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Abstract—Coverage probability is one of the most important
metrics for evaluating the performance of wireless networks.
However, the spatial stochastic models for which a computable
expression of the coverage probability is available are restricted
(such as the Poisson based or α-Ginibre based models). Further-
more, even if it is available, the practical numerical computation
may be time-consuming (in the case of α-Ginibre based model).
In this paper, we propose the application of Padé approximation
to the coverage probability in the wireless network models
based on general spatial stationary point processes. The required
Maclaurin coefficients are expressed in terms of the moment
measures of the point process, so that the approximants are
expected to be available for a broader class of point processes.
Through some numerical experiments for the cellular network
model, we demonstrate that the Padé approximation is effectively
applicable for evaluating the coverage probability.

I. INTRODUCTION

The performance of a wireless network critically depends
on the configuration of wireless nodes and spatial stochastic
models have been used to represent the irregularity of the
node configuration, where the wireless nodes are distributed
according to a spatial point processes (see, e.g., [1]–[3] and ref-
erences therein). Coverage probability—the probability that the
signal-to-interference-plus-noise ratio (SINR) for a wireless
link achieves a target threshold—is one of the most important
metrics for evaluating the performance of wireless networks
and many prior works have evaluated it based on the spatial
stochastic models. However, the spatial models for which a
computable expression of the coverage probability is available
are restricted. Most prior works assumed that the wireless
nodes are deployed according to homogeneous Poisson point
processes (see, e.g., [1]–[5]). While this assumption makes the
models tractable and indeed the computable expressions for
the coverage probability have been derived, it means that the
wireless nodes are located independently of each other and
their spatial correlation is ignored. Since real networks can be
designed more intelligently, the models based on more general
point processes are required.

Recently, the spatial models for cellular networks such that
the wireless base stations (BSs) are deployed according to the
Ginibre point process or its variants, α-Ginibre processes, are
proposed and analyzed (see [6]–[8]). The Ginibre point process
is one of the determinantal point processes and is used to
account for the repulsion between particles (see, e.g., [9]–[11]).
However, while the computable expressions of the coverage
probability are available for the Ginibre based models, they

may suffer from the time-consuming numerical computation
(particularly, in the case of α-Ginibre based models).

Therefore, it would be meaningful to apply some approxi-
mation techniques to the wireless network models based on
general spatial point processes. A few works have so far
tackled the problems along this line. Giacomelli et al. [12]
studied the asymptotics of the coverage probability as the
density of interfering nodes goes to zero. Also, Ganti et al. [13]
developed the series expansion for functions of interference
using the factorial moment expansion. These works consider
the performance metrics as functions of the intensity λ > 0
of the point process and take the asymptotics as λ ↓ 0 in [12]
or the expansion kernels around λ = 0 in [13]. Our approach
is quite different from them. In this paper, we propose the
application of Padé approximation to the coverage probability
in the spatial stochastic models, where we expand the coverage
probability around the SINR threshold θ being equal to zero.
In [12], [13], when evaluating the coverage probability as a
function of the SINR threshold θ, one need to compute it
for each value of θ > 0. In our approach, however, once the
Maclaurin coefficients are computed, we can approximately
evaluate the coverage probability for any value of θ > 0.

We here consider two scenarios: In one scenario, we focus
on a transmitter-receiver pair with a fixed distance on the
plane, where additional interferers are distributed according
to a spatial stationary point process. In this scenario, we show
that the required Maclaurin coefficients are expressed in terms
of the moment measures of the point process, so that the
Padé approximants are expected to be available for a broader
class of spatial stationary point processes. The other scenario
represents the downlink cellular network model, where the
BSs are distributed according to a spatial stationary point
process and a user is associated with the nearest BS. In this
scenario, the Maclaurin coefficients can be computed by using
the conditional moment measures of the point process given the
distance from the origin to the nearest point. We can observe
that this case also reduces the computation time remarkably
with sufficient agreements of approximation.

The paper is organized as follows: We describe the spatial
stochastic models along the two scenarios in the next section,
where the SINR is defined in each scenario and the coverage
probability is given as the performance metric. In section III,
we first make a brief review on the Padé approximation
and then we apply it to the coverage probability. To obtain
the Maclaurin expansion, we derive another easy-to-expand
expression of the coverage probability. As examples, we give
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the sets of Maclaurin coefficients for the Poisson based and α-
Ginibre based models of the cellular network. In section IV,
through some numerical experiments for the cellular network
models, we demonstrate that the Padé approximation is effec-
tively applicable for evaluating the coverage probability.

II. MODEL DESCRIPTION

We consider the following two scenarios, in each of which
we define the SINR for a typical wireless link.

A. Scenario 1: A fixed transmitter-receiver pair

We focus on a typical wireless link with a fixed distance,
where the receiver is located at the origin o = (0, 0) on the
plain R

2 and the associated transmitter is at a point with
distance r > 0 from the origin. There are additional interferers
which are distributed according to a point process Φ on R

2.
We assume that Φ is simple and locally finite a.s. and also
stationary with finite intensity λ > 0. Let Xi, i ∈ N, denote
the points of Φ, where the order of X1, X2, . . ., is arbitrary.
We refer to the associated transmitter as station 0 and to the
interferer at Xi as station i for i ∈ N. The transmission
power of each station is assumed to be constant at p > 0.
Furthermore, we assume the Rayleigh fading for the random
effect of fading from the stations to receivers, so that the
fading effect Hi from station i to the typical receiver is an
exponential random variable with unit mean; Hi ∼ Exp(1),
where Hi, i ∈ {0} ∪ N, are mutually independent and also
independent of the point process Φ. The path-loss function
representing the attenuation of signals with distance is denoted
by ℓ, which is nonincreasing with

∫∞

ǫ
x ℓ(x) dx < ∞ for any

ǫ > 0. What we have in mind is, for example, ℓ(x) = c x−β

or ℓ(x) = c min(x−β , 1), x > 0, for some c > 0 and β > 2,
where c and β are called respectively the path-loss coefficient
and path-loss exponent. The SINR of the typical wireless link
is then expressed as

SINR
(1)
o =

pH0 ℓ(r)

Io(0) + wo
, (1)

where Io(0) = p
∑

j∈N
Hj ℓ(|Xj |) represents the cumulative

interference signal from all the interferers and wo denotes the
thermal noise at the origin, which is assumed to be a positive
constant.

B. Scenario 2: A downlink cellular network

We consider a downlink cellular network model (see, e.g.,
[5], [6]), where the stationary point process Φ = {Xi}i∈N

represents the configuration of wireless BSs. The transmission
power of each BS, random fading effects and path-loss func-
tion are the same as in Scenario 1 above. Each mobile user
is associated with the closest BS; that is, the mobile users in
the Voronoi cell of a BS are associated with that station. We
focus on a typical user located at the origin o. Then, the SINR
of the typical user from the associated BS is expressed as

SINR
(2)
o =

pHBo ℓ(|XBo |)

Io(Bo) + wo
,

where Bo denotes the index of the BS associated with the
typical user; that is, {Bo = i} = {|Xi| ≤ |Xj |, j ∈ N},
and Io(i) = p

∑

j∈N\{i} Hj ℓ(|Xj |) represents the cumulative
interference signal from all the BSs except i. The thermal
noise wo at the origin is the same as in (1).

C. Coverage probability

As a performance metric, we consider the coverage prob-
ability, which is the probability that the SINR of the typical
link achieves a predefined threshold θ > 0. Exploiting that
Hi ∼ Exp(1), i ∈ {0} ∪ N are mutually independent, we can
obtain the following (see, e.g., [6]).

Proposition 1: For the wireless network model in Sce-
nario 1, the coverage probability for the typical wireless link
is given by

P(SINR(1)
o > θ)

= exp
(

−θ
w0

p ℓ(r)

)

E

(

∏

j∈N

(

1 + θ
ℓ(|Xj |)

ℓ(r)

)−1
)

. (2)

On the other hand, for the cellular network model in
Scenario 2, the coverage probability for the typical user is
given by

P(SINR(2)
o > θ)

= E

(

exp
(

−θ
w0

p ℓ(|XBo |)

)

∏

j∈N\{B0}

(

1 + θ
ℓ(|Xj |)

ℓ(|XB0
|)

)−1
)

.

(3)

III. PADÉ APPROXIMATION FOR COVERAGE PROBABILITY

A. A brief review on Padé approximation

Suppose that a function f on R is (m + n)th differen-
tiable for m, n ∈ N and its Maclaurin expansion f(x) =
∑m+n

i=0 ci x
i + O(xm+n+1) as x → 0 is given. The Padé

approximation of f is a rational fraction;

Rm,n(x) =
a0 + a1 x+ · · ·+ am xm

b0 + b1 x+ · · ·+ bn xn
, (4)

which fits f(x) through the orders 1, x, x2, . . . , xm+n in the
sense that

m+n
∑

i=0

ci x
i = Rm,n(x) +O(xm+n+1). (5)

We refer to this Rm,n as the (m,n)-Padé approximant of f .
The coefficients a0, a1, . . . , am and b0, b1, . . . , bn in (4) can
be obtained as follows (see, e.g., [14] for details). First, for
being well-defined at x = 0, it must be b0 6= 0, so that we
take b0 = 1 without any loss of generality. The premise of
Padé approximation (5) yields

(1 + b1 x+ · · ·+ bn x
n) (c0 + c1 x+ · · ·+ cm+n x

m+n)

= a0 + a1 x+ · · ·+ am xm +O(xm+n+1). (6)

Thus, the coefficients of xm+1, xm+2, . . . , xm+n on the left-
hand side of (6) must be equal to zero, and we have















bn cm−n+1 + bn−1 cm−n+2 + · · ·+ cm+1 = 0,
bn cm−n+2 + bn−1 cm−n+3 + · · ·+ cm+2 = 0,

...
bn cm + bn−1 cm+1 + · · ·+ cm+n = 0,

(7)

where ci = 0 for i < 0 (in the case ofm < n−1). From (7), the
denominator coefficients bi, i = 1, 2, . . . , n, can be obtained.
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The numerator coefficients ai, i = 0, 1, . . . ,m, then follow
from (6) by equating the coefficients of 1, x, x2, . . . , xm;















a0 = c0,
a1 = c1 + b1 c0,

...
am = cm + b1 cm−1 + · · ·+ bn cm−n,

where ci = 0 for i < 0 (in the case of m < n). As a result,
we have

m
∑

i=0

ai x
i

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

cm−n+1 cm−n+2 · · · cm+1

cm−n+2 cm−n+3 · · · cm+2

...
...

. . .
...

cm−1 cm · · · cm+n−1

cm cm+1 · · · cm+n
∑m−n

i=0 ci x
n+i

∑m−n+1
i=0 ci x

n+i−1 · · ·
∑m

i=0 ci x
i

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

n
∑

i=0

bi x
i

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

cm−n+1 cm−n+2 · · · cm cm+1

cm−n+2 cm−n+3 · · · cm+1 cm+2

...
...

. . .
...

...
cm−1 cm · · · cm+n−2 cm+n−1

cm cm+1 · · · cm+n−1 cm+n

xn xn−1 . . . x 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

As a simple example, the case of m = n = 1 gives

R1,1(x) =
c0 c1 + (c1

2 − c0 c2)x

c1 − c2 x
.

B. Application to coverage probability

To apply the Padé approximation to the coverage proba-
bility, we need to have the Maclaurin expansion. The expres-
sions (2) and (3) in Proposition 1 are, however, not so tractable.
We thus transform them into other easy-to-expand expressions.

Theorem 1: For the wireless typical link in Scenario 1, the
coverage probability (2) satisfies

P(SINR(1)
o > θ)

= exp
(

−θ
w0

p ℓ(r)

)

E exp

(

−θ

∫ ∞

0

Φ(C(r, s))

s (s+ θ)
ds

)

, (8)

where C(t, u) = {x ∈ R
2 | ℓ(|x|) ≥ u−1 ℓ(t)}, t > 0,

u > 0. On the other hand, for the cellular network model
in Scenario 2, the coverage probability (3) satisfies

P(SINR(2)
o > θ)

= E exp

{

−θ
( w0

p ℓ(|XBo |)
+

∫ ∞

1

Φ(D(|XBo |, s))

s (s+ θ)
ds

)

}

,

(9)

where D(t, u) = {x ∈ R
2 | |x| > t, ℓ(|x|) ≥ u−1 ℓ(t)}, t > 0,

u > 1.

For the proof of Theorem 1, we use the following lemma
(see [8] for the proof).

Lemma 1: Let zj , j = 1, 2, . . . be an increasing sequence
of positive reals and let N(s) =

∑∞
j=1 1(0,s](zj), s > 0. Then,

for θ > 0,

∞
∏

j=1

(

1 +
θ

zj

)

= exp
(

θ

∫ ∞

0

N(s)

s (s+ θ)
ds

)

, (10)

and both sides above are finite if and only if
∑∞

j=1 z
−1
j < ∞.

Proof of Theorem 1: In (2), let {Zj}j∈N =
{ℓ(r)/ℓ(|Xj |)}j∈N with reordering such that Z1 < Z2 < · · · .
Then, N(s) =

∑∞
j=1 1(0,s](Zj), s ≥ 0, corresponds to

Φ(C(r, s)), so that applying (10) in Lemma 1 to (2) yields
(8).

Similarly, let {Zj}j∈N = {ℓ(|XBo |)/ℓ(|Xj |)}j∈N\{Bo} in
(3) and let N(s) =

∑

j∈N
1(0,s](Zj), s > 0. Then, since XBo

is the nearest point and the function ℓ is nonincreasing, we
have N(s) = 0 for s ≤ 1 and N(s) = Φ(D(|XBo |, s)) for
s > 1. Hence, applying Lemma 1 to (3) yields (9).

Formulae (8) and (9) give the form of expectations of
exponential functions and the Maclaurin expansions are readily
obtained. For simplicity, we consider the interference-limited
case (noise-free case of wo ≡ 0) and expand the following
p(1)(θ) and p(2)(θ) around θ = 0;

p(1)(θ) = E exp
(

−θ

∫ ∞

0

Φ(C(r, s))

s (s+ θ)
ds

)

, (11)

p(2)(θ) = E exp
(

−θ

∫ ∞

1

Φ(D(|XBo |, s))

s (s+ θ)
ds

)

. (12)

Theorem 2: For Scenario 1, we suppose that there exists
an ǫ > 0 such that Φ((C(r, s)) = 0, P-a.s., for s ≤ ǫ, where
C(r, s) is defined in Theorem 1. The Maclaurin expansions

for p(1) in (11) and p(2) in (12) are given by

p(i)(θ)

=

n−1
∑

h=0

(−θ)h
h
∑

ℓ=1

1

ℓ!

∑

k1,...,kℓ≥1
k1+···+kℓ=h

E
(

A
(i)
k1

· · ·A
(i)
kℓ

)

+O(θn),

(13)

as θ ↓ 0, for i = 1, 2, where

A
(1)
k =

∫ ∞

ǫ

Φ(C(r, s))

sk+1
ds,

A
(2)
k =

∫ ∞

1

Φ(D(|XBo |, s))

sk+1
ds.

Note that, in Scenario 1, the path-loss function ℓ(x) =
c x−β does not satisfy the assumption of Theorem 2 while
ℓ(x) = c min(x−β , 1) does (see Remark 2 below). For the
proof of Theorem 2, we use the following lemma.

Lemma 2: Let N(s), s ≥ 0, denote a nondecreasing
stochastic process satisfying the following.

1) There exists an ǫ > 0 such that N(s) = 0, P-a.s., for
s ≤ ǫ.

2) For n ∈ N, E
(

∫ ∞

0

N(s)

s2
ds

)n

< ∞.
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Then, it holds that

E exp
(

−θ

∫ ∞

0

N(s)

s (s+ θ)
ds

)

=

n−1
∑

h=0

(−θ)h
h
∑

ℓ=1

1

ℓ!

∑

k1,...,kℓ≥1
k1+···+kℓ=h

E(Ak1
· · ·Akℓ

) +O(θn),

(14)

as θ ↓ 0, where

Ak =

∫ ∞

ǫ

N(s)

sk+1
ds.

Proof: By Taylor’s theorem for e−x, we have
∣

∣

∣

∣

E exp
(

−θ

∫ ∞

0

N(s)

s (s+ θ)
ds

)

−
n−1
∑

ℓ=0

(−θ)ℓ

ℓ!
E

(

∫ ∞

0

N(s)

s (s+ θ)
ds

)ℓ
∣

∣

∣

∣

≤
θn

n!
E

(

∫ ∞

0

N(s)

s (s+ θ)
ds

)n

≤
θn

n!
E

(

∫ ∞

0

N(s)

s2
ds

)n

= O(θn), (15)

under Assumption 2). On the other hand, applying (θ+s)−1 =
s−1

∑n−1
k=0(−θ/s)k +O(θn), we have

E

(

∫ ∞

0

N(s)

s (s+ θ)
ds

)ℓ

= E

(

n
∑

k=1

(−θ)k−1Ak +O
(

θn
∫ ∞

0

N(s)

sn+2
ds

))ℓ

,

where Assumption 1) is used. Thus, applying this to (15) yields

E exp
(

−θ

∫ ∞

0

N(s)

s (s+ θ)
ds

)

=
n−1
∑

ℓ=0

1

ℓ!

n
∑

k1=1

· · ·
n
∑

kℓ=1

E(Ak1
· · ·Akℓ

) (−θ)k1+···+kℓ +O(θn).

Arranging the last expression with k1+· · ·+kℓ = h, we obtain
(14).

Proof of Theorem 2: For p(1), as in the proof of
Theorem 1, let {Zj}j∈N = {ℓ(r)/ℓ(|Xj |)}j∈N and let N(s) =
∑∞

j=1 1(0,s](Zj), s ≥ 0. Then, N(s) in Lemma 2 corresponds
to Φ(C(r, s)).

For p(2), let {Zj}j∈N = {ℓ(|XBo |)/ℓ(|Xj |)}j∈N\{Bo} and
define N(s), s ≥ 0, as above. Then, we have N(s) = 0 for
s ≤ 1, which satisfies Assumption 1) in Lemma 2, and N(s) =
Φ(D(|XBo |, s)) for s > 1.

Remark 1: Formula (13) shows that p(i), i = 1, 2, are com-
pletely monotone functions; that is, (−1)n dnp(i)(θ)/dθn ≥ 0
for θ > 0 and n = 0, 1, 2, . . . (see, e.g., [15]). This is, of
course, confirmed by the form of (11) and (12), the right-hand
sides of which have the form of Laplace transform.

Remark 2: For Scenario 1, let the path-loss function be
ℓ(x) = c x−β , x > 0 for c > 0 and β > 2. Then, C(r, s) =
bo(r s

1/β); the ball centered at the origin with radius r s1/β ,

and there is no ǫ > 0 such that Φ(C(r, s)) = 0, P-a.s., for s ≤
ǫ. In this case, we do not have the finite Maclaurin coefficients.
Indeed, the first-order Maclaurin coefficient is given by

E(A
(1)
1 ) =

∫ ∞

0

E(Φ(bo(r s
1/β))

s2
ds

= λπ r2
∫ ∞

0

s2/β−2 ds = ∞.

On the other hand, when ℓ(x) = c min(x−β , 1), we have
C(r, s) = ∅ for s < min(r−β , 1), which satisfies the assump-
tion of Theorem 2.

For example, let ℓ(x) = c min(x−β , 1) and let r ≤ 1 for
simplicity. In this case, we have ǫ = 1 in Theorem 2 and
C(r, s) = bo(s

1/β) for s > 1. The Maclaurin coefficients for

p(1) in (11) up to the second order are then as follows;

c
(1)
0 = p(1)(0) = 1,

c
(1)
1 = p(1)

′
(0) = −

∫ ∞

1

ν1(bo(s
1/β))

s2
ds = −

λπ β

β − 2
,

c
(1)
2 =

p(1)
′′
(0)

2
=

∫ ∞

1

∫ s

1

ν2(bo(s
1/β)× bo(t

1/β))

s2 t2
dt ds

+

∫ ∞

1

ν1(bo(s
1/β))

s3
ds,

where νn, n ∈ N, denotes the nth-order moment measure of
the point process Φ. We can see that the nth-order Maclaurin
coefficient is expressed in terms of the moment measures up
to the nth order. This implies that we can obtain the Padé
approximants for a broader class of stationary point processes
whenever the moment measures are available.

For the cellular network model in Scenario 2, let

κn(s1, . . . , sn)

= E

(

Φ
(

D(|XBo |, s1)
)

· · ·Φ
(

D(|XBo |, sn)
)

)

, (16)

for s1, s2, . . . , sn > 0. Then, the Maclaurin coefficients of p(2)

in (12) up to the fourth order are as follows.

c
(2)
0 = 1,

c
(2)
1 = −

∫ ∞

1

κ1(s)

s2
ds, (17)

c
(2)
2 =

∫ ∞

1

∫ s

1

κ2(s, t)

s2 t2
dt ds+

∫ ∞

1

κ1(s)

s3
ds, (18)

c
(2)
3 = −

∫ ∞

1

∫ s

1

∫ t

1

κ3(s, t, u)

s2 t2 u2
du dt ds

−

∫ ∞

1

∫ s

1

(s+ t)κ2(s, t)

s3 t3
dt ds−

∫ ∞

1

κ1(s)

s4
ds,

(19)

c
(2)
4 =

∫ ∞

1

∫ s

1

∫ t

1

∫ u

1

κ4(s, t, u, v)

s2 t2 u2 v2
dv du dt ds

+

∫ ∞

1

∫ s

1

∫ t

1

(s t+ t u+ u s)κ3(s, t, u)

s3 t3 u3
du dt ds

+

∫ ∞

1

∫ s

1

(s2 + s t+ t2)κ2(s, t)

s4 t4
dtds

+

∫ ∞

1

κ1(s)

s5
ds. (20)
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Here, it should be noted that, when computing the Maclaurin
coefficients for the cellular network model, we have to compute
the conditional moment measures of Φ given the distance
|XBo | to the nearest point from the origin.

C. Examples

We give the Maclaurin coefficients for the coverage prob-
ability in some specific cases of point processes. We here
consider the cellular network model in Scenario 2 only, so that
we omit the superscript (2), and instead, we put the symbol

representing the point process such that c
(Poi)
i for the Poisson

process and c
(α)
i for the α-Ginibre process. The path-loss

function is fixed as ℓ(x) = x−β , x > 0, for β > 2.

a) Poisson based model: For the homogeneous Poisson
process, the conditional moment measures given |XBo | = r
reduces to just the (unconditional) moment measures and we
have the following.

Corollary 1: For the cellular network model in Scenario 2,
suppose that the BSs are distributed according to a homoge-
neous Poisson process. Then, the Maclaurin coefficients of p(2)

in (12) up to the fourth order are given by

c
(Poi)
1 = −

2

β − 2
,

c
(Poi)
2 =

β2

(β − 1)(β − 2)2
,

c
(Poi)
3 = −

2β2 (β2 − β + 4)

(β − 1)(β − 2)3 (3β − 2)
,

c
(Poi)
4 =

16

(β − 2)4
+

12

(β − 2) (β − 1)
+

1

(β − 1)2

+
8

(β − 1) (3β − 1)
+

1

2β − 1
.

Proof: Let ν
(Poi)
n , n ∈ N, denote the nth-order moment

measure for the homogeneous Poisson process with intensity λ
and let φ(s) = λπ r2 (s2/β − 1) for s > 0. Then, for s > t >
u > v > 0, we have

ν
(Poi)
1 (D(r, s)) = φ(s),

ν
(Poi)
2 (D(r, s)×D(r, t)) = φ(s)φ(t) + φ(t),

ν
(Poi)
3 (D(r, s)×D(r, t)×D(r, u))

= φ(s)φ(t)φ(u) + [φ(s) + 2φ(t)]φ(u) + φ(u),

ν
(Poi)
4 (D(r, s)×D(r, t)×D(r, u)×D(r, v))

= φ(s)φ(t)φ(u)φ(v)

+ [φ(s)φ(t) + 2φ(s)φ(u) + 3φ(t)φ(u)]φ(v)

+ [φ(s) + 2φ(t) + 4φ(u)]φ(v) + φ(v).

Hence, applying P(|XBo | > r) = e−λπr2 , r > 0, and
integrating (17)–(20), we obtain the Maclaurin coefficients in
Corollary 1.

Note that these Maclaurin coefficients can be obtained
directly from the integral representation of the coverage prob-
ability given in [5].

b) α-Ginibre based model: We first make a brief review
on the α-Ginibre point processes (see e.g., [9]–[11] for details).
Let Φ denote a simple point process on C and ρn: C

n → R+,
n ∈ N, denote its joint intensities with respect to some locally
finite measure µ on (C,B(C)); that is, for any continuous
symmetric function f on C

n with compact support,

E

(

∑

X1,...,Xn∈Φ
distinct

f(X1, X2, . . . , Xn)
)

=

∫

Cn

f(z1, . . . , zn) ρn(z1, . . . , zn)µ(dz1) · · ·µ(dzn).

The point process Φ is said to be a determinantal point
process with kernel K: C2 → C with respect to the reference
measure µ if ρn, n ∈ N, satisfy

ρn(z1, z2, . . . , zn) = det(K(zi, zj))1≤i,j≤n,

for z1, z2, . . . , zn ∈ C, where det denotes the determinant.
Furthermore, the determinantal point process Φ∗α is said to be
an α-Ginibre process with α ∈ (0, 1] when the kernel is given
by K∗α(z, w) = ezw/α, z, w ∈ C, with respect to the (scaled)

Gaussian measure µ∗α(dz) = π−1 e−|z|2/α m(dz), where w
denotes the complex conjugate of w ∈ C and m denotes
the Lebesgue measure on (C,B(C)) (see [16]). The usual
Ginibre point process is just the one with α = 1 and it can be
shown that Φ∗α converges in distribution to a homogeneous
Poisson point process as α → 0. That is, the α-Ginibre
processes constitute an intermediate class between the Poisson
and Ginibre point processes by tuning the value of α ∈ (0, 1].
It is known that the α-Ginibre processes are motion-invariant
(stationary and isotropic) and their intensities are equal to π−1.
To make it have the intensity parameter λ > 0, we consider
the scaled process Φ∗α

λ which has the kernel K∗α
λ (z, w) =

eπλzw/α, with respect to µ∗α
λ (dz) = λ e−πλ|z|2/α m(dz). Due

to the radial symmetry of α-Ginibre processes, we can apply
Theorem 4.7.1 in [11] and have the following proposition,
which is a generalization of Kostlan’s result [17] for the usual
Ginibre point process.

Proposition 2: Let Xi, i ∈ N, denote the points of
the α-Ginibre point process with intensity λ. Then, the set
{|Xi|

2}i∈N has the same distribution as Y̌ = {Y̌i}i∈N, which
is constructed from Y = {Yi}i∈N such that Yi, i ∈ N, are
mutually independent and each Yi follows the ith Erlang dis-
tribution with rate parameter π λ/α (Yi ∼ Gamma(i, π λ/α))
and it is included in Y̌ with probability α independently of
others.

According to Proposition 2, we can construct the α-Ginibre
point process Φ∗α

λ with intensity λ from the usual Ginibre point

process Φ∗1
λ/α = {Xi}i∈N with intensity λ/α by independent

α-thinning; that is, by deleting each point Xi, i ∈ N, of
Φ∗1

λ/α with probability 1 − α independently. Note that, by

Proposition 2, the set {|Xi|
2}i∈N has the same distribution

as Y = {Yi}i∈N such that Yi ∼ Gamma(i, π λ/α), i ∈ N, are
mutually independent. Let {ξi}i∈N denote the set of marks of
Φ∗1

λ/α such that ξi, i ∈ N, are mutually independent and iden-

tically distributed as P(ξi = 1) = α and P(ξi = 0) = 1 − α.
Then, Φ∗α

λ can be constructed by

Φ∗α
λ (C) =

∑

i∈N

ξi 1C(Xi), C ∈ B(C). (21)
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Using this construction, we derive the Maclaurin coeffi-
cients for the α-Ginibre based model of the cellular network.

Corollary 2: For the cellular network model in Scenario 2,
suppose that the BSs are distributed according to the α-Ginibre
point process. Then, the Maclaurin coefficients of p(2) in (12)
up to the fourth order are given by

c
(α)
1 = −α

∫ ∞

0

e−v
[

M(v)S(v)∆F (1)

−M(v)∇G(1)
]

dv,

c
(α)
2 =

α

2

∫ ∞

0

e−v
[

M(v)S(v)

×
(

(∆F (1))2 −∆F 2(1) + 2∆F (2)
)

− 2M(v)∆F (1)∇G(1)

− 2M(v)∇
(

G(2)−G2(1)
)]

dv,

c
(α)
3 = −

α

6

∫ ∞

0

e−v
[

M(v)S(v)
(

(∆F (1))3 + 2∆F 3(1)

− 3∆F 2(1)∆F (1) + 6∆F (1)∆F (2)

− 6∆F (1)F (2) + 6∆F (3)
)

− 3M(v)
(

(∆F (1))2 −∆F 2(1)

+ 2∆F (2)∇G(1)
)

+ 2M(v)∆F (1)∇
(

G(2)−G2(1)
)

− 6M(v)∇
(

G(3)− 2G(1)G(2)

+G3(1)
)]

dv,

c
(α)
4 =

α

24

∫ ∞

0

e−v
[

M(v)S(v)
(

(∆F (1))4 − 6∆F 4(1)

+ 3 (∆F 2(1))2 − 6 (∆F (1))2 ∆F 2(1)

+ 8∆F (1)∆F 3(1)

+ 12 (∆F (1))2 ∆F (2)

− 12∆F 2(1)∆F (2) + 24∆F 2(1)F (2)

− 24∆F (1)∆F (1)F (2)

+ 24∆F (1)∆F (3)

− 24∆F (1)F (3) + 12 (∆F (2))2

− 12∆F 2(2) + 24∆F (4)
)

− 4M(v)∇G(1)
(

(∆F (1))3 + 2∆F 3(1)

− 3∆F 2(1)∆F (1) + 6∆F (1)∆F (2)

− 6∆F (1)F (2) + 6∆F (3)
)

+ 12M(v)∇
(

G2(1)−G(2)
) (

(∆F (1))2

−∆F 2(1) + 2∆F (2)
)

− 24M(v)∆F (1)

×∇
(

G(3)− 2G(1)G(2) +G3(1)
)

+ 24M(v)∇
(

G(1)4 − 3G2(1)G(2)

+G2(2) + 2G(1)G(3)−G(4)
)]

dv,

where

M(v) = M(α, v) =
∞
∏

j=1

(

1− α+ α
Γ(j, v)

(j − 1)!

)

,

S(v) = S(α, v) =

∞
∑

k=1

vk−1

(k − 1)!

(

1− α+ α
Γ(k, v)

(k − 1)!

)−1

,

∆F (i) =
∞
∑

j=1

H(i, j),

∇G(i) =
∞
∑

k=1

vk−1

(k − 1)!

(

1− α+ α
Γ(k, v)

(k − 1)!

)−1

H(i, k),

H(i, n) =
α

(n− 1)!

∫ ∞

v

sn−1 e−s
(v

s

)iβ/2

ds

×
(

1− α+ α
Γ(n, v)

(n− 1)!

)−1

,

with the incomplete gamma function;

Γ(n, v) =

∫ ∞

v

sn−1e−sds.

Proof: We here derive c
(α)
1 only. The others are verified

similarly (though the derivations are a little more complicated).
We use the construction (21) of the α-Ginibre point process Φ
from the usual Ginibre point process Φ = Φ∗1

λ/α = {Xi}i∈N

with intensity λ/α. Note that a BS really exists at Xi only
when ξi = 1, i ∈ N, so that {Bo = i} = {ξi = 1}∩Ai, where
Ai = {|Xi| < |Xj | for j ∈ Nξ \ {i}} with random subset
Nξ = {j ∈ N | ξj = 1} of N. Thus, we have from (16)
that

κ1(s) =
∑

i∈N

E
(

Φ(D(|Xi|, s))1{Bo=i}

)

= α
∑

i∈N

E
(

Φ(D(|Xi|, s))1Ai

)

, (22)

where we use that ξi is independent of others with P(ξi =
1) = α in the second equality. Note here that

Φ(D(|Xi|, s)) =
∑

k∈N\{i}

1{ξk=1,|Xi|<|Xk|≤s1/β |Xi|}
,

1Ai =
∏

j∈N\{i}

1{ξj=1,|Xj |>|Xi|}∪{ξj=0}.

Applying these to (22) yields

E
(

Φ(D(|Xi|, s))1Ai

)

= α
∑

k∈N\{i}

P
(

|Xi| < |Xk| ≤ s1/β |Xi|,

{ξj = 1, |Xj | > |Xi|} ∪ {ξj = 0}, j ∈ N \ {i, k}
)

.
(23)

Here, we use Proposition 2; that is, {|Xi|
2}i∈N =d {Yi}i∈N

with Yi = αZi/(π λ) such that Zi ∼ Gamma(i, 1), i ∈ N,

are mutually independent. Noting that {Zi < Zk ≤ s2/β Zi}
and {Zj > Zi}, j ∈ N \ {i, k}, are conditionally independent
given Zi, (23) reduces to

E
(

Φ(D(|Xi|, s))1Ai

)

= α
∑

k∈N\{i}

E

(

P
(

Zi < Zk ≤ s2/β Zi | Zi)

×
∏

j∈N\{i,k}

[

1− α+ αP
(

Zj > Zi | Zi)
]

)

.

Finally, applying the density functions of Zi ∼ Gamma(i, 1),

i ∈ N, to the above, we obtain c
(α)
1 in Corollary 2 after some

manipulations.
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Fig. 1. Comparison of numerical integration, (2, 2)-Padé approximation and
4th order Maclaurin approximation (Poisson and Ginibre based models with
β = 4).

As in the Poisson based model, the Maclaurin coefficients
in Corollary 2 can be obtained directly from the integral
representation of the coverage probability given in [7].

IV. NUMERICAL EXPERIMENTS

We show some results of numerical experiments for the
cellular network model in Scenario 2. In each experiment,
we fix the path-loss function as ℓ(x) = c x−β , x > 0, with
path-loss exponent β = 4. Note here that, in the noise-
free (interference-limited) case, the coverage probability in
the cellular network model does not depend on the path-loss
coefficient c, the intensity λ and transmission power p (see
[5]–[7]).

Figure 1 shows the numerical results for the Poisson
based and Ginibre based models. The results from the direct
numerical computation of the integral representations by [5]
for the Poisson based model and by [6] for the Ginibre based
model are compared with those of the (2,2)-Padé approximants
and 4th-order Maclaurin approximants. We find that the Padé
approximants agree with the direct numerical integration better
than the Maclaurin approximants and furthermore that the Padé
approximants are applicable for the practical use. Note here
that the (2, 2)-Padé and the fourth-order Maclaurin approx-
imants are obtained from the same information; that is, the
Maclaurin coefficients up to the fourth order.

Figure 2 shows the results for the same experiment as that
of Figure 1, but for the α-Ginibre based model with α = 0.2
and 0.8. We find the same features as Figure 1.

Figure 3 shows the numerical results of the experiment
where the (1, 1)-Padé approximants are compared with the
direct numerical integrations for the Poisson based and Ginibre
based models. We find that even the (1, 1)-Padé approximants
agree with the direct numerical integrations up to around
θ = 1, so that they seem sufficient for the practical use.
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