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Abstract—In cognitive radio networks, secondary users (SUs)

may cooperate with the primary user (PU) in order to ob-

tain more transmission opportunities and thus maximize their

throughput. The synergy consists in the following: the SU opts

to cooperate by using its own transmit power to improve the

probability of successful transmission of the PU. By increasing

the probability of successful packet transmission for the PU,

the SU essentially increases the service rate of the PU queue

and thus, for given packet arrival rate, it increases the chances

that it will be empty, and the channel will be free to use.

Due to power limitations however, SUs have to take intelligent

decisions on whether to cooperate or not and at which power

level. Cooperation policies in this framework require the solution

of a constrained Markov decision problem with infinite state

space. In our work, we restrict attention to the class of stationary

policies that take randomized decisions of an SU activation and its

transmit power in every time slot based only on spectrum sensing.

The proposed class of policies is shown to achieve the same set of

SU rates as the more general policies, while significantly enlarging

the stability region of the PU queue. Finally, a lightweight

distributed protocol based on the proposed class of policies

is presented, which is amenable to implementation in realistic

scenarios.

I. INTRODUCTION

Cognitive radio networks (CRNs) have received consider-
able attention due to their potential for improving spectral
efficiency [1]. The main idea behind CRNs is to allow unli-
censed users, also known as secondary users (SUs), to identify
spatially or temporally available spectrum, and transmit op-
portunistically, thus gaining access to the underutilized shared
spectrum while maintaining limited interference to the licensed
user, also known as primary user (PU).

Recently, the concept of cooperation between PU and SUs
in CRNs emerged, as a means for providing benefits for
both types of users. These benefits stem from the fact that,
by exploiting the transmit power resources of SUs towards
improving the effective transmission rate of the PU, the
chances that the PU queue will be empty are increased, and
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hence the PU channel is free to use more often. From an
information theoretic perspective, cooperation between SUs
and PUs at the physical layer has been investigated in many
works (see [2] and references therein). Queuing theoretic
aspects and spectrum leasing strategies for cooperative CRNs
have been investigated in [3]–[6]. A protocol where a SU
relays the PU packets that have not been correctly received
by their destination, was suggested and investigated in terms
of SU stable throughput in [4], while similar protocols were
suggested and compared in [5], considering various physical
layer relaying strategies.

In this work we study optimal cooperative PU-SUs trans-
mission control algorithms with the objective to maximize a
function of the transmission rates of the SUs, while guarantee-
ing unobstructed packet transmission for the PU, and stability
of its queue. SUs have limited transmit power resources,
therefore intelligent cooperation decisions must be taken. This
is the main idea behind the work in [6], where a dynamic
decision policy for the SUs’ activities (i.e., whether to relay
PU transmissions and at which power level) is suggested,
aiming at maximizing SUs’ throughput utility subject to SUs’
average power constraints. The proposed policy is proved to be
optimal, however, its basic requirement is that the PU packet
arrival rates must be lower than a threshold value, which
guarantees that the PU queue is stable even when SUs never
cooperate. This regime places significant restrictions on the
achievable PU stability region, since the sustainable arrival
rates of PUs may be much larger than this threshold value.

In this paper we investigate transmission policies for coop-
erative CRNs that can be applied even when PU transmission
rates are above the threshold set by [6], while still permitting
the SUs to utilize the channel for their own transmissions.
Since the SU decision options and success probabilities are
different during the idle and busy PU periods, while the PU
queue size is in turn affected by the cooperation decisions,
such policies require in general the solution of a non-trivial
constrained Markov decision problem with infinite state space,
where the state is the size of the PU queue. Moreover, the
implementation of such policies requires in general knowledge
of the PU queue size [7].

The main contribution of this work is the introduction of
a class of stationary policies which take random decisions on
SU activities in every time-slot based only on the PU channel
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spectrum sensing result, i.e., PU channel busy or idle. The
benefits of our approach are as follows. First, our approach
is proven to achieve the same set of SU rates as the more
general policies in which (i) decision may depend on the PU
queue size, or (ii) a SU packet may be transmitted instead
of a PU packet, when the PU queue is non-empty. Hence,
the policies in the restricted class are sufficient for optimality
with respect to any utility function. Second, compared to [6],
the proposed class of policies allows for a significantly larger
range of PU traffic arrival rates for which the PU queue is
stable, which, even more interestingly, still allows the SUs to
utilize slots that are unused by the PU, in order to transmit
their own traffic. In addition, we design a distributed algorithm
for determining the appropriate parameters of the proposed
policy when the objective is to maximize a concave SU
utility function. This version offers a robust alternative to the
centralized implementation and distributes the computational
burden across the SUs without loss in performance.

II. SYSTEM MODEL

We consider a system with one PU and multiple SUs.
The PU is the licensed owner of the channel and transmits
whenever it has data to send. On the other hand, the SUs
do not have any licensed spectrum and seek transmission
opportunities on the PU channel. We assume that one of the
SUs can cooperate with the PU by allocating some of its power
resources in order to improve the success probability of PU
transmissions. SU cooperation may be realized with various
techniques that span one or more communication layers. For
example, the SU may relay PU traffic (e.g. through decode-
and-forward, or amplify-and-forward). Alternatively, this aid
by the SU can be provided by means of link layer techniques,
such as retransmission of the overheard PU packet by the SU.
The model that will be described in the sequel is transparent
to all these techniques, which are abstracted out in terms of
the SU consumed transmit power resources.

Furthermore, after sensing the PU channel, SUs decide
on which SU will cooperate and at which power level (if
the PU channel is busy), or which SU will transmit and
at which power level (if the PU channel is idle). In what
follows we describe the parameters of the system model under
consideration as well as the available controls.

A. System Model Parameters

We consider the time-slotted model, where time slot t =
0, 1, ... corresponds to time interval [t, t+ 1); t and t+ 1 are
called the “beginning” and “end” of slot t respectively. The
PU queue receives new packets in each time slot t according to
an i.i.d. arrival process A

p

(t) with mean rate �
p

packets/slot.
We assume that the SUs are infinitely backlogged so that they
have always packets to transmit.

We denote by S the set of SUs. Each SU s 2 S may use
one of I

s

power levels, P
s

(i), i = 1, ..., I
s

, where P
s

(i) <
P
s

(i+ 1), to either transmit its own data or to assist the PU.
To simplify the description that follows, we set P

s

(0) = 0.
At each time slot, only a single packet transmission can take

place. Furthermore, when transmission of packets from the PU
takes place, at most one of the SUs can cooperate. There is
a constraint on the long-term average power P̂

s

consumed by
each SU s 2 S . Hence, for every s 2 S , if i(t) is the power
level used by s at slot t, it must hold,

lim sup
t!1

1

t

t

X

⌧=0

E [P
s

(i (⌧))]  P̂
s

, i (⌧) 2 I0
s

, (1)

where E[·] denotes expectation, I
s

= {1, 2, ..., I
s

} and I0
s

=
I
s

[ {0}.
We assume an erasure channel model, i.e., that each trans-

mission (by the PU or one of the SUs) is either received
correctly or erased.

• When SU s transmits one of its own packets with power
level i 2 I0

s

, the probability of success is r
s

(i), where
r
s

(0) = 0, i.e. the success probability is zero if no power
is used for transmission.

• When SU s cooperates with the PU using power level i,
the success probability of the PU transmitted packet is
r
p

(s, i) . If i = 0, the SU “cooperates” with zero trans-
mission power, hence in effect no cooperation takes place;
therefore it is natural to assume that r

p

(s, 0) = r
p

(0) � 0
for all s 2 S , where r

p

(0) denotes the probability of
successful packet transmission by the PU when the SUs
do not cooperate. In addition, we assume that r

p

(s, i) 
r
p

(s, i+ 1), i.e., the probability of successful reception
is a non-decreasing function of transmission power.

B. Available Controls

In the beginning of time slot t there are various control
options, depending of the status of the primary queue Q

p

(t).
In case Q

p

(t) > 0 (namely, the PU channel is busy), then the
available controls are:

• A packet from the PU queue is transmitted, and transmis-
sion of SU packets is excluded. We refer to this constraint
as PU priority constraint.

• A SU s(t) is selected for cooperation with the PU in
order to assist the transmission of the PU packet.

• A power level i(t) 2 I0
s

is selected, so that s(t)
cooperates with the PU using power level P

s(t)(i(t)).
When i (t) = 0 no cooperation takes place.

On the other hand, when Q
p

(t) = 0 (namely, the PU channel
is idle), the available controls are the following:

• A SU s(t) is selected to transmit its own packet.
• A power level i(t) 2 I0

s

is selected, so that s(t) transmits
its own packets using power level P

s(t)(i(t)). If i (t) = 0,
no transmission takes place in slot t.

C. Admissible Policies, Rate Region, Performance Objective

A control policy is called admissible if the following Policy

Constraints are satisfied:
• The policy obeys the PU priority constraint.
• The PU queue must be mean-rate stable, i.e., the output

long-term average rate of the PU queue should be equal
to its input rate [8].
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• The power constraints of (1) are satisfied.
Under an admissible policy, each SU s 2 S
obtains a long-term average transmission rate
r̄
s

= lim inf
t!1

Pt�1
⌧=0 E[rs(Ps(i(⌧))]

t

, where i (t) is the
power level at which s transmits in slot t. In the sequel, we
denote by r̄ the vector of the long-term average transmission
rates of SUs, i.e., r̄ ,{r̄

s

}
s2S . The achievable rate region

for the problem under consideration is defined as the set of
vectors of SU rates r̄ that can be obtained by all admissible
policies.

Optimization objective: The selection of an admissible pol-
icy depends on the particular optimization objective, which is
expressed as a function of the vector of achievable long-term
average SU transmission rates r̄. The optimization objective is
the maximization of the utility function f (r̄), where r̄ belongs
to the rate region. In the simplest case, f (·) is a linear function
of r̄, however, fairness considerations may require f (·) to be
a nonlinear (usually separable) function of r̄ [9].

The PU queue size Q
p

(t) can be seen as the state of a
constrained Markov Decision Process problem [7], where the
constraints are imposed by the policy constraints described
above. Let C1 be the class of admissible policies of this Markov
Decision Process. This class contains policies that are based
on past history actions and includes the class of randomized
stationary policies of the following form:

• When Q
p

(t) = m, m > 0, select a SU s to cooperate
with the PU at power level i with a certain probability
that depends on m.

• When Q
p

(t) = 0, select a SU s to transmit its own
packets at power level i with a certain probability.

Consider a subclass of the policies in C1, denoted by C0,
which consists of policies whose decisions are based solely
on whether the PU queue is zero or not. In each time slot t,
a policy in C0 acts as follows:

• When Q
p

(t) > 0, select a SU s to cooperate at power
level i with a probability q (s, i |b ).

• When Q
p

(t) = 0, select a SU s to transmit its own data
at power level i with probability q (s, i |e ).

Next, we consider the extended class of policies C2 which
follow the policy constraints with the exception the PU priority
constraint, i.e., the SUs are allowed to transmit their own
traffic even when the PU queue is nonempty. In this case,
the available controls at the beginning of each time slot are of
the form (u, s, i), u 2 {1, 0} , s 2 S, i 2 I0

s

, where
• Control (1, s, i), dictates transmission of PU traffic and

assigns SU s at power level i to cooperate with the PU.
• Control (0, s, i), dictates transmission of SU traffic, and

selects SU s to transmit at power level i.
Since policies in C2 do not impose the PU priority constraint,
and they may include even non-stationary policies, it follows
that C0 ✓ C1 ✓ C2. Hence, the corresponding achievable rate
regions R0, R1, R2, satisfying the policy constraints under
the classes of policies C0, C1, C2, satisfy R0 ✓ R1 ✓ R2.

It might seem at first glance that a policy in class C0 with a
restricted control space will lead to suboptimal performance.

However, this is not the case. In the next section we show
that R2 ✓ R0, thus reaching the interesting conclusion that
R0 = R1 = R2. Hence, under any optimization objective, it
suffices to restrict attention to policies in C0 even if one has
the freedom of not adhering to the PU priority constraint.

III. CHARACTERIZATION OF ACHIEVABLE RATE REGIONS

In this section we substantiate our previous claim. Towards
this end, we determine first the achievable rate region of
policies in C0, namely R0, in subsection (III-A), as well as
the achievable rate region of policies in C2, namely R2, in
subsection (III-B). We then prove in subsection (III-B) that
R0 coincides with R2.

A. Achievable Rate Region of Policies in Class C0
For a given policy ⇡ in class C0, the average packet

service rate of the PU queue is given by r̄
p

=
P

s2S
P

i2I0
s
r
p

(s, i)q(s, i |b ). Standard results from queuing
theory show that the stability region of the PU queue under
⇡, that is, the closure of the set of PU arrival rates �

p

for
which the PU queue is mean-rate stable [8], is the set of arrival
rates that fall in the interval [0, r̄

p

]. Assume that �
p

2 [0, r̄
p

)
(so that the PU queue is stable) and let q

b

be the steady
state probability that the PU queue is busy under ⇡. Viewing
the transmitter at the PU as a queuing system holding 0 (if
the PU queue is empty) or 1 packet (i.e., the packet whose
transmission is attempted if the PU queue is non-empty) and
applying Little’s formula to this system, we have

q
b

= Pr {PU queue is non-empty} =
�
p

r̄
p

. (2)

Hence, the steady state probability that the PU queue is empty
is q

e

= 1�q
b

. Due to the imposed PU priority constraint, SUs
may transmit their own data only when the PU queue is empty.
Hence, the average service rate of SU s traffic is

r̄
s

=

 

X

i2Is

r
s

(i) q (s, i |e )
!

q
e

. (3)

The average power consumption of SU s 2 S is

P̄
s

= q
e

X

i2Is

P
s

(i) q(s, i |e ) + q
b

X

i2Is

P
s

(i) q(s, i |b ), (4)

and since ⇡ 2 C0, it satisfies the power constraints (1),
i.e., P̄

s

 P̂
s

, s 2 S . The discussion above shows that the
constraints that need to be satisfied by the set of probabilities
{q

b

, q (s, i |b ) , q (s, i |e ) , q
e

} , s 2 S , according to (1), (2), are
given by (5)-(10) at the top of the next page.

Conversely, given the set of probabilities
{q

b

, q (s, i |b ) , q (s, i |e ) , q
e

}
s2S, i2I0

s
that satisfy the

constraints (5)-(10), with q
b

< 1, an admissible policy in
C0 can be defined. Hence, the performance space of these
policies is the set of r̄ defined by (3) where the set of
probabilities {q

b

, q (s, i |b ) , q (s, i |e ) , q
e

}
s2S, i2I0

s
satisfy

the constraints (5)-(10).
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q
b

X

s2S

X

i2I0
s

r
p

(s, i)q(s, i |b ) = �
p

(5)

q
e

X

i2Is

P
s

(i) q(s, i |e ) + q
b

X

i2Is

P
s

(i) q(s, i |b )  P̂
s

, s 2 S (6)

q
b

+ q
e

= 1 (7)
X

s2S

X

i2I0
s

q (s, i |b ) = 1 (8)

X

s2S

X

i2I0
s

q (s, i |e ) = 1 (9)

q
b

� 0, q
e

� 0, q (s, i |b ) � 0, q (s, i |e ) � 0, s 2 S, i 2 I0
s

(10)

While the constraints of (5)-(10) are nonlinear with respect
to parameters {q

b

, q (s, i |b ) , q (s, i |e ) , q
e

}, they can be eas-
ily transformed into linear ones through the transformation
q (b, s, i) = q

b

q (s, i |b ) , q (e, s, i) = q
e

q (s, i |e ). Note that
q (b, s, i) is the probability that the PU is busy and SU s
is selected for cooperation at power level i, while q (e, s, i)
is the probability that the PU is idle and SU s packets are
transmitted in a slot at power level i. The new variables
q (b, s, i) , q (e, s, i) satisfy the following constraints.

X

s2S

X

i2I0
s

r
p

(s, i) q (b, s, i) = �
p

(11)

X

i2Is

P
s

(i) q (e, s, i) +
X

i2Is

P
s

(i) q (b, s, i)  P̂
s

, s 2 S (12)

X

s2S

X

i2I0
s

q (e, s, i) +
X

s2S

X

i2I0
s

q (b, s, i) = 1 (13)

q (e, s, i) � 0 q(b, s, i) � 0, s 2 S, i 2 I0
s

. (14)

In addition, the achievable rate of each SU s 2 S , given by
(3), can be rewritten as

r̄
s

=
X

i2Is

r
s

(i) q (e, s, i) . (15)

Using in effect the inverse transformation it can be easily
seen that any vector r̄ satisfying (11)-(15) also satisfies (3)
and (5)-(10). Hence, the achievable rate region of policies in
class C0 is characterized by (11)-(15). Next we show that this
region coincides with the achievable rate region of policies in
C2.

B. Achievable Rate Region of Policies in Class C2
Contrary to the available controls when the PU priority

constraint is imposed, the set of available controls for policies
in C2 do not obey the PU priority constraint (thus, a slot may
be allocated to PU packet transmission, even if the PU queue
is empty). Hence, this class of policies falls in the framework
of policies studied in [8] and its achievable rate region can be
characterized again by the achievable rate region of stationary
policies. In the latter framework, a stationary policy selects

at the beginning of each time slot the control (u, s, i) with
probability p (u, s, i). Under such a policy, the probability of
successful transmission of SU s packets is

r̄
s

=
X

i2Is

r
s

(i) p (0, s, i) , (16)

while, the probability of successful transmission of PU packets
is

r̄
p

=
X

s2S

X

i2I0
s

r
p

(s, i)p(1, s, i), (17)

and stability of the PU queue requires that

r̄
p

� �
p

. (18)

Also, the average power constraint requirement implies that
X

i2Is

P
s

(i) p(0, s, i) +
X

i2Is

P
s

(i) p(1, s, i)  P̂
s

, s 2 S. (19)

Finally, since p (u, s, i) are probabilities, we must have
X

s2S

X

i2I0
s

p (0, s, i) +
X

s2S

X

i2I0
s

p (1, s, i) = 1 (20)

p(0, s, i) � 0, p(1, s, i) � 0, s2 S , i 2 I0
s

. (21)

Constraints (18)-(21) together with (16) define the achiev-
able rate region R2 of policies in C2. The similarity of these
constraints compared to (11)-(15) should be noted. From a
math perspective, the only difference is that there is equality
in (11), as opposed to inequality in (18). However, there is
difference in the interpretation of these probabilities. Specifi-
cally,

• q (b, s, i) is the probability that PU channel is busy and
SU s is selected for cooperation at power level i, while
p(1, s, i) is the probability that SU s is selected for co-
operation at power level i and dictating PU transmission
as well.

• q (e, s, i) is the probability that PU is idle and secondary
user s packets are transmitted in a slot at power level i,
while p(0, s, i) is the probability of selecting secondary
user s packet for transmission at power level i, while PU
does not transmit.
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It becomes clear from the discussion above that R0 ✓ R2.
The next theorem shows that R2 = R0.

Theorem 1. It holds R2 ✓ R0, hence R0 = R1 = R2.

Proof: Please refer to the Appendix.

IV. DISTRIBUTED IMPLEMENTATION

In this section, we focus on approaches that do not rely on
central coordination and are based on policies in class C0 that
achieve the following objective, OPT1:

maximize
P

s2S f
s

(r̄
s

) (22)
subject to (11), (12), (13), (14), (15)

Functions {f
s

(·)}
s2S are usually selected so that cer-

tain fairness criteria for SU rate allocation are satisfied,
and they are assumed to be concave with respect to r̄

s

.
Thus, since r̄

s

, s 2 S , is a linear function of variables
n

{q (e, s, i)}
i2I0

s
, {q (b, s, i)}

i2I0
s

o

, f
s

(r̄
s

) is also a concave
function of these variables. Hence, OPT1 is a convex optimiza-
tion problem and can be solved efficiently via interior point
methods.

In an operational environment where parameters may
change with time, problem OPT1 will have to be solved
whenever significant changes to such parameters occur. A
centralized solution requires a single node to be responsible
for gathering instantaneous parameter values, for the solution
of OPT1 and for determining the appropriate scheduling of
packet transmissions. While such a solution may be acceptable
in certain environments, it creates a “single point of failure”.
Moreover the central node must be continually informing the
SUs as to which one will cooperate or transmit in each time
slot and at which power level. There may also be a scalability
issue with this approach since the number of variables is of the
order 2 |S| I , where I is the maximum number of power levels
of SU nodes (

P

i2S
�

�I0
s

�

� parameters {q (b, s, i)}
s2S, i2I0

s
plus

P

i2S
�

�I0
s

�

� parameters {q (e, s, i)}
s2S, i2I0

s
). Hence, depend-

ing on the computing power and memory availability at the
central node, solving problem OPT1 in a centralized location
may become prohibitive for larger number of SUs.

In this section, we derive a solution to OPT1 in a distributed
fashion. The main features of this approach are the following.

a) The PU involvement in the algorithm is only to announce
its arrival rate �

p

at the beginning of the algorithm - no further
participation is required.

b) A SU node does not need to know the parameters (i.e.,
r
s

(i), r
p

(s, i), i 2 I
s

) of other SU nodes.
c) The distributed solution requires each SU node s 2 S

to solve optimization problems with I
s

variables, hence the
computational complexity per node does not increase with the
number of SU nodes.

d) Two messages are broadcasted by each SU node per
iteration. The number of iterations for convergence depends on
the number of SU nodes, but this is tolerable for the algorithm
execution in a real setting, as long as the system parameters
do not change very rapidly.

e) Once convergence of the algorithm is reached, the SUs
need only observe the state of the PU channel (busy or idle);
they can decide autonomously which SU node is scheduled
to either cooperate with the PU or to transmit its own traffic,
without the need of a scheduler, or the exchange of control
messages.

We assume that there is a separate low-rate channel which
is used by the SUs for control message exchanges [10]. In
particular we assume that control messages may be broad-
casted among the SUs, either because the low-rate channel is
broadcast in nature, or through the establishment of Broadcast
Trees that usually are employed in ad-hoc networks [11].

A distributed solution to problem OPT1 may be obtained
through dual decomposition method, which decomposes the
global problem into |S| parallel subproblems, each involving
only local variables and parameters of node s. However,
this method can be very slow in terms of convergence [12].
Indeed, the dual decomposition based algorithm that we ini-
tially applied failed to converge within a tolerable number of
iterations. Among all alternatives we tried, the best algorithm
in terms of convergence was the one built upon the Alternating
Direction Method of Multipliers (ADMoM). ADMoM has
superior convergence properties over the dual ascent method
[12]–[14]. To apply ADMoM to OPT1, we first turned the
average power inequality constraints (12) into equalities, by
introducing auxiliary variables {y

s

}
s2S , where y

s

is associated
with the respective sth constraint, and is positive-valued. Also,
for notational simplicity, we equivalently rewrite problem
OPT1 as OPT2 given by

minimize �
P

s2S f
s

(x
s

) (23)
u.c.

P

s2S g1s (zs

) = �
p

(24)

h
s

(x
s

, z
s

, y
s

) = P̂
s

, s 2 S (25)
P

s2S g2s (xs

) +
P

s2S g2s (zs

) = 1 (26)
x

s

� 0, z
s

� 0, y
s

� 0, s 2 S (27)

where x

s

, {q (e, s, i)}
i2I0

s
, z

s

, {q (b, s, i)}
i2I0

s
,

and h
s

(x
s

, z
s

, y
s

) , P

i2Is
P
s

(i)q(e, s, i) +
P

i2Is
P
s

(i)q(b, s, i) + y
s

, s 2 S.
Let ⌫ and ⇠ denote the dual variables associated with the

constraints of (24) and (26) respectively, and µ
s

the dual
variable associated with the sth constraint of (25). Then, the
augmented Lagrange function corresponding to OPT2 used
by ADMoM, parametrized by the penalty parameter ⇢ > 0,
is given by (28) at the top of the next page [12], [13]. The
augmented Lagrangian is the standard Lagrange function of
OPT2, given by

P

s2S L
s

�⌫�
p

�⇠, plus the penalty quadratic
term multiplied by ⇢

2 . The penalty parameter ⇢ > 0 is the step
size used for the dual variables updates and plays a key role
for the convergence of ADMoM [12]–[14].

Computational complexity: The optimization steps and vari-
ables updates that need to be carried out at each SU node
s 2 S , according to ADMoM, are given by (29)-(34), at
the next page, where k denotes the iteration index. Note that
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L
p

=
X

s2S
L
s

� ⌫�
p

� ⇠ +
⇢

2

8

<

:

 

X

s2S
g1s (zs

)� �
p

!2

+
X

s2S

⇣

h
s

(x
s

, z
s

, y
s

)� P̂
s

⌘2
+

 

X

s2S
g2s (xs

) +
X

s2S
g2s (zs

)� 1

!2
9

=

;

,

L
s

, �f
s

(x
s

) + ⌫g1s (zs

) + µ
s

⇣

h
s

(x
s

, z
s

, y
s

)� P̂
s

⌘

+ ⇠g2s (xs

) + ⇠g2s (xs

) , s 2 S. (28)

x

k+1
s

= arg min
xs�0

L
s

�

x

s

, zk

s

, yk
s

, vk, ⇠k, µk

s

�

+
⇢

2

⇣

h
s

�

x

s

, zk

s

, yk
s

�

� P̂
s

⌘2
(29)

+
⇢

2

0

@

s�1
X

m=1

g2m
�

x

k+1
m

�

+

|S|
X

m=s+1

g2m
�

x

k

m

�

+ g2s (xs

) +
X

s2S
g2s

�

z

k

s

�

� 1

1

A

2

z

k+1
s

= arg min
zs�0

L
s

�

x

k+1
s

, z
s

, yk
s

, vk, ⇠k, µk

s

�

+
⇢

2

⇣

h
s

�

x

k+1
s

, z
s

, yk
s

�

� P̂
s

⌘2
(30)

+
⇢
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0
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s�1
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m=1

g1m
�

z

k+1
m

�

+

|S|
X

m=s+1

g1m
�

z

k

m

�

+ g1s (zs

)� �
p

1

A
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+
⇢

2

0

@

X

s2S
g2s

�
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k+1
s

�

+
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X

m=1

g2m
�

z
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�

+

|S|
X

m=s+1

g2m
�

z
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m

�

+ g2s (zs

)� 1

1

A

2

yk+1
s

= arg min
ys�0

L
s

�

x

k+1
s

, zk+1
s

, y
s

, vk, ⇠k, µk

s

�

+
⇢

2

⇣

h
s

�

x

k+1
s

, zk+1
s

, y
s

�

� P̂
s

⌘2
(31)

⇠k+1 = ⇠k + ⇢

 

X

s2S
g2s

�

x

k+1
s

�

+
X

s2S
g2s

�

z

k+1
s

�

� 1

!

(32)

⌫k+1 = ⌫k + ⇢

 

X

s2S
g1s

�

z

k+1
s

�

� �
p

!

(33)

µk+1
s

= µk

s

+ ⇢
⇣

h
s

�

x

k+1
s

, zk+1
s

, yk+1
s

�

� P̂
s

⌘

(34)

the computational burden is distributed across SU nodes; the
computational complexity at each node depends primarily on
the two quadratic optimization problems in (29) and (30), each
of which has I

s

variables, and can be efficiently solved via
interior point methods, or standard methods such as Newton
Method. All the following steps involve a single variable and
are straightforward.

Communication overhead: Each node s, in order to per-
form the steps in (29) and (30), needs to know information
concerning the updated local variables of other nodes. This
can be accomplished through message broadcasts by each SU
node via the control channel in the following manner. The
nodes update their local variables and broadcast the messages
required sequentially, in a prespecified order. Specifically, for
the step in (29), each node s 2 S updates its primal variable
x

k+1
s

and broadcasts message g2s
�

x

k+1
s

�

. Similarly, for the
step in (30), each SU node updates its variable z

k+1
s

and broad-
casts g1s

�

z

k+1
s

�

and g2s
�

z

k+1
s

�

in one message, according
to the prespecified order. Steps dictated by (31)-(34), for each
node s, require only its local variables and information that is
already acquired by s from the previous message broadcasts

and thus can be implemented in parallel by all nodes. Each
iteration of the distributed algorithm consists of one round
of these update steps by all |S| nodes. Consequently, the
communication overhead of the algorithm is 2 |S| message
broadcasts per iteration.

Convergence: For the convergence of the algorithm in
decentralized manner, each SU keeps track of a local metric
and determines local convergence with respect to it, within a
prespecified accuracy. This local metric for each node s 2 S
may be the the successive differences of its local objective
function under optimization, i.e., f

s

(x
s

). Once this local met-
ric drops under the prespecified accuracy, local convergence
is declared, and node s announces it via the control channel.
As soon as all SU nodes reach convergence, the algorithm
terminates.

Real-time implementation: We assume that the PU broad-
casts its arrival rate �

p

at the beginning of the algo-
rithm. Once convergence of the algorithm for a given �

p

is
reached, all SUs have knowledge of the sums of probabilities
g2s (xopt

s

) , g2s (zopt

s

) , 8s 2 S . Thus, if the SUs use the same
randomization algorithm and common seed, as long as they
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observe the state of the PU channel, they can all independently
produce the same result as to who SU is scheduled to cooperate
with the PU or transmit its own data in every time slot.
Then, the scheduled SU determines its power level for its
transmission based on its own probability parameters. The
system evolves without the need for further coordination
among network nodes.

The algorithm runs again only when some of the parameters
of the operational environment change significantly. Thus,
when the arrival rate changes within a prespecified percentage
of its previous value, the PU informs the SUs about the new
value of �

p

. Also, in case wireless channel gains change for
some SU within a certain percentage, the corresponding SU
may announce the rerun of the algorithm. In such cases the
algorithm can adapt to changes in the operational environment;
the problem is not solved from scratch, but the algorithm
is initialized at the optimal point of the previous system
state. This speeds up its convergence and reduces the overall
communication overhead, as reported in the simulation results
that follow.

V. SIMULATION AND NUMERICAL RESULTS

In this section we present simulation results that validate
the theorytical analysis. We consider as objective optimization
function f (·) the sum of transmission rates of the SUs, i.e.,
f (r̄) =

P

s2S r̄
s

. We first investigate the performance of
an optimal policy in class C0 in comparison with an optimal
dynamic policy from the class C2, constructed through the Lya-
punov optimization techniques [8], in terms of SU throughput
and average PU queue size. We also present the performance
of the transmission algorithm presented in [6]. Finally, we
examine the convergence of the distributed algorithm, as well
as its ability to adapt to changing parameters.

Several simulation experiments on various setups have been
conducted in order to evaluate the performance of the proposed
class of policies. Due to space limitations, we provide here
some indicative simulation results on a particular experimental
setup. We consider 5 SUs and a set of 5 available transmit
power levels, common for all SUs, I0

s

= {0, 1, 2, 3, 4}, where
P

s

= (0, 0.25, 0.5, 0.75, 1), for all s 2 S . We also assume
r

p

(s) = (0.4, 0.5, 0.6, 0.7, 0.8) and r

s

= (0, 0.3, 0.5, 0.8, 1),
for all s 2 S. Finally, the average power constraint is P̂

s

=
0.15, for all SUs.

For such a scenario, the performance of the system is
depicted by Figs. 1-2 in terms of f (r̄) and average backlog
of PU queue, respectively. It can be seen in Fig. 1 that, as
expected, the sum rate achieved by SUs that employ an optimal
policy from the restricted class of policies C0 is identical to
the sum rate achieved under the optimal policy in C2. As
can be observed by Fig. 2, the average backlog of the PU
queue remains very low under the optimal policy in C0. On
the contrary, the dynamic policy from C2 induces large sizes
to PU queue even for small arrival rates. Furthermore, when
compared to the control algorithm presented in [6], the class
C0 of policies extends the range of �

p

that can be supported by
the system, providing mutual benefits to both PU and SUs out

Fig. 1. The sum of the SUs rates.

Fig. 2. The average backlog of the PU queue.

of their cooperation. In particular, transmission rates higher
than the PU queue service rate without SU cooperation can
be supported for the PU through the class of policies C0, while
transmission opportunities are provided to SUs to transmit
their own data. It should be noted that the policy in [6] was
shown to be optimal for �

p

< 0.4, and this is confirmed in
Fig. 1, where it is seen that all three policies achieve the
same sum-rate for �

p

< 0.4. However, as can be seen by this
experiment, the policy in [6] renders the PU queue unstable
for �

p

> 0.4 and reduces the SU sum rates to zero. The reason
is the following. In [6], decisions are taken at the end of busy
periods of the PU queue. If �

p

> 0.4, whenever a decision
of not cooperating is taken, there is a nonzero probability that
the primary queue never becomes empty, and hence there is
no possibility for the SUs to take corrective actions.

We also conducted experiments regarding convergence of
the distributed algorithm on the same setup. Due to lack of
space, we report a summary of the results of these simulations.
We used as initial values

n

q (e, s, i)0
o

i2I0
s

= 0.01, 8s 2 S ,
n

q (b, s, i)0
o

i2I0
s

= 0.03, 8s 2 S ,
�

µ0
s

 

s2S = 1, ⇠0 = 1,

⌫0 = 1, as well as the stepsize parameter ⇢ = 0.1 and
accuracy for convergence equal to ✏ = 10�5. Varying the PU
rate from 0.2 to 0.7, the number of iterations required for
convergence was found to vary from 263 to 74. Furthermore,
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the distributed algorithm reached the same objective value as
its centralized counterpart in all these experiments. We also
conducted an experiment where the PU rate changed from 0.5
to some new value in the range 0.35 to 0.7, and as initial
values we used the optimal values obtained for �0

p

= 0.5. The
number of iterations required for convergence in this case was
considerably reduced, and ranged from 44 to 16.

VI. CONCLUSIONS

In this work we put forward novel PU-SU cooperation
policies for cognitive radio networks that orchestrate a PU and
co-existing SUs in a wireless channel. The major contribution
to the state of the art is that, although the proposed policies
require only the sensing of the state of PU channel (busy
or empty) for their realization, they: a) achieve substantial
augmentation of stability region of the PU queue, and b)
can obtain any long-term SU rates achievable by policies for
which the restriction of always giving priority to PU traffic
is removed. A distributed version of the algorithm is also
presented. There exist several directions for future study. First,
there is the issue of how to design the system when SUs are
not backlogged and packets arrive randomly to them instead.
Second, in this work, we assumed that channel sensing is
error free; imperfect sensing introduces several new features
and alters the structure of the problem. Finally, the issue of
designing a dynamic online version of this algorithm is open.

APPENDIX

Proof: Let r̄ 2 R2. We will show that r̄ 2 R0, which
proves Theorem 1.

If �
p

=
P

s2S
P

i2I0
s
r
p

(s, i)p(1, s, i), then clearly r̄ 2 R0.
Assume next that �

p

<
P

s2S
P

i2I0
s
r
p

(s, i)p(1, s, i). We
distinguish the following cases:

Case 1. �
p

� r
p

(0) p(1), where p (1) ,
P

s2S
P

i2I0
s
p(1, s, i) denotes the total probability that

PU transmits, summed over all SU s and transmit power
levels. Note that since

r
p

(0) p (1)  �
p

<
X

s2S

X

i2I0
s

r
p

(s, i)p(1, s, i), (35)

for each �
p

in the interval above, there exists a parameter ↵,
with 0  ↵ < 1, such that it holds

�p = ↵

0

@
X

s2S

X

i2Is

rp(s, i)p(1, s, i)

1

A + (1� ↵) rp (0) p (1) . (36)

We define now the new set of parameters q (b, s, i) and
q (e, s, i) by setting q (e, s, i) = p (0, s, i) for all s 2 S and
i 2 I0

s

and

q(b, s, i) =

⇢

↵p(1, s, i) if i 2 I
s

↵p(1, s, 0) + (1� ↵)p (1, s) if i = 0,
(37)

for all s 2 S , where p (1, s) , P

j2I0
s

p(1, s, j). Since

0  ↵ < 1, parameters q (e, s, i) and q (b, s, i), for all
s 2 S and i 2 I0

s

, are non-negative. Furthermore, note that
P

i2I0
s
q(b, s, i) =

P

i2I0
s
p(1, s, i). Hence the new set of

parameters satisfies (13). Also, since P
s

(0) = 0, after some
algebraic manipulations, it can be seen that the new set of
parameters satisfy (19). Finally, due to (36), it follows that (11)
is satisfied. Hence the new set of parameters satisfy (11)-(14).
Also since the SU rates computed according to (15) (where
q (e, s, i) = p (0, s, i) for all s 2 S and i 2 I0

s

) are the same
as those given by (16), it follows that r̄ 2 R0.

Case 2. �
p

< r
p

(0) p(1).
Define the new set of parameters as follows

q (b, s, i) =

(

0 if i 2 I
s

�p

rp(0)p(1)
p (1, s) i = 0,

(38)

q (e, s, i) =

(

p (0, s, i) if i 2 I
s

�
P

i2I0
s

p (0, s, i) + p (0, s, 0) if i = 0,

(39)

for all s 2 S , where � =
1� �p

rp(0)

1�p(1) � 1. Since �
p

< r
p

(0) p(1),
and p (1)  1, it follows that � > 0, hence, all the
defined parameters are non-negative. Also, due to (20), (13)
is satisfied. Next, it can be easily shown that (11) is satisfied.
Furthermore, due to (19), (12) is also satisfied. Finally, since
P
s

(0) = 0, it follows that the SU rates computed according
to (15) (where q (e, s, i) are selected according to (39) for all
s 2 S and i 2 I0

s

) are the same as those given by (16). Hence
we conclude that r̄ 2 R0.
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