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Abstract—In this paper, a comprehensive study of the downlink
performance in a heterogeneous cellular network (or hetnet) is
conducted. A general hetnet model is considered consisting of an
arbitrary number of open-access and closed-access tier of base
stations (BSs) arranged according to independent homogeneous
Poisson point processes. The BSs of each tier have a constant
transmission power, random fading coefficient with an arbitrary
distribution and arbitrary path-loss exponent of the power-law
path-loss model. For such a system, analytical characterizations
for the coverage probability and average rate at an arbitrary
mobile-station (MS), and average per-tier load are derived for
the max-SINR connectivity model. Using stochastic ordering,
interesting properties and simplifications for the hetnet downlink
performance are derived by relating this connectivity model to
the maximum instantaneous received power (MIRP) connectiv-
ity model, providing good insights about the hetnets and the
downlink performance in these complex networks. Furthermore,
the results also demonstrate the effectiveness and analytical
tractability of the stochastic geometric approach to study the
hetnet performance.

Index Terms—Multi-tier networks, Cellular Radio, Co-channel
Interference, Fading channels, Poisson point process, max-SINR
connectivity.

I. INTRODUCTION

T
HE modern cellular communication network is an overlay

of multiple contributing subnetworks such as the macro-

cell, microcell, picocell and femtocell networks, collectively

called the heterogeneous network (or, in short, hetnets). The

hetnets have been shown to sustain greater end-user data-

rates and throughput as well as provide indoor and cell-edge

coverage, further leading to their inclusion as an important

feature to be implemented under the fourth-generation (4G)

cellular standards [4]–[10].

Until recently, the analysis of such networks has been done

solely through system simulations. Since the hetnets consist

of a combination of regularly spaced macrocell base-stations

(BSs) along with irregularly spaced microcell and picocell

BSs and often randomly placed end-user deployed femtocell

BSs, it is difficult to study the entire network at once using

simulations. Further, the BSs in each of these networks have

different transmission powers, traffic-load carrying capabilities

and different radio environment that is based on the locations

in which they are deployed. The many parameters involved in

the design and modeling of the individual networks makes it

difficult to narrow all the possibilities down to a limited set

A special cases of the results in this paper were presented in [1]–[3]

of simulation scenarios based on which one can make design

decisions for the entire network. Under these circumstances,

the development of an analytical model that captures all the

design scenarios of interest is of great importance.

The hetnet performance is studied by viewing the hetnet

as composed of multiple tiers of networks (e.g. macrocell,

microcell, picocell and femtocell networks), each modeled as

an independent homogeneous Poisson point process, and such

studies have been done in [11]–[18] and by us in [1]–[3]. These

studies mathematically characterize important performance

metrics such as coverage probability (1 - outage probability),

average ergodic rate, average load carried by BSs of each tier

and load-awareness. Furthermore, such studies have facilitated

the characterization of the improvements that techniques such

as fractional frequency reuse and carrier aggregation bring to

cellular performance as well as hetnet performance. In the

following subsection, we differentiate our work from the other

prior work on hetnets and list the contributions of this paper.

Contributions of the paper

Here, the hetnet is modeled to consist of open and closed

access networks formed by the arrangement of BSs according

to homogeneous Poisson point process with a certain density

for each tier, and independent of the other tiers. The focus is on

the downlink performance analysis; the MS has access to only

the open-access tiers and connects to one of the BSs in these

tiers. The closed access tiers only cause interference at the MS.

Hence, we study the downlink performance where the hetnet

consists of an arbitrary number of open and closed access

tiers. Signals from BSs of a given tier have a constant transmit

power, random fading coefficient that is i.i.d. across all the BSs

of the same tier and independent of those of the other tiers

with any arbitrary distribution, arbitrary path-loss exponent

that is constant for all BSs of the same tier and different across

different tiers, and the signal-to-interference-plus-noise-ratio

(SINR) threshold for connectivity to a given kth open-access

tier’s BS is βk, k = 1, · · · ,K. For such a general setting, the

coverage probability at the MS is derived for the max-SINR

connectivity model. In the max-SINR connectivity model, the

MS is said to be in coverage if there exists at least one open-

access BS with an SINR above the corresponding threshold.

The results shown here are generalizations of the existing

results in [2], [3], [12], [16], [18]. In [14], [15], the coverage

probability results are obtained for the hetnets under the
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max-SINR connectivity, but for the case where the fading

coefficients for the BS transmissions are independent and

identically distributed (i.i.d.) exponential random variables,

and the path-loss exponents are the same for all the tiers.

Using an entirely different approach, [11]–[13] derives the

hetnet coverage probability but are again restricted to the

i.i.d. exponential distribution case for fading. In [1]–[3], we

derived the hetnet coverage probability for the case when the

i.i.d. fading coefficients have an arbitrary distribution and the

path-loss exponents are different for different tiers, for the

maximum instantaneous received power (MIRP) connectivity

model, which is a special case for the max-SINR connectivity

model, as will be discussed later. Here, we derive the coverage

probabilities for the general connectivity model (max-SINR)

for the general system settings mentioned above.

When the SINR thresholds of all the tiers are above 1,

the hetnet coverage probability under max-SINR connectivity

and MIRP connectivity are identical. Further, in these special

cases, simple analytical expression are derived for the coverage

probability, average rate and the load carried by the BSs of

each tier. The following section describes the system model

in detail.

II. SYSTEM MODEL

This section describes the various elements used to model

the wireless network, namely, the BS layout, the radio envi-

ronment, and the performance metrics of interest.

1) BS Layout: The hetnet is composed of K open-access

tiers and L closed-access tier, and the BS layout in each tier

is according to an independent homogeneous Poisson point

process in R
2 with density λok, λcl for the kth open-access tier

and lth closed-access tier, respectively, where k = 1, . . . , K
and l = 1, . . . , L. The MS is allowed to communicate with

any BS of the open-access tiers, but cannot communicate with

any of the closed-access BSs.

2) Radio Environment and downlink SINR: The signal

transmitted from each BS undergoes shadow fading and path-

loss. The SINR at an arbitrary MS in the system from the

ith BS of the kth open-access tier is the ratio of the received

power from this BS to the sum of the interferences from all

the other BSs in the system and the constant background noise

η, and is expressed as

SINRki =
PokΨkiR

−εk
ki

Io − PokΨkiR
−εk
ki + Ic + η

, (1)

where Io =
∑K

m=1

∑∞
n=1 PomΨmnR

−εm
mn is the sum of

the received powers from all the open-access tier BSs,

{Pom,Ψmn, εm, Rmn}
m=K, n=∞
m=1, n=1 are the constant transmit

power, random shadow fading factor, constant path-loss expo-

nent and the distance from the MS of the nth BS of the mth

open-access tier. Similarly, Ic =
∑L

l=1

∑∞
n=1 PclΨclnR

−εcl
cln is

the sum of the received powers from all the closed-access tier

BSs, {Pcl,Ψcln, εcl, Rcln}
l=L, n=∞
l=1, n=1 lists the constant transmit

power, random shadow fading factor, and the constant path-

loss exponent of the nth BS of the lth closed-access tier.

The fading coefficients {Ψmn}
∞
n=1 ({Ψcln}

∞
n=1) are i.i.d.

random variables with the same distribution as Ψm (Ψcl),

m = 1, . . . , K (l = 1, . . . , L). Further, following [19], it

is assumed that

{

E

[

Ψ
2

εm
m

]}K

m=1

,

{

E

[

Ψ
2

εcl

cl

]}L

l=1

< ∞.

Finally, Rmn (Rcln) is the distance of the nth nearest BS

belonging to the mth open-access ( lth closed-access) tier, and

{Rmn}
∞
n=1 , {Rcln}

∞
n=1 represents the distance from origin

of the sets of points distributed according to the homogeneous

Poisson point processes described in Section II-1. The various

symbols introduced in this section are listed in Table I for

quick reference.

3) BS connectivity models: A MS is able to communicate

with a BS of the kth open-access tier if the corresponding

SINR is above a certain threshold βk, k = 1, · · · , K. In this

case, the MS is said to be in coverage. The BS connectivity

models provide a rule to determine which BS to connect to,

and in this paper, we focus on the max-SINR connectivity

model. The MIRP connectivity model is a special case of the

max-SINR connectivity model, and will be discussed in detail

in the later sections.

Under the max-SINR connectivity model, the MS is said

to be in coverage if there exists at-least one BS among all

the open-access tiers with an SINR at the MS above the

corresponding threshold, and is mathematically expressed as

follows.

P
max−SINR
coverage = P

(

K
⋃

k=1

∞
⋃

i=1

{SINRki > βk}

)

= P

(

K
⋃

k=1

{SINRk (max) > βk}

)

, (2)

where SINRki corresponds to the ith BS of the kth tier as

defined in (1) and SINRk (max) is the maximum SINR at the

MS among all the kth open-access tier BSs.

In the following section, we derive expressions for the hetnet

coverage probability for the above mentioned connectivity

models.

III. HETNET COVERAGE PROBABILITY

In [20], a technique to compute the downlink coverage

probability under max-SINR connectivity for a single-tier

network was shown. In [15], this technique is used to compute

the hetnet coverage probability for an open-access case where

the fading coefficients for all the BSs in the system are i.i.d.

unit mean exponential random variables and the path-loss

exponents are the same for all tiers. Here, we generalize the

technique developed in [20] to compute the hetnet coverage

probability for both the max-SINR and nearest-BS connectiv-

ity models for a general system model explained in Section

II.

The coverage probability expressions in (2) can be equiva-

lently expressed as follows:

P
max−SINR
coverage = P

(

K
⋃

k=1

{

Mk

Io + Ic + η −Mk

> βk

}

)

= P

({

max
k=1,··· , K

γkMk > Io + Ic + η

})

, (3)
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Symbol Description

K, L Number of open-access and closed-access tiers, respectively.

{λok}
K
k=1

, {λcl}
L
l=1

BS densities of open-access and closed-access tiers, respectively.

{Pok}
K
k=1

, {Pcl}
L
l=1

Constant transmission powers of the BSs
of the K open-access tiers and closed access tier, respectively

{εk}
K
k=1

, {εcl}
L
l=1

Path-loss exponents of the open and closed - access tiers ( > 2).

{Ψk}
K
k=1

, {Ψcl}
L
l=1

i.i.d. fading gains of the open and closed-access tiers

(

EΨ

2
εl
k

, EΨ

2
εcl
cl

< ∞

)

{βk}
K
k=1

SINR thresholds for connectivity to a BS in the kth open-access tier

η Background noise power

{γk}
K
k=1

=
{

1 +
1

βk

}K

k=1

TABLE I
LIST OF SYMBOLS USED IN THE PAPER

where Mk = max
n=1,··· , ∞

PokΨoklR
−εk
kl is the maximum of the

received powers from all the kth tier BSs, Io (Ic) is the sum

of the received powers from all the open-access BSs (closed-

access BSs) in the system, and are defined in (1). We begin

with computing the Laplace transform of the interference from

the closed-access tiers, Ic, LIc (s) = E
[

e−sIc
]

.

Lemma 1. The Laplace transform of the interference from the

closed-access tiers is

LIc (s) = e
−
∑L

l=1
λclπ(sPcl)

2
εcl E

[

Ψ

2
εcl
cl

]

Γ
(

1− 2
εcl

)

. (4)

Proof: The proof for (4) is as follows.

LIc (s) = E

[

exp
(

−s
∑L

l=1

∑∞
n=1 PclΨclnR

−εcl
cln

)]

(a)
=

∏L
l=1 E

[

exp
(

−s
∑∞

n=1 PclΨclnR
−εcl
cln

)] (b)
=

∏L
l=1 exp

(

−λclEΨcl

[

´∞

r=0

(

1− e−sPclΨclr
−εcl

)

2πrdr
])

,

where (a) is obtained because the BS arrangement for the L
closed-access tiers and the corresponding transmission and

fading parameters are independent of each other, and (b)
evaluates the expectation in (a) using the Campbell’s theorem

of Poisson point process [21, Page 28], and (4) is obtained

by evaluating the integral in (b).
Next, we derive the expression for the Laplace transform

that will be used to obtain semi-analytical expressions for

P
max−SINR
coverage .

Lemma 2.

LIo+Ic+η, max
k=1,··· ,K

γkMk≤u (s)

, E

[

e−s(Io+Ic+η)I

(

max
k=1,··· ,K

γkMk ≤ u

)]

= LIc (s) exp

(

−sη −

K
∑

k=1

λokπ (sPok)
2
εk E

[

Ψ
2
εk

k

]

×

[

Γ

(

1−
2

εk

)

+
2

εk
Γ

(

−
2

εk
,
su

γk

)])

, (5)

where LIc (s) is from Lemma 1 and the random variables Ψk1

and Ψk are i.i.d. for all k = 1, · · · ,K.

Proof: Please refer [22, Appendix A] for the proof.

The significance of Lemmas 1 and 2 are as follows. No-

tice from (3) that the hetnet coverage probability can be

obtained if the joint probability density function (p.d.f.) of

(

Io + Ic + η, max
i=1,··· ,K

γiMi

)

is known. The joint p.d.f.s can

be derived from the Laplace transform expressions in Lemma

2 using the following simple operations.

fIo+Ic+η, max
i=1,··· ,K

γiMi
(x, y) =

ˆ ∞

ω=−∞

∂

∂u
LIo+Ic+η, max

i=1,··· ,K
γiMi≤u (jω)

∣

∣

∣

∣

u=y

ejωx

2π
dω,(6)

where f·,· (·, ·) denotes the joint p.d.f. of the involved ran-

dom variables. This is shown for the max-SINR connectivity

case in [20, Corollary 4]. Further, the partial derivative term

in the above equation can be easily computed and is given

below.
∂
∂u

LIo+Ic+η, max
i=1,··· ,K

γiMi≤u (s)

LIo+Ic+η, max
i=1,··· ,K

γiMi≤u (s)
=

K
∑

k=1

λk

2π

εk
(γkPk)

2
εk E

[

Ψ
2
εk

k

]

u
−1− 2

εk e
− su

γk . (7)

When fading coefficients are i.i.d. unit mean exponential ran-

dom variables E

[

Ψ
2
εk

k

]

= Γ
(

1 + 2
εk

)

, setting {λcl}
L
l=1 = 0

and {εk}
K
k=1 = α, (7) reduces to [15, (2)]. Having computed

the expressions for the joint p.d.f.’s in (6), the coverage

probability can be easily obtained as shown below.

Theorem 1. The hetnet coverage probability under max-SINR

connectivity model is as follows:

P
max−SINR
coverage =

K
∑

i=1

λi

2π

εi
(γiPi)

2
εi E

[

Ψ
2
εk

k

]

×

ˆ ∞

y=0

ˆ ∞

ω=−∞

LIo+Ic+η, max
i=1,··· ,K

γiMi≤y (jω)×

(

ejωy(1−γ−1

i ) − ejω(η+y(κ−1−γ−1

i ))
)

2πjωy
1+ 2

εi

dωdy, (8)

where κ = max
i=1,··· , K

γi, all the other symbols are in Table I,

and the Laplace transform function in (8) is given in (5).

Proof: Please refer [22, Theorem 1] for the proof.

Using an alternate approach, expressions for the hetnet

coverage probability are obtained in [11], again, when all

the fading coefficients are i.i.d. exponential random variables.
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For a general system model as in this paper, to the best of

our knowledge, the hetnet coverage probability has not been

characterized, until now.

Nevertheless, the semi-analytical expressions are extremely

complicated even for numerical computations, and little intu-

ition and insights about the hetnet performances are obtainable

from these expressions. As a result, a more qualitative study

is imperative to better understand these soon-to-be-prevalent

cellular networks. From now onwards, we conduct a more

systematic study to bring out the properties and dependencies

of the hetnet performance on the various parameters of the

system. To begin with, we make the following observations

about the hetnet performance.

Corollary 1. The downlink coverage probability in the hetnet

is the same as in another hetnet with the same open-access

tiers as in the original hetnet (described in Section II-1) and

one closed access tier where the BSs have unity transmission

power, fading coefficient and path-loss exponent and are ar-

ranged according to a non-homogeneous Poisson point process

with a BS density function

λc (r) =
L
∑

l=1

λclP
2

εcl

cl E

[

Ψ
2

εcl

cl

]

r
2

εcl
−1

, r ≥ 0. (9)

Proof: Please refer [22, Corollary 1] for the complete

proof.

Hence, we have shown an equivalence between a hetnet

with L closed-access tiers and another hetnet with a single

closed-access tier. Next, we make an interesting observation

regarding the hetnet downlink performance under the max-

SINR connectivity model.

Corollary 2. The hetnet performance under max-SINR con-

nectivity with an arbitrary fading distribution at each tier is

the same as in another hetnet with open-access and closed-

access BS densities as

{

λoiEΨ
2
εi

oi

/

Γ
(

1 + 2
εi

)

}K

i=1

and

{

λciEΨ
2

εci

ci

/

Γ
(

1 + 2
εci

)

}L

i=1

, respectively, and i.i.d. unit

mean exponential distribution for fading at all the BSs in the

network.

The above result is obtained by noting that the effect

of fading is equivalent to scaling the density of BSs by

the 2
ε

th
moment of the fading random variable, due to [19,

Corollary 2]. A large body of work involving the stochastic

geometric study of networks predominantly assume fading

coefficients to be i.i.d. exponential random variables, as this

greatly simplifies the analysis and renders itself to closed-

form characterization of coverage probabilities and other re-

lated performance metrics of several networks including the

hetnets (see [14]). A common criticism for all these works

has been that the exponential distribution does not accurately

capture the slow fading environment. Interestingly, the above

corollary shows an example of a scenario wherein studies with

exponential fading assumptions completely characterizes the

arbitrary fading scenario.

The importance of the Corollary 1 is that the SINR distribu-

tion of the two equivalent hetnets are the same. Hence, without

loss of generality, we study the downlink performance where

the hetnet consists of K tiers of open access networks and

a single closed access network. For the sake of simplicity,

it is assumed that the closed-access tier has homogeneous

Poisson point process based BS arrangement with a constant

BS density λc, transmission power Pc, path-loss exponent

εc and i.i.d. fading coefficients with the same distribution as

Ψc

(

E

[

Ψ
2
εc
c

]

< ∞

)

.

IV. QUALITATIVE STUDY OF HETNET DOWNLINK

PERFORMANCE

When {βk}
∞
k=1 = β, commonly referred to as the unbiased

case in the literature, the hetnet coverage probabilities of the

max-SINR connectivity model is identical to the maximum

instantaneous received power (MIRP) connectivity model.

Under the MIRP connectivity, the MS connects to the BS

with the maximum instantaneous received power among all the

open-access tiers. As a result, the serving BS and the coverage

probability expression for the MIRP are

(T, I) = argmax
k=1,··· , K, i=1, 2,···

PokΨkiR
−εk
ki ,

P
MIRP
coverage = P ({SINRT,I > βT }) , (10)

where T refers to the tier-index and I refers to the BS-

index of the serving BS. Next, we characterize the c.c.d.f.

of SINRT,I for the MIRP case, and several related important

characteristics.

A. SINR characterization under MIRP connectivity

The following stochastic equivalence helps simplify the

SINR characterization.

Lemma 3. The SINR at the MS under MIRP is the same

as in the two-tier hetnet where the tier to which the MS has

an open-access network with a BS density function λ̃ (r) =
∑K

k=1 λ̃k (r) with λ̃k (r) = λk
2π
εk
P

2
εk

k EΨ
2
εk

k r
2
εk

−1
, r ≥ 0

and a closed-access network with a BS density function

λ̂ (r) = λc
2π
εc
P

2
εc
c E

[

Ψ
2
εc
c

]

r
2
εc

−1
. All the BSs in the equiv-

alent systems have unity transmit powers, fading coefficients

and path-loss exponents. The SINR is stochastically equal to

SINRT,I

=st

R̃−1
T,1

∑K
k=1

∑∞
l=1

(k,l)6=(T,1)

R̃−1
kl +

∑∞
l=1 R̂

−1
l + η

∣

∣

∣

∣

∣

∣

∣

∣

(

{λ̃k(r)}
K

k=1
,λ̂(r)

)

=st
R̃−1

1
∑∞

k=2 R̃
−1
k +

∑∞
l=1 R̂

−1
l + η

∣

∣

∣

∣

∣

(λ̃(r),λ̂(r))

, (11)

where =st indicates the equivalence in distribution; and
{

R̃i

}∞

i=1

({

R̂i

}∞

i=1

)

is the ascendingly ordered distances of

the BSs from the origin, obtained from a non-homogeneous 1-

D Poisson point process with BS density function λ̃ (r)
(

λ̂ (r)
)

defined above.
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Proof: Please refer [22, Lemma 3] for the complete proof.

The following lemma shows interesting stochastic equiva-

lences when {εk}
K
k=1 = εc = ε.

Lemma 4. The hetnet SINR under MIRP connectivity

has the same distribution as in the following three

networks. The first is a hetnet with BS densities
{

λkP
2
ε

k E

[

Ψ
2
ε

k

]}K

k=1
, λcP

2
ε

k E

[

Ψ
2
ε
c

]

for the K open-access

tiers and the closed-access tier, respectively, unity transmit

powers and shadow fading factors for all tiers. The other two

are two-tier networks with unity transmit powers and shadow

fading factors for all their BSs. The first two-tier network has

the open-access tier BS density
∑K

l=1 λlP
2
ε

l E

[

Ψ
2
ε

l

]

, closed-

access tier BS density λcP
2
ε

k E

[

Ψ
2
ε
c

]

and experiences the same

background noise as the hetnets. The second two-tier network

has a unity open-access tier BS density, closed-access tier

BS density λ̂c =
λcP

2
ε
k

E

[

Ψ
2
ε
c

]

∑

K
l=1

λlP
2
ε
l

E

[

Ψ
2
ε
l

] and a background noise

η̄ = η
(

∑K
l=1 λlP

2
ε

l E

[

Ψ
2
ε

l

])− ε
2

. Equivalently,

SINRT,I =st

SINR

(

K + 1,
{

λkP
2
ε

k E

[

Ψ
2
ε

k

]}K

k=1
, λcP

2
ε

k E

[

Ψ
2
ε
c

]

, η, T

)

(12)

=st SINR

(

2,
K
∑

l=1

λlP
2
ε

l E

[

Ψ
2
ε

l

]

, λcP
2
ε
c E

[

Ψ
2
ε
c

]

, η, 1

)

(13)

=st SINR
(

2, 1, λ̂c, η̄, 1
)

, (14)

where =st indicates equivalence in distribution. The SINR

expression on the right-hand side is a function of the total

number of tiers in the hetnet, BS densities of each open-access

tier, BS densities of the closed-access tier, back-ground noise

power, and the tier index of the serving BS, respectively.

Proof: Please refer [22, Lemma 4] for the complete proof.

Lemmas 3 and 4 are generalizations of [2, Lemma 1] and

[23, Lemma 1], respectively, to the case where the hetnet also

contains a closed-access tier. Next, we compute the hetnet

coverage probability.

Theorem 2. The hetnet coverage probability under MIRP is

P
MIRP
coverage =

K
∑

k=1

λkP
2
εk

k E

[

Ψ
2
εk

k

]

×

ˆ ∞

r=0

2πr

ˆ ∞

ω=−∞

ejωηrεk
(

1− e−
jω
βk

)

jω2π
×

e
−λcP

2
εc
c E

[

Ψ
2
εc
c

]

πr
2εk
εc G(jω, 2

εc
)
×

e
−
∑K

l=1
λlP

2
εl
l

E

[

Ψ

2
εl
l

]

πr

2εk
εl 1F1

(

− 2
εl

;1− 2
εl

;jω
)

dωdy,(15)

where G
(

jω, 2
εc

)

=
´∞

t=0

(

1− ejωt
)

2
εc
t−1− 2

εc dt.

Proof: The proof is along the same lines as [2, Theorem

1], and is not shown here.

The above expression can be greatly simplified under certain

special cases, and the following results present these cases.

Corollary 3. When {εk}
K
k=1 = εc = ε, the hetnet coverage

probability is

P
MIRP
coverage =

K
∑

k=1

λkP
2
ε

k E

[

Ψ
2
ε

k

]

´∞

ω=−∞

(

1−e
−

jω
βk

)

jω2π H (jω) dω

∑K
l=1 λlP

2
ε

l E

[

Ψ
2
ε

l

] ,(16)

H (jω) =

ˆ ∞

r=0

2πr ×

ejωη̄rε−πr2( 1F1(− 2
ε
;1− 2

ε
;jω)+λ̂cG(jω, 2

ε ))dr (17)

where H (jω)|η̄=0 = 1

1F1(− 2
ε
;1− 2

ε
;jω)+λ̂cG(jω, 2

ε )
, η̄ and λ̂c

are from Lemma 4 and G (·, ·) is defined in Theorem 2.

When {βk}
K
k=1 = β or {βk}

K
k=1 ≥ 1, (16) is equal to

P
max−SINR
coverage . When there is no closed-access tier

(

λ̂c = 0
)

,

(16) is equal to the single-tier network coverage probability

(see [19, Corollary 4]) and is independent of the transmission

powers and fading factors of the BSs in the system.

Proof: The result is obtained by exchanging the order of

integrations in (15) and simplifying.

The following theorem shows another scenario when the

hetnet coverage probabilities are identical for the max-SINR

and MIRP connectivity models.

Theorem 3. When βk ≥ 1, ∀ k = 1, · · · ,K, the hetnet

coverage probability is given by

P
max−SINR
coverage = P

MIRP
coverage =

K
∑

k=1

λokP
2
εk

ok E

[

Ψ
2
εk

k

]

β−εk
k

Γ
(

1 + 2
εk

) ×

ˆ ∞

r=0

2πr × e
−ηrεk−

λcπP

2
εc
c E



Ψ

2
εc
c



r

2εk
εc

Γ(1+ 2
εc
)sinc( 2π

εc
)

e
−
∑K

l=1

λolπP

2
εl
ol

E






Ψ

2
εl
l






r

2εk
εl

Γ

(

1+ 2
εl

)

sinc

(

2π
εl

)

dr, (18)

and in the interference limited case (η = 0) when {εk}
K
k=1 =

εc = ε

P
max−SINR
coverage = P

MIRP
coverage

=
K
∑

k=1

λokP
2
ε

okE

[

Ψ
2
ε

k

]

sinc
(

2π
ε

)

β−ε
k

λcP
2
ε
c E

[

Ψ
2
ε
c

]

+
∑K

l=1 λolP
2
ε

olE

[

Ψ
2
ε

l

] . (19)

Proof: Firstly, from [14, Lemma 1], when βk ≥ 1,

there exists at most one open-access BS that can have

an SINR above the corresponding threshold. As a result,

hetnet coverage probability in (2) becomes P
max−SINR
coverage =

∑K
k=1 P ({SINRk (max) > βk}) = P

MIRP
coverage. See [22, Ap-

pendix D] to derive (18), which simplifies to (19) when η = 0.
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Fig. 1. Two-tier hetnet: Comparing coverage probabilities for various shadow
fading distributions

In the above result, (18) can be easily computed numerically

and is an extension of [14, Theorem 1] to arbitrary fading

and path-loss case. The study of the MIRP connectivity has

given many interesting insights and simplifications for the

max-SINR case. Further, other performance metrics pertinent

to hetnets such as the average fraction of load carried by each

tier in the hetnet and the area-averaged rate acheived by an

MS that is in coverage in a hetnet can also be derived using

the results in this section. We refer the reader to [3, Theorems

2, 3 and 4] for these results.

V. NUMERICAL EXAMPLES AND DISCUSSION

In this section, we provide some numerical examples that

complement the theoretical results presented until now. We

restrict ourselves to the study of a two tier hetnet consisting

of the macrocell and the femtocell networks, respectively,

under the max-SINR connectivity model. Also, please refer

to Appendix A for the algorithm to perform the Monte-Carlo

simulations. For all the studies in this paper, λ2 = 5λ1,
P1 = 25P2, ε = 3, and β2 = 1 dB, where the subscripts

‘1’ and ‘2’ correspond to macrocell and femtocell networks,

respectively. Further, under the closed-access BS association

scheme, the MS has access to the macrocell network only.

In Figures 1, 2 and 3, we study the coverage probability,

coverage conditional average rate and the average fraction

of users served by the macrocell network, respectively, for

various configurations of shadow fading distributions at the

macrocell and the femtocell BSs. Note that the expressions for

the coverage conditional average rate and the average fraction

of users served by the macrocell network can be found in [3,

Theorems 2, 3 and 4]. In all the figures, T1 (T2) stand for tier

1, i.e. the macrocell network (tier 2, i.e. the femtocell network).

Further, Exp(·) and LN(·) are abbreviations for exponential

distribution with a given mean and log-normal distribution
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with a zero mean and standard deviation (when the random

variable is expressed in dB), respectively, and they represent

distribution of the shadow fading factors of the corresponding

tiers.

While the expressions in Theorem 3 clearly show that a

MS has a better coverage probability under open-access than

closed-access, the plots in Figure 1 provides a quantitative

justification for the same. The coverage probability curve

corresponding to the exponential fading distribution at both

the tiers 1 and 2 with means 40 and 1, respectively, also

corresponds to the case where P1 = 1000P2, with the shadow

fading factors at both the tiers being unit mean exponential

distributions. The open and closed access have approximately
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the same coverage probabilities because the MS is almost

always served by a macrocell BS, as can been seen in the

corresponding curve in Figure 2. As a result, blocking access

to the femtocell BSs altogether, has only a marginal influence

on the coverage probability at the MS.

The two curves following the aforementioned curve in

Figures 1-3 complement the fact that all the three performance

metrics are identical irrespective of the distribution of the

shadow fading factors, when the shadow fading factors have

the same distribution across all the tiers. The last two curves in

Figures 1-3 show that all the performance metrics are identical

as long as the shadow fading coefficients of the corresponding

tiers have the same (2/ε)
th

moments. Note that E
[

Ψ
2
ε

]

is the

same when Ψ has a log-normal distribution with zero mean

and 6 dB standard deviation or when Ψ is an exponential

random variable with mean 230.

A log-normal random variable with zero mean and a given

standard deviation is a good model for shadow fading factors.

Note that the femtocell network is introduced to improve

the indoor performance. The shadow fading factors in the

indoor environments are known to have a comparable or

greater standard deviation than otherwise. Such a situation

is represented by last four curves in Figures 1-3. The gap

between the open and closed access coverage probability

curves indicate the contribution of the femtocell network in

providing coverage to the MS. It is immediately clear that the

dense low-power femtocell network has a more critical role in

providing coverage in realistic indoor models, when we look

at the last four curves in Figures 1 and 2.

Under open-access, the coverage probability and the cover-

age conditional average rate (see Figures 1 and 2) for all the 5

curves mentioned above intersect when the SIR threshold for

the macrocell network is equal to 1 dB. This brings us to an

important point that when the SIR threshold is the same for all

the tiers, these metrics become independent of the transmission

power and shadow fading factors of the different tiers, and

collapses to the corresponding metrics in a single-tier network

with the same path-loss exponent and SIR threshold. Along

the same lines, the coverage conditional average rate for a

two-tier hetnet under closed-access also collapses to that of

a single-tier network, and is independent of the transmission

power and shadow fading factors of the different tiers.

VI. CONCLUSIONS

In this paper, for the most general model of the hetnets, the

downlink coverage probability and other related performance

metrics such as the average downlink rate and average fraction

of users served by each tier of the hetnet are characterized for

the max-SINR connectivity model. Semi-analytical expression

for the hetnet coverage probability is obtained, and several

properties pertaining to the hetnet downlink performance are

analyzed, which provide great insights about these complex

networks. As an example, we identify the MIRP connectivity

model to be equivalent to the former model under certain

special conditions. These models are much simpler to analyze

and the results for these models expose interesting properties

of the hetnet. The results in this paper greatly generalize the

existing hetnet performance characterization results and are

essential for better understanding of the future developments

in wireless communications that are heavily based on hetnets.

APPENDIX

A. Simulation Method

The kth tier of the hetnet with K tiers is identified by the

following set of system parameters: (λk, Pk, Ψk, εk, βk) ,
where the symbols have all been defined in Section II, and

k = 1, 2, · · · , K, where K is the total number of tiers.

Now we illustrate the steps for simulating the hetnet in order

to obtain the SINR distribution and the coverage probability

assuming the MS is at the origin. The algorithm for the Monte-

Carlo simulation is as follows:

1) Generate Nk random variables according to a uniform

distribution in the circular region of radius RB for the loca-

tions of all the kth tier BSs, where Nk ∼ Poisson
(

λkπR
2
B

)

.

3) Compute the SINR at the desired BS according to Section

II-3 and record the tier index I of the desired BS.

Repeat the same procedure T (typically, > 50000) times.

Finally, the tail probability of SINR at η is given by
{# of trials where SINR > η}

T
, and the coverage probability

is given by
∑K

k=1
{# of trials where I=k and SINR>βk}

T
.
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