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Abstract—This paper investigates the statistical properties of
selection combining (SC) cooperative diversity over double Rice
narrow-band fading channels under the transparent or amplify-
and-forward (AF) strategy. It is assumed that the source, the
destination, and relay stations are all equipped with single
antenna. The Doppler power spectral density, associated with
each of the double Rice fading processes, is considered to be sym-
metrical about the carrier frequency. Under the above conditions,
analytical integral expressions are derived for the probability
density function (PDF) and the cumulative distribution function
(CDF) of the SC fading envelopes. Also, expressions for the level
crossing rate (LCR) as well as the average duration of fades
(ADF) are determined. For some cases, the integral expressions
are shown to be approximated using the Laplace’s method of
integration. The approximations are verified to be accurate when
the number of relay stations is large. The obtained results
include those corresponding to the double Rayleigh and combined
Rayleigh×Rice models as special cases of the double Rice fading
channel. The validity of all the presented theoretical results are
checked by computer simulations.

Index Terms—Double Rice fading channels, selection com-
bining (SC) cooperative diversity, probability density function
(PDF), cumulative distribution function (CDF), level crossing rate
(LCR), average duration of fades (ADF).

I. INTRODUCTION

Multiplicative fading models are useful in the statistical

description of multipath channels in many important scenarios

such as mobile-to-mobile (M2M) transmission [1], keyhole

propagation in multiple-input multiple-output (MIMO) sys-

tems [2], and multihop and cooperative communications [3],

[4]. In the context of conventional multihop relaying concept,

where the information signal is transmitted from the source to

the destination via intermediate nodes operating as relays, the

channel on each relaying segment can separately be described

by the well known classical fading models, e.g. Rayleigh, Rice,

Nakagami-m [5]. For convenience, however, it is desirable

to consider the end-to-end fading channel as a whole with

proper statistics. In this setting, the approach consisting on

the modeling of multihop channels by the product of single

classical models has mostly been an appropriate choice to yield

the so-called compound or multiplicative fading channels [6].

The study of multiplicative fading models has therefore re-

ceived a great deal of attention during the last years. For

instance, the first order statistical properties of double Rayleigh

channels have been reported in [7]. The second order statistics

of multihop Rayleigh channels have been analyzed in [8]. The

double Nakagami-m channel has been studied in [9] where

the LCR and the ADF have been obtained. The analysis of

the first and second order statistics of the double Rice fading

model has been addressed in [10]. In addition to multihop

communications, cooperative relaying, also termed cooperative

diversity [1], [4], [11] has proved its ability to improve the

radio link quality and the network coverage. To the best of

our knowledge, the statistical characterization of cooperative

diversity signals over multiplicative fading channels has not

sufficiently been addressed in the literature. For instance,

the statistical properties of equal gain combiner over double

Rayleigh and double Rice channels have been investigated in

[12] and [13], respectively. In [14], the performance of digital

modulations over double Nakagami-m fading channels with

maximum ratio combining diversity has been studied.

In this paper, aiming at contributing to the topic of statis-

tical analysis of cooperative diversity over compound fading

channels, we study the statistics of SC cooperative diversity

over a dual-hop Rice fading channels under the AF strategy.

Specifically, assuming that the fading processes are indepen-

dent but not necessarily identically distributed, we derive the

first order statistics in terms of the CDF and PDF of the

resultant SC fading process. We then confine our attention to

the investigation of the second order statistics in the form of

LCR and ADF. Results corresponding to both Rayleigh×Rice

and double Rayleigh fading channels with SC diversity have

also been deduced as special cases. Furthermore, the validity

of the derived expressions has been checked by means of

computer simulations.

The rest of this paper is structured as follows. In Section II,

we present some preliminaries and known results on the

statistics of double Rice fading channels. In Section III,

we provide the first order statistics of the underlying SC

cooperative diversity whereas, in Section IV, we investigate

the second order statistics. Numerical examples and results

verification are presented in Section V. Finally, Section VI

concludes the paper.
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II. CHANNEL MODEL AND LITERATURE REVIEW

We consider the dual hop amplify-and-forward relaying

schemes studied in [10], where the multipath propagation on

each of the two subchannels is described by a frequency-flat

Rice fading channel. Without loss of generality, we can set

the gain of the relay station to the value one since this has

no impact on the fading statistics. In this case, the end-to-

end fading process between the source and the destination

stations, for a transmission via a relay station, can be modeled

as a product of two independent but not necessarily identically

distributed single Rice processes according to [10]

η(t) = η1(t)η2(t) (1)

where ηi(t) (i = 1, 2) represents the single Rice fading process

described as

ηi(t) = |µi(t) +mi(t)|

= |µi1(t) + jµi2(t) +mi(t)|
(2)

in which µi(t) (i = 1, 2) denotes a zero-mean complex Gaus-

sian process with a variance σ2
i . Also, in (2), mi(t) represents

the line-of-sight (LOS) component described analytically as

mi(t) = ρie
j(2πfρi t+θρi ) (3)

where the parameters ρi, fρi
, and θρi

stand for the amplitude,

Doppler frequency, and phase, respectively. The main statis-

tical properties of the double Rice process η(t) have been

derived in [10]. The PDF of η(t) has been obtained in [10,

Eq. (12)] as

pη(z) =
z

σ2
1σ

2
2

∞
∫

0

1

y
e
−

(

y2+ρ22
2σ2

2

)

e
−

(

z2

2σ2
1y2 +

ρ21
2σ2

1

)

×I0

(

ρ2y

σ2
2

)

I0

(

ρ1z

yσ2
1

)

dy, z ≥ 0 (4)

where I0(.) denotes the zeroth order modified Bessel function

of the first kind [15]. Regarding the corresponding CDF, it has

been shown to be given by

Fη(z) = 1−
∞
∫

0

Q1

(

ρ1

σ1
,

z

σ1y

)

pη2(y)dy, z ≥ 0 (5)

where Q1 (·, ·) is the first order Marcum Q-function [15] and

pη2(y) stands for the PDF of the single Rice process η2(t)
given by [5]

pη2(y) =
y

σ2
2

e

(

−
y2+ρ22
2σ2

2

)

I0

(

ρ2y

σ2
2

)

. (6)

Here, it should be mentioned that (5) describes the outage

probability of radio links under double Rice fading channels.

The LCR of η(t), which describes how often the process η(t)

crosses a given level r from up to down (or from down to up),

has also been determined in [10] as

Nη(r) =
r

(2π)5/2σ2
1σ

2
2

∞
∫

0

√

β2
r2

y4
+ β1

× e
−

(

y2+ρ2
2

2σ2
2

)

e
−

(

r2

y22σ2
1
+

ρ21
2σ2

1

)

×
π
∫

−π

e
rρ1 cos θ1

σ2
1y

π
∫

−π

e
yρ2 cos θ2

σ2
2 e−

K2(r,y,θ1,θ2)
2

×
(

1 +

√

π

2
K (r, y, θ1, θ2) e

1
2K

2(r,y,θ1,θ2)

×
{

1 + Φ

(

K (r, y, θ1, θ2)

2

)})

dθ2dθ1dy (7)

where βi (i = 1, 2) stands for the negative curvature of the

autocorrelation function Γµijµij
(τ) (i, j = 1, 2) of the process

µij(t) at τ = 0, i.e., βi = −Γ̈µijµij
(0), where the double

dot denotes second time derivative. Also in (7), Φ(·) denotes

the error function [15, Eq. 8.250(1)] and K (·, ·, ·, ·) is defined

by [10]

K (r, y, θ1, θ2) =
2πρ1fρ1y

2 sin(θ1) + 2πρ2fρ2r sin(θ2)
√

β1y4 + β2r2
.

(8)

Based on these statistical properties, in this work, we study the

statistics of SC diversity in cooperative networks. Our focus

is on the relaying systems that consist of one source, one

destination, and L parallel relays, all equipped with single

antenna. The relays are assumed to operate according to the

time-division multiple-access (TDMA) AF protocols proposed

in [16], [17]. Each end-to-end sublink of the cooperative

diversity system follows the double Rice fading statistics.

Assuming that all the dual-hop links are subject to the same

mean noise power, the best relay can be chosen according to

the highest amplitude of the L double Rice fading processes.

In this case, the fading envelope available at the output of the

SC can be written as

η
SC

(t) = max
(

η(1)(t), ..., η(j)(t), ..., η(L)(t)
)

(9)

where η(j)(t) (j = 1, . . . , L) stands for the double Rice fading

process of the jth diversity branch. The first and second order

statistics of η
SC

(t) will be investigated in sections III and IV,

respectively.

III. FIRST ORDER STATISTICS OF SC DIVERSITY

A. CDF of the process η
SC

(t)

The CDF of the SC output can be obtained according to

Fη
SC

(z) = Pr [η
SC

(t) ≤ z] (10)

where Pr[·] denotes the probability operator. Using (9) in (10),

we can write

Fη
SC

(z) = Pr
[

η(1)(t) ≤ z, ..., η(j)(t) ≤ z, ..., η(L)(t) ≤ z
]

.

(11)
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Then, under the assumption that all the L sublinks of the

diversity system follow independent and identically distributed

(i.i.d.) fading processes, the CDF Fη
SC

(z) of the process

η
SC

(t) is obtained as

Fη
SC

(z) = (Fη(z))
L

(12)

where Fη(z) is the CDF of the double Rice process given in

(5). Substituting (5) in (12), we obviously get the following

expression for Fη
SC

(z)

Fη
SC

(z) =



1−
∞
∫

0

Q1

(

ρ1

σ1
,

z

yσ1

)

pη2(y)dy





L

. (13)

By letting L = 1, i.e., the non-diversity case, we obtain the

CDF of double Rice fading channels given in (5). For the

special case corresponding to Rayleigh×Rice fading channels,

i.e., ρ1 = 0, (13) can be written as

Fη
SC

(z) =



1−
∞
∫

0

e

(

− z2

2y2σ2
1

)

pη2(y)dy





L

. (14)

Setting, furthermore, ρ2 = 0 in (14), and using [15, Eq.

3.471(9)], provides us with the following closed-form expres-

sion for the CDF of SC diversity over double Rayleigh fading

channels

Fη
SC

(z) =

(

1− z

σ1σ2
K1

(

z

σ1σ2

))L

(15)

where K1(.) denotes the first order modified Bessel function

of the second kind [15]. Obviously, letting L = 1 in (15),

yields the CDF of the double Rayleigh fading process given

in [7, Eq. (4)]. We should add that the outage probability, with

respect to a given threshold level r, is obtained from the CDF

as Pout(r) = Fη
SC

(r).

B. PDF of the process η
SC

(t)

Given the CDF Fη
SC

(z) of the process η
SC

(t), the corre-

sponding PDF can be obtained according to

pη
SC

(z) =
d

dz

(

Fη
SC

(z)
)

= L · pη(z) · (Fη(z))
L−1 (16)

where pη(z) and Fη(z) are given by (4) and (5), respectively.

Again, it should be noted that for the non-diversity case,

i.e., L = 1, (16) simplifies to the PDF of double Rice

processes given in (4). For the special case of SC diversity

over Rayleigh×Rice channels, i.e., ρ1 = 0, the PDF in (16)

can be written as

pη
SC

(z) = L



1−
∞
∫

0

e

(

− z2

y22σ2
1

)

pη2(y)dy





L−1

×
∞
∫

0

z

(yσ1)
2 e

(

− z2

y22σ2
1

)

pη2(y)dy. (17)

Letting ρ2 = 0 in (17) and using [15, Eq. 3.471(9)], yields the

following closed-form expression for the PDF pη
SC

(z)

pη
SC

(z) =
Lz

σ2
1σ

2
2

K0

(

z

σ1σ2

)(

1− z

σ1σ2
K1

(

z

σ1σ2

))L−1

(18)

where K0(·) is the zeroth order modified Bessel function of

the second kind [15]. Clearly, (18) stands for the PDF of the

SC output in the case where the L diversity sublinks follow

double Rayleigh fading statistics. Finally, for L = 1, (18)

reduces to the PDF of double Rayleigh processes.

C. Approximate solution to the PDF of η
SC

(t)

As is known, the PDF of fading processes is an important

statistics that is usually needed for establishing the perfor-

mance analysis of wireless communications. The PDF in (4)

is, however, not analytically tractable for further insights on

channel statistical characterization and radio links performance

investigation. The limitation lies in the fact that (4) is ex-

pressed in terms of a semi-infinite integral. Here, we propose

to alleviate this limitation by providing an approximate solu-

tion to the underlying integral based on the use of the Laplace’s

method of integration [18]. This method can, in essence, be

summarized by the following result

∞
∫

0

g(y)e−λf(y)dy ≈
√

2π

λ

g(y0)
√

f
′′(y0)

e−λf(y0) (19)

where λ is a positive parameter that can be large or small [18],

f(y) and g(y) represent two real-valued functions which are

assumed to be infinitely differentiable, and the parameter y0
denotes the critical point of the function f(y). Also in (19),

f
′′

(y) denotes the second derivative of the function f(y) with

respect to the variable y. Then, it can easily be seen that the

semi-infinite integral in (4) is in the form of the Laplace’s

integral for which the various involved quantities in (19) are

identified for our case as



























f(y) =
y2+ρ2

2

2σ2
2

+ z2

2σ2
1y

2 +
ρ2
1

2σ2
1

g(y) = z
σ2
1σ

2
2y
I0

(

ρ2y
σ2
1

)

I0

(

ρ1z
σ2
2y

)

f ′′(y) = 1
σ2
2
+ 3z2

σ2
1y

4

y0 =
√

zσ2

σ1
.

(20)

Substituting in (19) the appropriate quantities given in (20),

the PDF pη(z) of the double Rice process η(t) can be

approximated by

pη(z) ≈
√

πz

2 (σ1σ2)
3 · I0

(

ρ2

√

z

σ1σ
3
2

)

× I0

(

ρ1

√

z

σ2σ
3
1

)

e
−

(

z
σ1σ2

+
ρ22
2σ2

2
+

ρ21
2σ2

1

)

. (21)
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An approximate solution for the PDF pη
SC

(z) can now be

obtained by just replacing (21) in (16). This gives

pη
SC

(z) ≈ L

√

πz

2 (σ1σ2)
3 · I0

(

ρ2

√

z

σ1σ
3
2

)

× I0

(

ρ1

√

z

σ2σ
3
1

)

e
−

(

z
σ1σ2

+
ρ22
2σ2

2
+

ρ21
2σ2

1

)

× (Fη(z))
L−1

. (22)

Letting ρ1 = 0 in (22), i.e., Rayleigh×Rice fading model, pro-

vides us with the following approximate solution for pη
SC

(z)

pη
SC

(z) ≈ L

√

πz

2 (σ1σ2)
3 · I0

(

ρ2

√

z

σ1σ
3
2

)

× e
−

(

z
σ1σ2

+
ρ22
2σ2

2

)

×



1−
∞
∫

0

e

(

− z2

2y2σ2
1

)

pη2(y)dy





L−1

. (23)

Similarly, by considering the special case given by ρ1 = ρ2 =
0, and using [15, Eq. 3.471(9)], it can be shown that (22)

reduces to

pη
SC

(z) ≈ L

√

πz

2 (σ1σ2)
3 e

− z
σ1σ2

×
(

1− z

σ1σ2
K1

(

z

σ1σ2

))L−1

. (24)

which corresponds to the approximate PDF of SC fading

processes in double Rayleigh channels.

IV. SECOND ORDER STATISTICS OF SC DIVERSITY

This section is devoted to the derivation of the main second

order statistics of η
SC

(t) in the form of the LCR and ADF.

In this case of fading processes, the occurrence of a down

crossing of a given level r by the process η
SC

(t) is attributed

to the situation where one of the L fading processes η(i)(t),
(i = 1, 2, ..., L), goes downward through the level r while the

others processes take values below r. For this situation, the

following result, reported in [19, Eq. (12)], can directly be

applied to get the LCR of the SC output fading process

Nη
SC

(z) =
L
∑

l=1

Nη(l)(z)
L
∏

k=1
k 6=l

Fη(k)(z) (25)

where Nη(l)(r) (l = 1, . . . , L) represents the LCR of the l th

SC diversity branch available in (7), while Fη(k)(r) (k =
1 . . . , L) is the CDF of the k th branch given in (5). Since

we are studying the case where the fading processes of the

diversity system are i.i.d., (25) reduces to

Nη
SC

(r) = L ·Nη(r) · (Fη(r))
L−1. (26)

The application of (26) results in the following expression for

the LCR Nη
SC

(r) of the process η
SC

(t)

Nη
SC

(r) =
Lr

(2π)5/2σ2
1σ

2
2

∞
∫

0

√

β2
r2

y4
+ β1

× e
−

(

y2+ρ2
2

2σ2
2

)

e
−

(

r2

2σ2
1y2 +

ρ21
2σ2

1

)

×
π
∫

−π

e
rρ1 cos θ1

σ2
1y

π
∫

−π

e
yρ2 cos θ2

σ2
2 e−

K2(r,y,θ1,θ2)
2

×
(

1 +

√

π

2
K (r, y, θ1, θ2) e

1
2K

2(r,y,θ1,θ2)

×
{

1 + Φ

(

K (r, y, θ1, θ2)

2

)})

dθ2dθ1

×



1−
∞
∫

0

Q1

(

ρ1

σ1
,

r

yσ1

)

pη2(y)dy





L−1

dy.

(27)

Unfortunately, the above expression involves several integrals

that can be evaluated only by using numerical techniques.

However, for the case where the Doppler frequencies of the

LOS components are equal to zero, i.e., fρ1 = fρ2 = 0, (27)

simplifies considerably to yield

Nη
SC

(r) =
Lr√

2πσ2
1σ

2
2

∞
∫

0

√

β2
r2

y4
+ β1

× e
−

(

r2

2σ2
1y2 +

ρ21
2σ2

1

)

e
−

(

y2+ρ22
2σ2

2

)

I0

(

rρ1

σ2
1y

)

I0

(

yρ2

σ2
2

)

×



1−
∞
∫

0

Q1

(

ρ1

σ1
,

r

yσ1

)

pη2(y)dy





L−1

dy.

(28)

Regarding the special case of Rayleigh×Rice fading channels,

i.e., the case where ρ1 = 0, the finite range integral with

respect to the variable θ1 in (27) can be evaluated and the

result becomes

Nη
SC

(r) =
Lr

(2π)
3/2

σ2
1σ

2
2

∫ ∞

0

√

β2
r2

y4
+ β1

× e
−

(

y2+ρ22
2σ2

2

)

e
− r2

2σ2
1y2

×
π
∫

−π

e
yρ2 cos θ2

σ2
2 e−

F2(r,y,θ2)
2

×
(

1 +

√

π

2
F (r, y, θ2) e

F2(r,y,θ2)
2

×
{

1 + Φ

(

F (r, y, θ2)

2

)})

dθ2

×







1−
∞
∫

0

e

(

− r2

y22σ2
1

)

pη2(y)dy







L−1

dy (29)
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where the function F (·, ·, ·) is given by

F (r, y, θ2) =
2πρ2fρ2r sin (θ2)
√

β1y4 + β2r2
. (30)

Also, for the special case corresponding to fρ2 = 0, (29)

reduces to the following expression

Nη
SC

(r) =
Lr√

2πσ2
1σ

2
2

∞
∫

0

√

β2
r2

y4
+ β1

× e
−

y2+ρ22
2σ2

2 e
−

(

r2

2σ2
1y2

)

I0

(

yρ2

σ2
2

)

×







1−
∞
∫

0

e

(

− r2

y22σ2
1

)

pη2
(y)dy







L−1

dy. (31)

By letting ρ1 = ρ2 = 0 in (27), a closed-form expression for

the LCR of SC diversity over double Rayleigh fading channels

can be determined as

Nη
SC

(r) =
Lr√

2πσ2
1σ

2
2

(

1− r

σ1σ2
K1

(

r

σ1σ2

))L−1

×
∫ ∞

0

√

β2
r2

y4
+ β1e

−

(

y2

2σ2
2
+ r2

2σ2
1y2

)

dy. (32)

Furthermore, setting L = 1 in (32), i.e., the non-diversity case,

we obtain the LCR of double Rayleigh fading channels given

in [20, Eq. (17)]. Here, it can be noted that the semi-infinite

range integral in (32) has the form of the Laplace type integral

in one dimension as described in (19). Then, the application

of the Laplace’s method of integration [18] on (32) allows

us to get the following approximate expression for the LCR

Nη
SC

(r)

Nη
SC

(r) ≈ Lr

2 (σ1σ
2
2)
e
−
(

r
σ2σ1

)

(
√

β2
σ2
1

σ2
2

+ β1

)

×
(

1− r

σ1σ2
K1

(

r

σ1σ2

))L−1

. (33)

For the case where L = 1, (33) coincides with the already

known result given in [8, Eq. (33)]. For completeness, it should

be mentioned that the ADF of SC diversity over double Rice

fading channels can easily be determined according to [21]

Tη
SC

(r) =
Fη

SC
(r)

Nη
SC

(r)

=
Fη (z)

LNη (z)
. (34)

That is, using (5) and (7), the underlying ADF Tη
SC

(r) can

easily be evaluated from (34).

V. NUMERICAL AND SIMULATION RESULTS

To confirm the validity and correctness of the investigated

theoretical quantities, we compare them with corresponding

simulation results. The generation of the envelope process
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Fig. 1. The CDF of SC diversity over double Rice fading channels for different
values of the number of branches L.
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Fig. 2. The PDF of SC diversity over double Rice fading channels for L = 4

and various values of ρ1 and ρ2.

η
SC

(t) is obtained by using the concept of Rice’s sum-of-

sinusoids [21]. The method of exact Doppler spread [22]

is employed in the determination of the parameters of the

sinusoids. We also use Clarke’s isotropic scattering model [23]

for which βi = 2 (σiπfmaxi
)
2

(i = 1, 2), where fmaxi
denotes

the maximum Doppler frequency. Here, it should be mentioned

that fmaxi
depends on the motion of the source, relay, and

destination stations. All the results to be shown are obtained

for the variances σ2
1 = σ2

2 = 1, the Doppler frequencies

fmax1 = fmax2 = 80 Hz, and the scenario corresponding

to motionless relay stations. Also, for simplicity, the Doppler

frequencies as well as the phases of the LOS components are

set to zero, i.e., fρi
= 0, and θρi

= 0 (i = 1, 2).

Fig. 1 illustrates the behavior of the theoretical and simu-

lated CDF of SC diversity over double Rice fading channels

for L = 1, 2, 4, 6, and 8. A good fit between the theoretical

and simulation results can be observed. For a fixed level z,

an increase in the number of diversity branches L results

in a decrease of the outage probability performance as one
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Fig. 3. A comparison between the analytical, approximate, and simulated
PDFs of double Rice fading channels for different values of ρ1 and ρ2.
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Fig. 4. The LCR of SC diversity over double Rice fading channels for different
values of the number of branches L.
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Fig. 5. The LCR of SC diversity over double Rayleigh fading channels for
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Fig. 6. The ADF of SC diversity over double Rice fading channels for
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would expect. In Fig. 2, the exact and approximate theoretical

PDFs of SC diversity over double Rice (ρ1 = ρ2 = 1),

Rayleigh×Rice (ρ1 = 0, ρ2 = 1), and double Rayleigh

(ρ1 = ρ2 = 0) channels are shown together with corre-

sponding simulation data for L = 4. A perfect agreement

can be observed between the exact analytical curves and

the simulation results. The close correspondence between the

approximation and the exact theoretical results reveals the

validity of (22) as a simplified approximation for (16). Fig. 3

depicts the results of the PDF of fading processes in the non-

diversity case for double Rice (ρ1 = ρ2 = 1), Rayleigh×Rice

(ρ1 = 0, ρ2 = 1), and double Rayleigh (ρ1 = ρ2 = 0) models.

Apart from the double Rayleigh channel, the approximate

solution is seen to be in a reasonable agreement with the exact

analytical and simulation results. Fig. 4 illustrates the impact

of the number of diversity branches L on the behavior of the

LCR of SC diversity over double Rice fading model. Again,

a good correspondence between the analytical and simulated

curves can be observed in this figure. The accuracy of the

approximate solution for the LCR of double Rayleigh channels

is illustrated in Fig. 5. From this figure, it can be observed that

as the number of branches L increases, the approximate result

tends to agree perfectly with the exact analytical solution.

Indeed, from L = 4, we obtain a reasonable correspondence

between the exact and approximate analytical results. Finally,

the behavior of the ADF of SC diversity over double Rice

fading channels, for various values of the number of branches

L, is illustrated in Fig. 6.

VI. CONCLUSION

In this paper, the first and second order statistics of SC

cooperative diversity over double Rice fading channels have

been investigated. Analytical integral expressions for the CDF

and PDF of the fading process, available at the SC output,

have first been derived. Corresponding approximate solution

has then been obtained for the PDF by using the Laplace’s

method of integration. Theoretical expressions for the LCR
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and ADF have subsequently been determined in the form

of semi-infinite integral equations. For the case of double

Rayleigh channels, the Laplace’s approach of integration has

as well been applied and a closed-form approximate solution

for the LCR has been provided. Corresponding statistical

quantities have been deduced for Rayleigh×Rice and double

Rayleigh models as special cases of the double Rice fading

channel. The correctness of the exact analytical quantities and

the accuracy of the approximations have been checked using

computer simulations.
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