of a CDMA system with finite

SNR in the large system limit using the replica method known

in the statistical physics. Furthermore, in the related context

of compressive sensing [4], the authors of [5] showed that the

result of Tse and Verdú is not restricted to binary input signals,

but holds for any input alphabet with finite cardinality.

OAME is proportional to the minimum euclidean distance of

the N dimensional vectors mapped by the spreading matrix in

CDMA systems and has a maximum value 1 [1]. When OAME

is 1, the performance of optimum detector is same as the single

user system for very high SNR. Therefore, the results in [2]

and [5] show that in the large system limit the performance of

the optimum detector converges to the performance of single

user system when SNR is very high.
Based on the previous works it is not clear whether the

finite loading factor is a necessary condition. This question is

answered in this paper. We consider randomly spread CDMA

with BPSK inputs. Binary antipodal and Gaussian spreading

matrices are considered. We show that the finite loading factor

condition is not necessary to have an OAME equal to 1. It is

shown that the loading factor can grow logarithmically with

the number of users. It is also shown that for binary antipodal

matrices the loading factor cannot grow faster than O(logK)
to obtain a nonzero OAME.

Although this paper considers CDMA systems with BPSK

inputs, the same problem can be investigated for any other

types of inputs. Investigating the problem with general discrete

inputs is an open problem. One interesting application of such

a problem is compressive sensing [4] with discrete inputs.
The rest of this paper is organized as follows. Section II

presents the system model. In sections III and IV, the main

theorems about OAME for binary antipodal and Gaussian

random spreading are presented, respectively. In Section V, an

upper bound for the OAME is presented and finally, section

VI concludes the paper.

II. SYSTEM MODEL AND PRELIMINARIES

Assume a randomly spread CDMA system with a discrete

model

y = Hb+ n, (1)

where H is an N ×K spreading matrix whose elements are

i.i.d. and have a symmetric probability distribution function

(pdf). Note that a random variable x has a symmetric pdf

ρ(x) if for every α, ρ(α) = ρ(−α). b is the data vector that

bi ∈ {±1}, n ∼ N (0, σ2I) is the additive white Gaussian

noise vector and y is the received vector. In the rest of this

paper we use the following definition

u(x) = [u1(x), · · · , uN (x)]
T Δ
== Hx. (2)

Note that in (1), the number of users is K, the number of

chips is assumed to be N and the users are assumed to have
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unit power. In the considered model, the asymptotic multiuser

efficiency is defined as [6]

η
Δ
== 2 lim

σ→0
σ2 log

(
1

Pe(σ)

)
, (3)

where Pe(σ) is the bit-error rate of the users. Then, the OAME

is calculated as follows [6]

η = min
x∈{±1,0}K\{0}

xTRx, (4)

where R
Δ
== H†H and x is the error vector. η is in [0, 1] for

any given K and N . In [2], it is proven that when K,N → ∞
and K/N is kept constant and finite, η converges to 1 almost

surely. Therefore, an interesting question is that whether it

is necessary to keep K/N finite. In fact, the question is

what is the maximum possible K/N to have η converging

to 1. This question applies to compressive sensing as well. In

compressive sensing, it is desired to find a transfer matrix with

minimum number of rows to compress a sparse data vector [4].

Let EK be the event that xTRx < γ for at least one

nonzero error vector x ∈ {±1, 0}K when γ ∈ [0, 1]. There-

fore,

P(EK) = P

⎛
⎝ ⋃

x∈{±1,0}K\{0}
xTRx < γ

⎞
⎠ . (5)

In fact instead of calculating the minimum in (4), we prove that

P(EK) converges to zero for some conditions. By applying

the union bound to (5), an upper bound is obtained as

P(EK) ≤
∑

x∈{±1,0}K\{0}
P(xTRx < γ). (6)

In the next sections, we consider random binary antipodal and

random Gaussian spreading matrices.

III. THE OAME FOR I.I.D. BINARY ANTIPODAL RANDOM

SPREADING

In this section, it is assumed that the entries of the spreading

matrix, Hi,j , are chosen randomly from
{
± 1√

N

}
with equal

probability. The input signal, b, is assumed to be BPSK. The

summation in (6) is sum of 3K−1 terms. The key point is that

the elements of x which are equal to zero, do not effect the

term xTRx. Furthermore, since the entries of H are antipodal

with equal probability, the sign of nonzero elements of x does

not effect the distribution of xTRx. Therefore, we can expand

the summation on the weight of x. Note that the weight of a

vector is defined as the number of nonzero elements of it. By

the following lemma, it is shown that to calculate (6), we can

only consider the error vectors with even weight.

Lemma 1. Let Hi,j ∈
{
± 1√

N

}
. For every error vector x ∈

{±1, 0}K with odd weight, P
(
xTRx < γ

)
= 0 [7].

In the next lemma, we present an upper bound for the

probability P(xT
j Rxj < γ).

Lemma 2. Let xj be an error vector with even weight 2j > 0
and Bj be the event that the number of nonzero elements of
u(xj) is less than γN

4 . Then, P(xT
j Rxj < γ) ≤ P(Bj) [7].

Note that Lemma 1 and Lemma 2 are only correct for the

BPSK input and binary antipodal spreading matrices. As an

example, for the case of b ∈ {0,±1} with error vector x ∈
{0,±1,±2}, both lemmas are incorrect.

In the following theorem, the main result on the OAME

of a CDMA system with binary antipodal random spreading

matrices is presented.

Theorem 1. For the CDMA system (1) with b ∈ {±1}K
and Hi,j ∈

{
± 1√

N

}
, the OAME η is greater or equal than

min {1, 4(1− 2ζ)} almost surely, when K,N → ∞, and
ζ

Δ
== K

N log3 K .

Proof: The complete proof is presented in [7] and here we

present an intuitive summary of the proof. From the definition

of the OAME we know that η ≤ 1. In fact, this can be easily

proven as follows

η = min
x∈{±1,0}K\{0}

xTRx ≤ [1, 0, · · · , 0]R[1, 0, · · · , 0]T = 1.

(7)

Therefore, we only need to prove that η ≥ 4(1 − 2ζ). From

Lemma 1, it is only required to consider the error vectors with

even weight. Furthermore, in [7] it is proven that for all x with

the same weight, P
(
xTRx < γ

)
are equal. Therefore,

P(EK) ≤
�K

2 �∑
j=1

(
K

2j

)
22jP(xT

j Rxj < γ), (8)

where xj is an arbitrary vector with weight 2j. Using

Lemma 2 in (8) results in

P(EK) ≤
�K

2 �∑
j=1

(
K

2j

)
22jP(Bj)

=

�K
2 �∑

j=1

(
K

2j

)
22j

Nγ
4 −1∑
i=0

(
N

i

)
p(j)N−i(1− p(j))i, (9)

where

p(j) = P(u�(xj) = 0) =

(
2j

j

)
2−2j . (10)

The Binomial distribution function f(i) =(
N
i

)
p(j)N−i(1− p(j))i is an increasing function for

i < im
Δ
== �N(1− p(j))	. Therefore, an upper bound for (9)

is derived as

P(EK) ≤
�K

2 �∑
j=1

(
K

2j

)
22j

Nγ
4 −1∑
i=0

(
N

i

)
p(j)N−i(1− p(j))i

≤
�K

2 �∑
j=1

(
K

2j

)
22j

Nγ

4

(
N
Nγ
4

)
p(j)N−Nγ

4 (1− p(j))
Nγ
4 .

(11)
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To simplify more, the following inequality is used(
m

r

)
≤ 2mh( r

m ), (12)

where

h(t) = −t log2 t− (1− t) log2(1− t), (13)

denotes the binary entropy function. Let ζ
Δ
== K

N log3 K be a

finite constant. Therefore, (11) can be written as

P(EK) ≤
�K

2 �∑
j=1

Kγ

4ζ log3 K
2Kh( 2j

K )+2j2h(
γ
4 )

K
ζ log3 K ×

p(j)
(4−γ)K
4ζ log3 K (1− p(j))

γK
4ζ log3 K . (14)

It can be seen that the summation in (14) decays exponen-

tially in K
log3 K if [7]

ζ < min

(
log2 3

2

(
1− γ

4

)
,
1− γ

4

2

)
=

1− γ
4

2
. (15)

This can also be obtained intuitively by considering the most

populated weight j = 2K
3 . In fact, the dominant weight which

has the largest P(xT
j Rxj < 1) is the weight corresponds to

the maximum number of error vectors, i.e., j = 2K
3 .

By using the Borel-Cantelli lemma [8] it is concluded that η

is greater or equal than γ if ζ <
1− γ

4

2 almost surely. Therefore,

it can be shown that η ≥ 4(1 − 2ζ). This together with the

fact that η ≤ 1 result in

η ≥ min {1, 4(1− 2ζ)} , (16)

which proves the theorem.

Note that for ζ < 3
8 the result of Theorem 1 is

η ≥ min {1, 4(1− 2ζ)} = 1. (17)

Therefore, in this duration η converges to 1 almost surely.

This shows that the performance of the optimum receiver is

same as the single user performance for very high SNR when

the loading factor is less than
3 log3 K

8 . This means the finite

loading factor is not a necessary condition to have η = 1. For
3
8 < ζ < 1

2 , the result in Theorem 1 is a lower bound and

for ζ ≥ 1
2 , Theorem 1 is obvious since R is a non-negative

definite matrix and xTRx ≥ 0 for all BPSK inputs.

IV. THE OAME FOR I.I.D. GAUSSIAN SPREADING

In this section, we investigate the OAME for a randomly

spread CDMA when the entries of H are i.i.d. Gaussian

distributed.

Theorem 2. Let Hi,j ∼ N (0, 1
N ). The OAME converges to 1

almost surely as K,N → ∞, if K
N log3 K is kept less than 1

2 .

Proof: By using (6) and letting γ = 1 we have

P(EK) ≤
K∑
j=1

(
K

j

)
2jP(xT

j Rxj < 1), (18)

where xj is an arbitrary vector with weight j. For sake of

simplicity, we write (18) as

P(EK) ≤ 2KP(xT
1 Rx1 < 1)︸ ︷︷ ︸
Δ
==G1

+
K∑
j=2

(
K

j

)
2jP(xT

j Rxj < 1)

︸ ︷︷ ︸
Δ
==G2

,

(19)

where x1 is an arbitrary vector with weight 1. From [2, eq.

(21)], it can be concluded that the term P(xT
1 Rx1 < 1) decays

exponentially in N . Since we assume ζ = K
N log3 K is finite,

G1 can be written as

G1 = O
(
Ke−α K

log3 K

)
, (20)

where α is a finite positive real number.

Since the channel coefficients are Gaussian we have

u�(xj) ∼ N
(
0,

j

N

)
. (21)

Therefore, N
j (x

T
j Rxj) has a chi-squared distribution with N

degrees of freedom. Note that xT
j Rxj has the average j and

variance j2

N . This means that for the error vectors with higher

weights, the distribution of xT
j Rxj shifts to the right but at

the same time its variance increases. Therefore, it is not clear

which weight results in the largest P(xT
j Rxj < 1). It will be

shown that in this case also the weight j = 2K
3 is determinant.

Using the definition of the chi-squared distribution we have

P(xT
j Rxj < 1) =

∫ N
j

0

1

2N/2Γ(N/2)
x

N
2 −1 exp (−x/2)dx.

(22)

A chi-squared distribution with N degrees of freedom is an

increasing function in [0, N − 2] for N > 2. Therefore, since

j ≥ 2, the term inside of the integration in (22) is an increasing

function. Thus,

P(xT
j Rxj < 1) ≤ N

j2N/2Γ(N/2)

(
N

j

)N
2 −1

exp

(
−N

2j

)
.

(23)

Without loss of generality we assume that N is an even integer.

Based on Stirling’s formula a lower bound for Γ(N/2) is

Γ(N/2) = (N/2− 1)! =
(N/2)!

N/2
> 2

√
π/N

(
N

2e

)N/2

, (24)

Therefore,

G2 ≤
K∑
j=2

(
K

j

)
2j

1

2
√
π/N

j−
N
2

(
e1−

1
j

)N
2

. (25)

To simplify the right hand side of (25), the summation is split
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to three parts as follows

G2 ≤
i0∑

j=2

(
K

j

)
2j

1

2
√

π/N
j−

N
2 (e1−

1
j )

N
2

+

i1∑
j=i0

(
K

j

)
2j

1

2
√
π/N

j−
N
2 (e1−

1
j )

N
2

+

i0∑
j=1

(
K

j

)
2j

1

2
√

π/N
j−

N
2 (e1−

1
j )

N
2 (26)

where i0 = �log2 K	 and i1 =
⌊

K
log2 K

⌋
. To simplify (26),

first note that the function e
1− 1

j

j is a decreasing function for

j ∈ {2, · · · ,K}. Furthermore, the term
(
K
j

)
can be substituted

by the upper-bounded presented in (12). Therefore, it can be

written that

G2 ≤ O

(√
K log2 K2(log2 K)2− 1+ 1

2
log2 e

2ζ
K

log3 K

)

+O

((
K

log3 K

)3/2

2(1−
log2 3

2ζ )K log2(log2 K)
log2 K +

K log2 e
2ζ log3 K

)

+O

(
K3/2√
log3 K

e
K

2ζ log3 K 2K(h( 2
3 )+

2
3−

log2 3
2ζ )+K log2(log2 K)

2ζ log3 K

)
.

(27)

From (27), it is observed that limK→∞ G2 = 0 if

ζ < min

(
1

2
,
log2 3

2

)
=

1

2
. (28)

Furthermore, from (20), (27) and (28), it can be shown that

+∞∑
K=1

P(EK) < ∞, (29)

which together with the application of the Borel-Cantoli

lemma proves that η converges to 1 almost surely if K → ∞
and ζ is kept less than 1

2 .
Fig. 1 shows the results of Theorem 1 and Theorem 2.

V. AN UPPER BOUND ON THE OAME OF CDMA SYSTEMS

WITH BINARY ANTIPODAL SPREADING

The theorems in the last sections present some lower bounds

on the OAME. Accordingly, in a CDMA system, the loading

factor can grow logarithmically with the number of users and

still the OAME converges to 1. However, it is not clear whether

the loading factor can grow faster than O(logK). In this

section, we answer this question using the concept of detecting

matrices in mathematics.
Detecting matrices originate from the coin weighing prob-

lem in mathematics [9]- [10]. For a given data set S such that

x1,x2 ∈ SK , an N ×K matrix H is called detecting if and

only if

Hx1 = Hx2 ⇒ x1 = x2, (30)

where x1 and x2 are K × 1 vectors. Another representation

form of (30) is

Hx = 0N×1 ⇒ x = 0K×1, (31)

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.2

0.4

0.6

0.8

1

1.2

ζ

η

Gaussian spreading
Binary antipodal spreading

Fig. 1: The optimum asymptotic multiuser efficiency lower

bound versus ζ = K
N log3 K .

where x ∈ SK − SK in which

SK − SK =
{
x1 − x2|x1,x2 ∈ SK

}
. (32)

One can write (31) as

Null(H)
⋂

SK − SK = ∅, (33)

where Null(H) is the null space of H and ∅ is an empty set.

From (4) and (33), it can be observed that there is a

connection between η and the concept of detecting matrices.

Detecting means that the mapping Hb does not map any two

data vectors to one output vector. However, the OAME in a

CDMA shows the euclidean distance of the mapped vectors. In

a CDMA system if the spreading matrix, H , is not detecting

then there is an error vector x �= 0 such that xTRx = 0.

Therefore, if the spreading matrix is not a detecting matrix

then the OAME is equal to 0. Note that there might be a

matrix which is detecting but its OAME vanishes.

In [11], it is proven that

lim
K→∞

N0 log2 K

K
= 2, (34)

where N0 is the minimum possible of N such that an N ×K
binary {0, 1} or binary antipodal {±1} detecting matrix exists

for any binary input [12]. Therefore, it is concluded that the

OAME is equal to 0 when K → ∞ and ζ = K
N log3 K is kept

greater than
log2 3

2 . This shows that the loading factor cannot

grow faster than
log2 3

2 log3 K. Note that there is no result for

the OAME of a random binary antipodal spread CDMA in

ζ ∈
(

1
2 ,

log2 3
2

)
so far.

VI. CONCLUSION AND DISCUSSION

We proved that in CDMA systems with BPSK input and

Gaussian or binary antipodal spreading matrices, the loading
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factor can grow logarithmically with the number of users.

For Gaussian spreading, the OAME converges to 1 even if

the loading factor grows with
log3 K

2 . We also proved that

for binary antipodal spreading the OAME is greater than

min{1, 4(2 − ζ)}, where ζ = K
N log3 K . It was also proven

that for binary antipodal spreading, the loading factor cannot

grow faster than
log2 3

2 log3 K.

Note that in the analysis of OAME, we first take the limit

σ2 → 0 and then K → +∞. Therefore, the analysis does

not give any information about the noise power and the SNR.

Moreover, the replica analysis presented by Tanaka cannot be

used in this case since the loading factor is not finite.

The problem considered in this paper can be generalized to

any types of discrete input distribution. However, the presented

analysis cannot be applied to other types of input distribution.

The limit of the loading factor for a general discrete distri-

bution is an open problem. One motivation for investigating

such a problem is compressive sensing with discrete inputs.
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[2] D. N. C. Tse and S. Verdú, “Optimum asymptotic multiuser efficiency
of randomly spread CDMA,” Information Theory, IEEE Transactions
on, vol. 46, no. 7, pp. 2718–2722, 2000.

[3] T. Tanaka, “A statistical-mechanics approach to large-system analysis
of CDMA multiuser detectors,” Information Theory, IEEE Transactions
on, vol. 48, no. 11, pp. 2888–2910, 2002.

[4] D. L. Donoho, “Compressed sensing,” Information Theory, IEEE Trans-
actions on, vol. 52, no. 4, pp. 1289–1306, 2006.
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