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Abstract—In this paper, we consider a sequential binary
hypothesis testing framework in wireless sensor networks. We
study the effect of sensor censoring on network performance
in terms of the average error probability and average number
of observations required until a global decision is made. The
detection process is mathematically modeled as a random walk
process with two absorbing barriers. We resort to Chernoff
bound in order to find upper bounds on the error probabilities
and the average stopping time. The main contribution of this
paper is to prove that in a sequential binary hypothesis network
where sensors send their hard decisions to the fusion center,
censoring can enhance the network performance in comparison
to non-censoring networks in certain SNR regimes. Numerical
evaluation is provided to illustrate the gains achieved through
censoring.

I. INTRODUCTION

Wireless sensor networks (WSNs) are vastly deployed
nowadays in various applications, many of which require the
monitoring and the detection of a certain phenomenon. Based
on local observations made by the sensors, each sensor reports
to a centralized Fusion Center (FC) which is responsible for
making a global decision regarding the presence or absence
of this phenomenon. This readily maps to the problem of
distributed detection [1]. Recently, much research has been
directed toward distributed detection in WSNs.

In this paper, we revisit the concept of sensor “censoring”
in distributed detection from a different yet rather interesting
point of view. In specific, we consider sensor censoring as
a means to enhance system performance, in addition to the
energy savings that are well characterized in literature. Rago
et. al. [2] first envisioned censoring as a means to save
transmission energy by imposing transmission constraints on
the sensor nodes. Results proved asymptotically [2] and later
generally [3] that the optimal censoring region - in terms of
minimum error probability - is confined to a single interval of
the Log-Likelihood Ratio (LLR) of the local decisions, with
the lower threshold equal to zero. System degradation in terms
of error probability was demonstrated for different censoring
regions, which shows the energy-performance tradeoff inher-
ent to censoring systems. Intensive research has been therefore
directed toward employing censoring in distributed detection
WSNs, and we mention for brevity [4]–[8].

However, one key observation about most publications con-
sidering censoring in distributed detection is the assumption
of local soft-decisions: sensors send their locally computed
LLR values to the FC. Conversely, a hard-decision framework

would mandate sensors to apply one-bit quantization to the
locally computed LLRs prior to transmission, and therefore
only local decisions are sent to the FC for global deci-
sion making. Hard-decision-based detection framework was
considered in [8], [9] to characterize the achieved energy
savings via employing censoring. However, it was proven
in [10], [11] that censoring can also be employed in hard-
decision frameworks to enhance system performance in terms
of error probability of global decision. Sensors are assumed
to adopt a parallel topology, with a Time-Division-Multiple-
Access TDMA scheme [10] or a Type-Based-Multiple-Access
TBMA scheme [11] when communicating with the FC. In this
context, our main contrariness with [10], [11] is considering
a sequential distributed detection framework.

Sequential distributed detection was considered in previous
works in the literature, for example in [1], [12], [13]. A FC
polls the sensors in a sequential manner for their local observa-
tions, and the process continues until a global decision can be
made by the FC. This framework differs substantially from the
conventional hypothesis testing framework [6] in that sensors
are polled for their local decisions only if the FC requests
so in order to achieve an acceptable level of reliability in the
decision. Inherently, sequential detection systems are proven
to be superior to conventional detection systems in terms
of energy consumption. By allowing sensor nodes to censor
transmissions in a certain uninformative region, it is natural
to witness an increment in the average delay incurred until a
global decision is made. In this work, we employ censoring
in sequential distributed detection framework as a means to
enhance the performance of such systems. Performance in this
context is characterized by the error probability in the global
decision and the average incurred delay.

Our main contributions can therefore be summarized as
follows: 1) We consider a sequential detection framework
based on hard decisions, in which local decisions made by
the sensors are polled by the FC until a global decision is
made. We show that censoring can be used to enhance system
performance in terms of error probability and average delay.
2) We provide analytical upper bounds on the average error
probability in global decisions and the average number of
observations required to obtain one.

The paper is organized as follows: in Section II we describe
the system and data models used in our analysis. Section III
provides the mathematical analysis of the underlying random
process of both the conventional and censoring-enabled sys-

978-3-901882-63-0/2014 - Copyright is with IFIP

The 10th International Workshop on Wireless Network Measurements and Experimentation (WiNMeE 2014)

92



Hypothesis
(H0, H1)

Node 
1

Node 
2

Node 
3

Node 
N

x1 x2 x3 xN

Wireless Channel

Fusion Center (FC)

u1 u2 u3 uN

Fig. 1. System model

tems. Based on the obtained results, we provide upper bounds
on the performance of these systems in Section IV. In Section
V we highlight the main results deduced from the upcoming
analysis via numerical evaluation, and we conclude the paper
in Section VI.

II. SYSTEM MODEL

We assume the presence of a sensor network that consists
of an infinitely large number of identical sensors. The purpose
of the network is to detect the presence or absence of a certain
phenomenon. This maps to the classical binary hypothesis
testing problem of detecting H1 or H0 respectively. A visual
depiction of such a network is shown in Fig. 1. Each sensor
makes a local decision regarding the current hypothesis based
on its local observation xn, n = 0, 1, 2, . . . which is assumed
to follow the following data model1

H0 : xn∼N
(
0, σ2

0

)
H1 : xn∼N

(
0, σ2

1

)
.

(1)

A. Local Decisions

Each sensor employs a log likelihood ratio test to make a
local decision. The LLR of the jth sensor is given by

lj(xj) = log

(
Pr1(xj)

Pr0(xj)

)
, (2)

where Pri is the conditional probability under hypothesis Hi.
Based on the computed LLR, each sensor makes a local
decision uj regarding the current hypothesis. In the upcoming
analysis, we consider two distinct cases for comparison:

1The analysis presented in the paper can be readily extended to other data
models.
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Fig. 2. Binary Symmetric Channel (BSC)

a) Conventional system: A sensor compares lj(xj) to a
certain threshold τ , and makes a local decision in favor of H1

and transmits the signal uj = 1 if lj > τ , or in favor of H0 and
transmits uj = −1 if lj ≤ τ . Given the assumed data model,
the local decision probabilities given hypothesis Hi, i = 0, 1
are given by

Prci (uj = 1) = 2Q

(√
η

σi

)
Prci (uj = −1) = 1− 2Q

(√
η

σi

) (3)

where Prci is the conditional probability under hypothesis Hi

in the conventional case, and

η = 2

(
τ − log

(
σ0
σ1

))
/

(
1

σ2
0

− 1

σ2
1

)
.

b) Censoring-enabled system: A sensor compares lj(xj)
to two different thresholds, namely τ1 and τ0, where τ1 ≥ τ0.
In this case, the local decisions made by the sensor can be
elaborated as follows

uj =

 1 (lj > τ1)
0 No reliable decision can be made (τ0 < lj ≤ τ1)
−1 (lj ≤ τ0)

(4)
In this case, given Hi, i = 0, 1, the local decision probabilities
are given by

Prceni (uj = 1) = 2Q

(√
η1

σi

)
Prceni (uj = −1) = 1− 2Q

(√
η0

σi

) (5)

where Prceni is the conditional probability under hypothesis
Hi in the censoring case, and

η1 =
2

( 1
σ2
0
− 1

σ2
1
)

(
τ1 − log

(
σ0
σ1

))
η0 =

2

( 1
σ2
0
− 1

σ2
1
)

(
τ0 − log

(
σ0
σ1

))
.

B. Global Decision

The FC sequentially collects the local decisions made by
the sensors in order to arrive at a global decision regarding
the current hypothesis. System operation can be described
as follows. The FC polls a sensor for its local decision,
which may be received incorrectly due to wireless channel
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Fig. 3. Ternary Channel

impairment. Based on the received local decisions, the FC
decides in favor of either H1 or H0 if the decision made
is reliable enough (enough observations are collected from
sensor nodes), or else decides to poll another sensor for its
local decision. The process continues until a reliable decision
is made by the FC. Accordingly, the decision variable for the
FC can be quantitatively expressed as

ZJ =

J∑
j=1

ûj (6)

where J is the total number of polled sensors until a reliable
decision is made by the FC, and ûj is the received version of
the local decision of the jth node that is not necessarily equal
to uj. The FC makes a global decision u0 regarding the current
hypothesis based on the received decisions. We can state the
decision process of the FC as follows:

u0 =

 Decide in favor of H1 ZJ ≥ α
Decide in favor of H0 ZJ ≤ −β
Request more decisions −β < ZJ < α

(7)

where α and −β are predetermined thresholds chosen to
satisfy a certain required level of reliability in the global deci-
sions. It is worthy to note here that increasing the magnitude
of α and β eventually leads to more reliable global decisions
at the expense of longer decision times required to poll a
sufficient number of sensors to make such decisions.

C. Wireless Channel

a) Conventional case: For the conventional case, we
model the wireless channel between a sensor and the FC as a
binary symmetric channel (BSC) as shown in Fig. 2, in which
the transmitted binary signal representing the transmitted local
decision may be flipped with a probability p < 0.5 (i.e.,
Pr (ûj 6= uj) = p < 0.5). Assuming that the transmitting sen-
sor node employs BPSK modulation with unity-transmitting
power, and for an AWGN channel2, then we can express the

2BSC model can be also used for modeling fading channels and the
crossover probability will depend on the fading channel model. However,
the authors did not see that such a complication in the modeling of the BSC
would significantly contribute to the exposition of the main idea of censoring
as a performance enhancer.

-1 1

γ−γ

Decide 0

Decide 1Decide -1

Fig. 4. Detection process at the FC for the ternary channel

transition probability as p = Q
(
σ−1N

)
, where σ2

N is the noise
variance.

b) Censoring case: For the censoring-enabled systems,
we consider two distinct cases: in the first, we assume that by
the aid of a “genie”, the FC is able to know if the polled sensor
decides to refrain from sending a decision (i.e., uj = 0). If the
sensor, however, makes a local decision regarding the current
hypothesis, the transmitted signal goes through a BSC similar
to the one described previously. We label this scenario as the
FC-aware system, which - despite being unrealistic - gives an
upper bound of the performance of censoring-enabled systems.
In the second, which we label the FC-unaware system, we
assume a more realistic model in which local decisions that
are sent to the FC go through a ternary channel as shown
in Fig. 3. We assume that the local decision sent by the jth
sensor goes through ternay channel where the transition prob-
abilities are p00 = Pr (û = 1|u = 0) = Pr (û = −1|u = 0),
p00 = Pr (û = 0|u = −1) = Pr (û = 0|u = 1) and p00 =
Pr (û = 1|u = −1) = Pr (û = −1|u = 1). We adopt the same
transmission scheme and AWGN wireless link between the
sensors and the FC. For this case, however, the FC has to
detect one of three possible cases, namely transmitting a 1,
transmitting a -1 or censoring transmission. The detection
process can be done via comparing to two different thresholds,
γ and −γ. The detection process is illustrated in Fig. 4.
Accordingly, the transition probabilities can be written as
follows

p00 = Q

(
γ

σN

)
, p00 = Q

(
1− γ
σN

)
−Q

(
1 + γ

σN

)
p00 = Q

(
1 + γ

σN

) (8)

In the next sections, we analyze the described systems in
terms of average error probabilities and the average incurred
delay (i.e., the average number of observations needed until
a decision is made at the FC), and we characterize the effect
of enabling censoring on the overall system performance in
terms of these metrics.

III. RANDOM WALKS

In this section, we provide the mathematical basis for
the upcoming performance analysis of the aforementioned
detection systems.

A. Average Error Probability

In this section, we characterize the average error probability
of the global decision. By examining (6), it is clear that the
stochastic process {Zn, n > 1} is a one-dimensional simple
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random walk with two absorbing barriers based on ûj, j =
1, ..., n [14]. Each of the variables ûj, j = 1, ..., n changes the
summation Zn by either +1 or -1, and the process continues
until one of two thresholds is crossed, either Zn ≥ α or Zn ≤
−β, in which case a global decision is made in favor of H1 or
H0 respectively. An error occurs if given H1, Zn crosses α,
or given H0, Zn crosses −β. For arbitrary n ≥ α, Chernoff
bound can be used to find an exponentially-tight bound on
the probability of the summation Zn crossing a threshold α

[14]. Let p(i)1 = Pri(ûj = 1) and p(i)−1 = Pri(ûj = −1). Given
hypothesis H0, and assuming that E0 (ûj) < 03, this bound is
given by

Pr0 (Zn ≥ α) ≤ exp

[
α

(
γ(r0)

γ̀(r0)
− r0

)]
≤ exp (−r?α) (9)

where γ̀(r0) = α/n, γ(r) = ln gÛ(r), gÛ(r) = E
(
e(rÛ)

)
is

the Moment Generating Function of the random variable Û,
and r? is the solution to the equation γ(r) = 0. Chernoff
bound then gives an upper bound on the error probability
conditioned on H0 by considering the probabilities p(i)1 and
p
(i)
−1 for each of the prescribed systems. To find an upper

bound on the errror probability conditioned on H1, we observe
the simple random walk { −Zn,n > 1 }, assuming that
E1 (ûj) > 0. In this case, applying the Chernoff bound yields

Pr1 (Zn ≤ β) ≤ exp

[
−β
(
γ(r0)

γ̀(r0)
− r0

)]
≤ exp (−r?β)

(10)

B. Average Stopping Time

In this section, we characterize the average number of local
decisions required for a reliable global decision. Considering
the simple random walk represented by {Zn, n > 1}, we aim
at obtaining upper bounds on the conditional average stopping
time of its stopping trial J.

Let J be the value of n in (9) at which a threshold is first
crossed. Then by virtue of the following lemma, J is a stopping
trial for Zn.

Lemma III.1. Let {Xi; i ≥ 1} be IID rvs, not identically 0.
For each n ≥ 1, let Sn = X1 + . . . + Xn. Let α > 0 and
β > 0 be arbitrary, and let J be the smallest n for which
either Sn ≥ α or Sn ≤ −β. Then J is a random variable
(i.e., limm→∞ Pr (J ≥ m) = 0) and has finite moments of all
orders.

Proof: Refer to [14].
Wald’s equality [15] relates the average stopping time E (J)

of the random walk in (6) to the expected values of the random
variables ûj and their summation as follows

Ei (ZJ) = Ei (J)Ei (û) (11)

where Ei denotes conditional expectation under Hi, and the
subscript of ûj in Ei (û) has been dropped due to the fact

3To ensure the validity of the condition, the values of the used local
thresholds (η or η0, η1) must satisfy p(i)1 < p

(i)
−1}

that given Hi, i = 0, 1, ûj, j = 1, . . . , J are IID. Given H0,
a stopping trial ends with a correct decision if ZJ = −β,
or with an erroneous decision if ZJ = α (here, we neglect
the overshoots in ZJ assuming integer values for α and β).
Therefore, we can write the conditional expected value of ZJ

as

E0 (ZJ) = αPr0 (Zn ≥ α) + (−β) [1− Pr0 (Zn ≥ α)]

= −β + (α+ β) Pr0 (Zn ≥ α)
(12)

and conversely we can write the expected value of ZJ condi-
tioned on H1 as

E1 (ZJ) = (−β)Pr1 (Zn ≤ −β) + α [1− Pr1 (Zn ≤ −β)]

= α− (α+ β) Pr1 (Zn ≤ −β) .
(13)

Considering the probabilities p(i)1 and p(i)−1 for each of the de-
tection systems, we can find an upper bound on the conditional
expected number of observations Ei (J).

IV. PERFORMANCE ANALYSIS

In this section, we develop closed form expressions that
characterize the performance of the prescribed systems in
terms of the error probability of the global decision and the
expected incurred delay (expected number of observations
until a global decision is made).

A. Conventional System

We consider the conventional system model of a sequential
detection network, in which a sensor sends its local decision
when polled by the FC. In this case, the values of p(i)1 and
p
(i)
−1 become

p
(i)
1 = 2Q

(√
η

σi

)
(1− p) +

(
1− 2Q

(√
η

σi

))
p, (14)

p
(i)
−1 = 1− p(i)1 . (15)

Applying Chernoff bound (see Appendix A) then yields an
upper bound on the error probability conditioned on H0 and
H1 as

PE/H0
≤
(

1− p(0)u

p
(0)
u

)−α
, PE/H1

≤
(

p
(1)
u

1− p(1)u

)−β
(16)

The average number of observations needed for a global
decision conditioned on respectively H0 and H1 can be given
by

E0 (J) ≤
−β + (α+ β)

(
1−p(0)u

p
(0)
u

)−α
2p

(0)
u − 1

,

E1 (J) ≤
α− (α+ β)

(
p(1)u

1−p(1)u

)−β
2p

(1)
u − 1

(17)
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Fig. 5. Bound on the error probability for all systems

B. FC-aware
We first study the FC-aware case, in which the FC knows

beforehand if the polled sensor censors transmission, and we
characterize the error probability and the average stopping time
in this case. Note that the FC-aware system gives a benchmark
performance of censoring-enabled systems in general in terms
of average stopping time. We assume that the FC is able
to determine if a sensor decides locally to refrain from
sending. Based on that assumption, we can adopt the same
BSC between the nodes and the FC. By finding the values
of p(i)1 and p

(i)
−1, we can derive the upper bounds for the

conditional average error probabilities and the average number
of observations, which are found to be equal to of the same
functional form of (16) and (17) respectively, but with values
of p(i)1 and p(i)−1 obtained for this case.

C. FC-unaware
We now consider the more realistic model where the

local decisions are transmitted through a ternary channel
as discussed in Section II. Similar analysis to the previous
subsection can be applied based on the values of p(i)1 and
p
(i)
−1 in this case. The upper bounds of the conditional error

probabilities and the average number of observations are found
to be equal to (18) and (20) respectively (see Appendix B)

PE/H0
≤
(
p
(0)
−1

p
(0)
1

)−α
, PE/H1

≤
(
p
(1)
1

p
(1)
−1

)−β
(18)

E0 (ZJ) ≤ −β + (α+ β)

(
p
(0)
−1

p
(0)
1

)−α

E1 (ZJ) ≤ α− (α+ β)

(
p
(1)
1

p
(1)
−1

)−β (19)

E0 (J) ≤ E0 (ZJ)

p
(0)
1 − p

(0)
−1

, E1 (J) ≤ E1 (ZJ)

p
(1)
1 − p

(1)
−1

(20)
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Fig. 6. Bound on the expected number of observations for both systems

V. NUMERICAL EVALUATION

In this section, we numerically evaluate the performance
of both the conventional and the censoring-enabled systems4.
We assume that a certain level of confidence in the global
decision is to be maintained, which effectively translates to
α = β = 10 for all three systems. We assume that σ1 = 1
and σ0 = 0.25, and γ = 0.5. System performance is measured
against the SNR at the FC sensing channel, defined as SNR =
log
(
P/σ2

N

)
where P is the average received power by the FC

from a local sensor and is set to P = 1.
Figures 5 and 6 show the error probability and the average

stopping time for the conventional and both the censoring
cases. Fig. 6 clearly indicates that the conventional system
gives superior performance in terms of average delay than
FC-unaware censoring systems, while FC-aware system out-
performs them both. On the other hand, for the average error
probability, Fig. 5 gives a different view of the three systems.
It is clear that FC-aware system also outperforms both the
conventional and FC-unaware systems for all values of SNR.
However, neither the conventional nor the FC-unaware system
dominates the other for all SNR regions. In specific, for the
low SNR regime, the conventional system outperforms the
FC-unaware system, while the latter provides higher rate of
improvement than the former when increasing SNR. In fact,
the FC-unaware system achieves the optimal performance
of the FC-aware system in the high SNR regime, while
maintaining a better performance level than the conventional
system in the mid SNR regime.

Combining the observations made from both Fig. 5 and Fig.
6, we come to the following conclusions regarding conven-
tional and censoring systems:

• FC-aware system performance is superior to conventional
system in terms of both error probability and average
delay.

4Numerical simulations were not provided since we derive upper bounds for
the probability of rare events, which renders numerical simulations infeasible.
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• FC-unaware system performance is inferior to the con-
ventional system in terms of average delay.

• In terms of error probability, conventional system outper-
forms the FC-unaware system in the low SNR regime,
and vise versa in the mid and high SNR regimes.

While it is unquestionable that in terms of error probability and
average delay, censoring should not be employed in the low
SNR regime, it is unclear whether one should employ censor-
ing in the mid and high SNR regimes given the contradicting
influences on both performance metrics.

To provide a justifiable answer to the latter question, we
consider a set of two modified scenarios for comparison.

1) In the first, we deliberately modify α and β for the
FC-unaware system to give a matching performance
- in terms of error probability - to the conventional
case with fixed α = β = 10 as in the previous case.
For this scenario, we then compare the average delay
incurred in both systems as shown in Fig. 7. It is
clear that for a fixed error probability, FC-aware system
provides better performance in the high SNR region
(nearly greater than SNR = 5), which indicates the
region where censoring should be employed for better
system performance. Needless to say, the SNR value
which marks the beginning of the high SNR regime is a
function of the values of α and β pertained to a required
level of performance.

2) In the second, we modify α and β for the conventional
system to give a matching performance - in terms of
average delay - to the FC-unaware case with fixed α =
β = 10. For this scenario, we then compare the error
probability in both systems as shown in Fig. 8. It is
shown that censoring provides better performance in the
high SNR regime, which conforms with the observation
from the previous scenario.
Finally, it is worth mentioning that a typical WSN
does not exhibit the same channel characteristics for a
prolonged time period. Conversely, the received SNR
perceived by the FC may vary over the channel coher-
ence time. It is therefore expected for a WSN to alternate
randomly between high, mid and low SNR regimes.
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Fig. 8. Error probability for the conventional system and the FC-unaware
system with equal average stopping time

In this case, a FC should undergo a periodic channel
estimation phase to determine the region in which the
system is likely to operate, and accordingly decide the
mode of operation: to employ censoring or not. The FC
then informs sensor nodes with the mode of operation
via low-cost control packets, or piggybacked on existing
control packets that are used for network calibration and
synchronization.

VI. CONCLUSION

We considered sequential distributed detection in WSNs
where the FC collects the local decisions from the sensor
nodes in a sequential manner. A comparison was held between
the conventional system and two censoring-enabled systems,
namely the FC-aware and the FC-unaware systems. Based on
the theory of Random Walks, an analytical characterization of
the performance for the three systems was made in terms of
the error probability of the global decision made by the FC,
and the average number of observations needed until such a
decision is reached. Numerical examples were also provided
to highlight the key observation that in the low SNR regimes,
it is better in terms of the error probability and the average
stopping time to employ conventional detection, while it is
optimal in the high SNR regimes to employ the FC-unaware
censoring scheme.

APPENDIX

A. Upper bound on error proability in the conventional case

We aim at obtaining a closed-form expression for r?, which
is the solution for the equation γ (r) = 0 in (9).

Proof: Since γ (r) = ln gÛ (r), then γ (r) = 0 translates
to gÛ (r) = 1. gÛ (r) can be written as

gÛ (r) = p(0)u er +
(

1− p(0)u

)
e−r.

It is clear that gÛ (r) = 1 is a quadratic equation in er

which when solved yields the two solutions er
?

= 1 and
er

?

=
(

1−p(0)u

p
(0)
u

)
, the former of which is trivial and thus
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neglected. Taking the natural logarithm of er
?

therefore gives
r? = ln

(
1−p(0)u

p
(0)
u

)
.

B. Upper bound on error probability in the unaware censoring
case

We aim at finding an upper bound on the error probability
for the FC-unaware censoring case given H0 and H1, as
expressed in (18).

Proof: According to Chernoff bound as stated in (9), the
upper bound on the error probability given H0 is a function
of r? which is the solution to γ (r) = 0. Similar to Appendix
A, we find r? by equivalently solving the quadratic equation
gÛ (r) = 1 in er. In the FC-unaware case, gÛ (r) is expressed
as

gÛ (r) = p
(0)
1 er + p

(0)
−1e
−r +

(
1− p(0)1 − p

(0)
−1

)
.

Solving gÛ (r) = 1 yields the solution r? = ln

(
p
(0)
−1

p
(0)
1

)
. By

plugging this value into (9), we obtain the first bound in (18).
Following a similar straightforward analysis, we can obtain
the second bound in (18).
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