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Abstract—Accuracy in range-based localization systems can
degrade rapidly in the presence of clutter in the environment.
This is due to the incidence of Non-Line-of-Sight (NLOS) distance
measurements between the anchors and an unlocalized node.
While a large corpus of research work dealt with the scenario
where the NLOS distances form a minority of the total distances
to anchors, there has been not much research done to handle the
situation where a majority or even all distance measurements to
anchors are NLOS in nature. In our previous work, we showed
that using localizers in a cluttered environment can improve
the localization accuracy of a target node even when all the
distance measurements are NLOS. Instead of NLOS bias, these
techniques suffer residual multi-hop error, which is caused due to
the distance overestimate when a multi-hop chain is used instead
of the straight-line distance. In this paper, we analyze the effect of
clutter topology on the multi-hop error. We use machine learning
techniques to estimate the aggregate forms of the multi-hop error
for a given clutter topology when only characteristic features of
the clutter topology are provided.

I. INTRODUCTION

Localization is a vital service in the area of wireless sensor

and robotic networks (WSRNs) since the rationale behind

deploying them in the first place is to accomplish tasks based

on a spatial dimension in the environment - be it collecting

sensor robot measurements or actuation under certain condi-

tions. Motivating applications include exploration/mapping of

industrial aqueous tanks with submersible robots and robotic

exploration of disaster zones. Range-based localization offers a

popular, low-cost method of localization in WSRNs, where an

unlocalized robot/node takes distance measurements to a num-

ber of anchors, special purpose nodes with known positions,

and calculates its position. However, localization accuracy is

severely debilitated in the presence of obstacles between the

anchors and the unlocalized sensor due to the occurrence

of reflected non-line-of-sight (NLOS) distance measurements.

The large positive biases of NLOS distances typically result

in even larger localization errors.

Current NLOS mitigation techniques [5], [19], [29] require

that the number of NLOS distances form the minority of

anchors distances, thus not being effective for deployments

in severely cluttered environments. Hussain et. al. [15], [16]

show that by placing intermediate localizer nodes in strategic

positions in the clutter, the DV-Distance multi-hop localization

technique [23], [22] can offer superior performance even in
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scenarios where all anchor distances are NLOS in nature.

The APDV algorithm proposed in Hussain et al. [16] can

be practically deployed on actual robots as it does not re-

quire prior clutter topology information nor classification of

LOS/NLOS distances. Here, instead of NLOS bias, these

techniques suffer multi-hop residual error caused due to the

distance overestimate when a multi-hop localizer chain is used

instead of the straight-line distance.

However, the efficacy of the above techniques is limited

by the clutter topology itself, since certain clutter topologies

with large size clutter yield large multi-hop distance errors

even when localizer placement is employed. In this paper,

we investigate the influence of clutter topology on the lo-

calizer placement and multi-hop error when DV-Distance is

used. We first look at how different clutter classes affect the

distance/localization error as well as the number of required

localizers. We then explore aggregate forms (mean, median,

maximum) of the multi-hop error for a given clutter topology,

using the characteristic features of the clutter topology. Our

results can be used to assess if shortest path distance (SPD)

based multi-hop localization algorithms, such as DV-Distance

and MDS-MAP, can be employed to achieve a desired local-

ization accuracy in a given clutter topology. To summarise, the

key contribution of this paper lies in assessing the impact of

clutter on the performance of existing multi-hop localisation

algorithms.

The remaining paper is organized as follows: in Section (II),

we give the background for this work and describe the optimal

localizer placement algorithm in more detail; in Section (III)

we look at the performance of the OPDV algorithm for

different clutter topology classes; in Section (IV), we look at

the estimation of aggregate values of multi-hop error using

features of the clutter topology; and finally conclude and

discuss future work in Section (VI).

II. BACKGROUND

In this section we will discuss the background for this paper.

We start by briefly recollecting the DV-Distance multi-hop

localization algorithm. The paper uses the concept of local-

izers, nodes that assist a given target node to localize better in

cluttered environments, proposed in [15], [16]. Localizers are

typically mobile nodes that can ideally move in the cluttered

environment to assist the target node to localize with better

accuracy. An optimal localizer placement algorithm, such as
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Fig. 1. Node N uses DV-Distance to localize itself. Note that the estimated
distances between N and references R2 and R3 differ significantly from the
true distances.

the Optimal Placement for DV-Distance (OPDV) algorithm,

tries to find the optimal positions of these localizers in the

cluttered environment to maximize the localization accuracy of

the target node. The OPDV algorithm will be used throughout

this paper to represent the (lower bound) multi-hop error when

DV-Distance is used in cluttered environments.

A. DV-Distance

DV-Distance is a multi-hop localization technique ini-

tially devised to localize large networks of wireless sensor

nodes [22] with sparse anchor distributions. Anchors typically

broadcast position information to their neighboring (unlocal-

ized) nodes. These neighbors record this information, namely

anchor positions and distances to anchors. They then broadcast

this information in their own vicinities. The nodes that receive

these advertisements record their distance to an anchor as the

sum of their distance to the advertising node and that node’s

distance to the anchor, and so on. Thus, in effect the multi-hop

distances to the anchors are used instead of the (unavailable)

single-hop distances. Fig. (1) shows an example of how node

N estimates multi-hop distances to each of the three anchors.

One can notice that the node N has significant distance errors

for anchors R2 and R3 given the zig zag placement of the

intermediate nodes.

B. OPDV Algorithm

The Optimal Placement for DV-Distance (OPDV) algorithm

aims to find the positions of localizers in a cluttered environ-

ment such that the multi-hop distances between the anchors

and the sensor robot are minimized, thereby minimizing the

localization error of the DV-Distance algorithm. The OPDV al-

gorithm makes the following assumptions: the clutter topology

is known; the localizers can be placed accurately in desired

positions in the cluttered environment; the communication

range of the anchors and the localizers follows a simplified

disc model; and unlocalized node position is known a priori.

Thus, the OPDV algorithm is an oracle-type algorithm, not

suitable for actual practical deployment.

The basic version of the OPDV algorithm, which does not

impose any constraints on the number of localizers, uses A*

(a) Rc = 0.25D (b) Rc = D

Fig. 2. Sample output for the basic version of the OPDV algorithm for
different communication ranges. Multi-hop error is expressed in terms of the
enclosure diameter D. In both cases, the multi-hop error is 0.0188D.

(a) Nloc: 1, Multi-hop error:
0.093D

(b) Nloc: 2, Multi-hop error:
0.0194D

(c) Nloc: 4, Multi-hop error:
0.0188D

Fig. 3. Example output of constrained-localizer version of the OPDV
algorithm. The multi-hop error is expressed in terms of the diameter of the
enclosure D. The communication range of both anchors and localizers is set
to D.

graph search [8], [25] to find minimum cost multi-hop paths

around the clutter. A* search uses greedy best-first search to

find a least-cost path between the source and the destination.

The input graph is built using a number of parameters like

communication range (anchor and localizer) and grid spacing

for candidate localizer positions. In Fig. (2), we see an example

of OPDV’s output for two values of communication range,

0.25D and D (D is the diameter of the enclosure). Intuitively,

the smaller the communication range, the more localizers are

needed for the optimal placement.

In a practical deployment scenario, it is vital to be able to

work with a limited supply of localizers, Nloc. A constrained-

localizer version of the OPDV algorithm can be constructed

using the Bellman-Ford shortest path algorithm [6] for com-

puting the shortest paths for a given maximal hop-count H.

This implementation is based on the property of the Bellman-

Ford algorithm that, at its kth iteration, it identifies the optimal

path between a given source and each destination among paths

of at most k hops. In order to obtain the minimum cost path

between the source and all other vertices for a given maximal
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Fig. 4. Samples of the clutter topology classes FL, MS and FS.

hop-count H , we repeatedly relax all edges of the input graph

at most H instead of originally N − 1 times, where N is

the number of vertices in the input graph. Fig. (3) shows an

example output of the localizer-constrained OPDV algorithm

for a number of localizer constraints Nloc = 1, Nloc = 2 and

Nloc = 4. We see that increasing the localizer limit from one

to two offers the most improvement in multi-hop error.

The output of OPDV depends on the selection of the grid

size. A larger grid size would lead to ’looser’ multi-hop paths

around the clutter due to the sparser distribution of grid points

during the construction of the input graph by the OPDV

algorithm. This in turn results in larger overestimate errors

in the shortest length multi-hop paths found by OPDV.

III. EFFECT OF CLUTTER TOPOLOGY ON MULTI-HOP

DISTANCE ERROR

In this section we evaluate the performance of the OPDV

algorithm for different classes of clutter topology. We also

compare OPDV to other single-hop localization techniques to

illustrate the advantages of using localizer placements.

First, we define three clutter topology classes, namely the

FL (few large clutter objects), MS (many small clutter objects)

and FS (few small clutter objects). The clutter classes signify

the variations in sizes of the obstacles and the amount of clutter

in the environment. Samples for each class is shown in Fig.

(4) .

Next, we evaluate the effect of clutter topology on OPDV

distance error, while at the same time comparing OPDV’s

performance to that of two single-hop localization techniques,

linear least squares estimation (LLSE) and upper-bound least

squares estimation (UBLSE) [29]. For evaluation, 30 clutter

topologies are randomly chosen for each class, and for each

clutter topology, 100 random positions for the unlocalized

node are generated. For each such position, we first evaluate

whether it has LOS or NLOS distances with each of the four

anchors. LOS distance error is set to 0 while NLOS distance

error is obtained through ray tracing. In case of OPDV, the
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Fig. 6. Influence of clutter topology on distance error of constrained-localizer
version of OPDV.

distance error, if any, is due to the overestimating nature

of the multi-hop paths. The results are shown in Fig. (5).

Both, the NLOS error and the multi-hop error in OPDV-based

DV-Distance, decrease as the clutter size decreases in size.

However the NLOS error is many times greater than the multi-

hop error, being 8.5 times in case of the FL clutter class, to

as much as 39 times in case of the FS clutter class. Since

distance error is a major source for localization error, one

can see the immense benefits of using OPDV-based multi-hop

localization in such scenarios. UBLSE is known to perform

well in situations where the NLOS distances form a minority

of all distances to anchors. Hence, on average, it performs

much better than LLSE. We can conclude that OPDV offers

the most benefit when compared to single-hop localization

techniques for lightly cluttered environments, though even

with the FL clutter topology class, OPDV performs better than

UBLSE by a factor of 2x.

Next, we investigate the influence of clutter topology on the

distance error of the constrained-localizer version of OPDV.

Again, we consider 30 clutter topology samples from each

clutter class with 30 random positions for the unlocalized node

and anchor (anchor positions being confined to the enclosure

boundary). The constrained-localizer version of OPDV is

applied to each pair of sensor robot and anchor position,

with Nloc being varied from 0 to 4. The results are shown

in Fig. (6). We find that clutter class FL shows the error

with the largest magnitude and variance, while clutter classes

MS and FS yielding smaller distance errors. We find that

the improvement in distance errors when a single localizer is

added varies substantially between the various clutter classes,

with clutter class FL yielding a gain of 75%, clutter class

MS yields a gain of 91% and clutter class FS yielding a

gain of 98%. We also find that two localizers are sufficient

to get the maximum benefit in terms of error reduction for

all clutter classes. This observations suggests that a small

practical number of localizers can indeed be allocated to

obtain significant benefits in terms of localization accuracy.
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Fig. 5. Comparison of the performance of OPDV with single-hop localization techniques for different classes of clutter topologies.

We can conclude that the size of the clutter has a much more

significant impact on the OPDV distance error than the number

of clutter objects in the environment.

IV. ESTIMATION OF OPDV MULTI-HOP ERROR FROM

CLUTTER TOPOLOGY FEATURES

In the previous section, we looked at the effect of various

clutter topology classes on the distance error of single-hop

and multi-hop distance measurement modes. We saw that,

intuitively, clutter topologies with larger size clutter give

higher localization errors. In this section, we will look at

estimating the distance error itself, particularly the multi-

hop overestimate error, for a given clutter topology. Previous

work [14] showed that it is possible to estimate single-hop

distance error, specifically the NLOS incidence probability

and bias distribution, from characteristic features of a given

clutter topology. In this section, we extend that work to the

estimation of multi-hop overestimate error when a chain of

localizers form multi-hop distances between the anchors and

the unlocalized node. We focus on the multi-hop error when

OPDV is used since it represents the lower bound of the

overestimate error in the multi-hop distances when localizers

are used.

A. Clutter Topology Features

In this section we will summarize various characteristic

features related to a clutter topology, previously introduced

in Hussain et al. [14]. These features are various forms of

representing the spacing between the clutter objects.

Clutter Area Fraction: The ratio of the clutter area to the

total area, ca, is an important indicator of the level of clutter

in the environment.

Clutter Spacing Distribution: The space in midst of the

obstacles and bounding enclosure plays a vital role in deter-

mining the NLOS distance biases. We define two types of

clutter spacing distributions: linear (CDl) spacing distribution

is obtained by measuring the space from a random position

in the clutter topology (outside any obstacle) in a random

(a) Samples for CDl
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Fig. 7. Derivation of linear clutter spacing distribution, CDl. Here, three
random points are chosen along with three random direction θ1, θ2 and θ3,
that give the corresponding spacing distances d1, d2 and d3. In practice, one
can build these distributions with 500 or 1000 samples points.
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Fig. 8. Derivation of radial clutter spacing distribution, CDr . Here, three
random points are chosen along with three random direction θ1, θ2 and θ3,
that give the corresponding spacing distances d′

1
, d′

2
and d′

3
that represent

the radii of the smallest circles that can be fitted before touching, in the first

instance, a clutter piece or the enclosure wall. In practice, one can build these
distributions with 500 or 1000 samples points.

direction till it strikes an obstacle or the enclosure walls in

its path; and radial (CDr) spacing distribution is obtained by

measuring the maximal radius of the circle that can be drawn

centered at a (random) point such that it does not intersect an

obstacle or the enclosure walls. Examples of the construction

of CDl and CDr are provided in Figs. (7) and (8) respectively.

Occupancy Grid: The occupancy grid of the clutter topology
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is a literal representation of the actual map of the clutter

topology scaled by a factor s. In other words, if occ1 represents

the matrix representation of the clutter topology, with 1s

denoting the enclosure boundaries and clutter and 0s denoting

free space, occS is the corresponding matrix with dimensions

scaled by a factor of S, where S =
norm([XO

L Y O
L ])

norm([XLYL]) and (XO
L ,

Y O
L ) are the original dimensions of the clutter map image and

(XL, YL) are the dimensions of the scaled image. For example,

if occ1 is a 100x100 matrix, then occ12.5 will be represented

by a 8x8 matrix and occ3.125 by a 32x32 matrix. We select a

bi-linear interpolation scheme for matrix compression.

Fourier Transformation: The Fourier transform is a popu-

lar representation in the image processing research commu-

nity [9], [27], [20]. It highlights the dominant spatial frequen-

cies as well as the dominant orientations of the structures con-

tained in the image. The Fourier transformation of an image

provides its representation in the frequency domain. A two

dimensional Fourier transformation (ftS) of the occupancy

grid occS , where S is the scale factor of the occupancy grid,

is used to characterize the spacing and structure of the clutter.

We use the magnitude of the 2D Fourier transform as the

feature in our analysis.

GIST Characterization: The GIST [24] (G) characterization

of an image, widely used in the area of image classification,

defines a set of ’perceptual’ dimensions that represent the

dominant spatial structure of the image. The technique can

be used to capture low level details of the image, for example

in our case, the spacing and shapes of the clutter topology,

while abstracting away the high-dimensional detail.

B. Experimental Setup

In this section, we will describe the setup for generating the

experimental data. We aim to evaluate the multi-hop distance

error when one or more localizers are used between an anchor

and an unlocalized node. We use the basic version of the

OPDV algorithm, which does not impose any constraint on

the number of localizers. The reason for this is that here we

want to understand the multi-hop distance error with respect

to only the clutter topology. By introducing a localizer limit

(Nloc) factor, we will introduce another external factor for

the multi-hop distance error. For the same reason, we set the

communication range of both anchors and localizers to the

maximal value of D, the diameter of the cluttered environment.

The position of the anchor is randomly chosen along the

boundary of the enclosure, while a random position in the

enclosure, not occupied by clutter, is chosen for the unlocal-

ized node. For each clutter topology sample, we calculated the

OPDV multi-hop paths for No(= 1000) pairs of anchor and

unlocalized node positions. The multi-hop error is calculated

as the overestimate in the cumulative multi-hop distance when

compared to the true distance.

Clutter Topology Generation: We build complex clutter

topologies by sequentially overlaying simple rectilinear struc-

tures over each other. We use a 2D rectangular enclosure area

with dimensions Lx and Ly . We then generate ncl boxes with

random start points (xi, yi) and dimensions lx and ly, where

Fig. 9. Estimation of mean OPDV multi-hop error (me-mean) using Support
Vector Regressor (SVR). A similar procedure is used for estimating median
multi-hop error (me-median) and maximum multi-hop error (me-max).

lx = U(xi, xi +
Lx

dimfac
) and ly = U(yi, yi +

Ly

dimfac
). The

values of ncl and dimfac are determined by the clutter class.

For each sample, we first randomly choose a clutter topology

class from the three clutter classes FL (few large-size clutter),

MS (many small-size clutter) and FS (few small-size clutter).

In case of clutter class FS, we set ncl as a randomly chosen

natural number between [1, 8] and dimfac = 3. In case of

clutter class MS, ncl is randomly chosen between [1, 20] and

dimfac = 8. Finally, in case of clutter class FS, ncl is chosen

between [1, 8] and dimfac is set to 8.

Support Vector Regression: We use a Support Vector Regres-

sor (SVR) for predicting the aggregate multi-hop error, given

characteristic features of a clutter topology. An ǫ-SVR [7],

[26] solves the following optimization problem:

minimize
1

2
‖w‖2 + C

l
∑

i=1

(ζi + ζ∗i ) (1)

subject to











yi− < w, xi > −b ≤ ǫ+ ζi

< w, xi > +b− yi ≤ ǫ+ ζ∗i

ζi, ζ
∗

i ≥ 0

where ζi and ζ∗i are slack variables and ǫ is the precision. The

unknown parameters, w and b, are determined based on the

training set {xk, yk}
N
k=1, where xk ∈ R

n is the input and yk ∈
R the respective output. In our case, the input xi represents

the feature set Fn of the ith clutter topology sample, where n

denotes the number of features we are considering at a time.

The output is an aggregate form of the multi-hop error for the

clutter topology. We found that non-linear ǫ-SVR together with

the Radial Basis (RBF) kernel gives the best results during our

analysis, when compared to linear, polynomial and sigmoid

kernels.

C. Results

In this section, we will look at the estimation of the OPDV

multi-hop error for an arbitrary clutter topology when we are

only given features characterizing the clutter topology. We use
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a combination of various features of the clutter topology to

predict mean multi-hop error (me-mean), median multi-hop

error (me-median) and maximum multi-hop error (me-max).

Fig. (9) shows the schematic diagram for the entire process

of training and predicting me-mean with the SVR. Identical

processes are used for estimating me-median and me-max.

For a given test clutter topology, we represent the estimation

error for multi-hop error mean as errme−mean, the estimation

error for multi-hop error median as errme−median and the esti-

mation error for the multi-hop error maximum as errme−max.

The error is taken as the absolute difference between the

true and estimated values. The performance of the individual

features for each of the aggregate values of multi-hop error is

shown in Fig. (10). Similarly, the best performances of using

2, 3 and 4 feature combinations for me-mean, me-median and

me-max are presented in Tables (I), (II) and (III) respectively.

We see that features occ3.125, occ12.5 and ft3.125 perform

the best among all other features. ft3.125 performs the best

in case of estimating me-mean and me-median, while occ12.5
offers the highest estimation accuracy for me-max. We see that

using combinations of two or more features does not lead to

any significant improvement in estimation accuracy. We also

see that the standard deviations for all the estimations are

larger than the means, indicating that the SVR estimator is

not able to perform well for a small minority of test samples,

which give large estimation errors. Nevertheless, these results

show that employing clutter topology information delivers

much better performance than the baseline, which simply

represents the average of all training data, in the estimation of

the multi-hop error. We are able to predict the mean, median

and maximum OPDV error with an average error of only

0.72, 0.41 and 8.69 units respectively, for an enclosure area

of 10,000 square units.

We note that the spacing distributions, CDl and CDr do

not perform as well as the other features. The reason could be

that the multi-hop path between the anchor and the unlocalized

node in the clutter is hardly affected by the spacing between

the clutter objects. Instead they depend on the positions of

the clutter with respect to the positions of the two nodes.

In case of estimation of NLOS incidence probability [14],

the spacing between the clutter indirectly determines that

probability of an NLOS distance between two random points

in the given cluttered environment. Similarly, the spacing

between the clutter objects has a strong influence on the length

of the reflected signal that determines the NLOS bias. Thus, we

see that multi-hop error is mainly determined by the relative

positions of the clutter objects with respect to the enclosure,

represented by the features occ12.5, occ3.125 and ft3.125.

V. RELATED WORK

Previous literature have attempted to characterize NLOS

bias for NLOS mitigation techniques [31], [10], [21], [12],

[13], [17]. These characterizations range from variance of

NLOS distances [31] to multipath channel statistics (in case of

Ultrawide Band (UWB) signals), namely the kurtosis and the

mean excess delay of the multipath channel. Similarly, Marano

et al. [21] employ various characteristics of the impulse

response of the received UWB signal. Position Error Bound

(PEB) [18] uses empirically derived NLOS bias distributions

for its NLOS mitigation scheme. A number of papers [11],

[12] also assume exponential NLOS error distributions, while

[28], [17] assume a uniform distribution within a predefined

range. Other works have furthermore assumed that NLOS bias

follows a Gaussian distribution [4] as well as a non-parametric

Gaussian kernel density function [13].

The effect of clutter topology on the NLOS bias has also

been studied in a number of papers [30], [2], [1]. Wang et

al. [30] deduce that NLOS error is strongly dependent on

the clutter geometry and is frequency-dependent for severe

clutter. Alsindi et al. [2] conclude that the NLOS bias follows

a log-normal distribution with large bias forming the long tail,

when there is an obstruction between the two ranging nodes.

Furthermore, the authors show that the parameters of this

lognormal distribution is dependent on the clutter environment

and system bandwidth [3], [1].

However, our work is the first to study the effect of clutter

topology on multi-hop overestimate error, when multi-hop

node chains (as compared to direct NLOS links) between

the anchors and an unlocalized node are employed. Previous

work [15], [16] has shown that multi-hop localization offers a

better alternative in severely cluttered settings.

VI. CONCLUSION AND FUTURE WORK

In this paper, we looked at the problem of optimal placement

of intermediate localizer nodes to enhance the localization

accuracy in cluttered NLOS-prone environments, and the

effect of clutter topology on the residual multi-hop error. We

saw that the size of the clutter affects the multi-hop error of

optimal localizer placements more than the number of clutter

objects present in the environment. In case of estimation of

the aggregate values of the multi-hop error from the features

of a given clutter topology, we see that features that require

complete clutter topology information such as occupancy grids

perform better than clutter spacing distributions, given the

minor influence of spacing between clutter objects on the

overestimate error of the multi-hop paths. The estimation of

aggregate of multi-hop error is useful for evaluating whether a

given distance error (and subsequently localization accuracy)

can be obtained in a given clutter topology when shortest-

path distance based multi-hop algorithms, such as DV-Distance

and MDS-MAP, are used. For future work, we plan to extend

this work to the optimal placement of a fixed number of

localizers that minimize aggregate localization error over an

entire deployment area.
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(a) Estimation accuracy of me-mean.
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(b) Estimation accuracy of me-median.
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(c) Estimation accuracy of me-max.

Fig. 10. SVR based estimation of me-mean, me-median and me-max with individual features of clutter topology.

Estimation Technique using SVR errme−mean (mean) errme−mean (std)

Bme−mean 2.3425 2.1367

F1

me−mean
= {ft3.125} 0.7139 1.5251

F2

me−mean
= {occ3.125, ft3.125} 0.7166 1.5243

F3

me−mean
= {occ12.5, occ3.125, ft3.125} 0.7167 1.5230

F4

me−mean
= {ca, occ12.5, occ3.125, ft3.125} 0.7164 1.5227

TABLE I
ESTIMATION OF me-mean WITH COMBINATION OF CLUTTER TOPOLOGY FEATURES. HERE, THE SET F i

me−mean
DENOTES THE SET OF i FEATURES

WHICH ACHIEVE THE MINIMUM errme−mean .

Estimation Technique using SVR errme−median (mean) errme−median (std)

Bme−median 1.4946 1.2637

F1

me−median
= {ft3.125} 0.4062 0.8031

F2

me−median
= {occ3.125, ft3.125} 0.4019 0.7718

F3

me−median
= {occ12.5, occ3.125, ft3.125} 0.4020 0.7711

F4

me−median
= {ca, occ12.5, occ3.125, ft3.125} 0.4018 0.7708

TABLE II
ESTIMATION OF me-median WITH COMBINATION OF CLUTTER TOPOLOGY FEATURES. HERE, THE SET F i

me−median
DENOTES THE SET OF i FEATURES

WHICH ACHIEVE THE MINIMUM errme−median .

Feature set errme−max (mean) errme−max (std)

Bme−max 17.8846 15.4092

F1

me−max
= {occ12.5} 8.7026 12.4167

F2

me−max
= {occ12.5, ca} 8.6956 12.4052

F3

me−max
= {occ12.5, occ3.125, occ3.125} 8.8393 12.4456

F4

me−max
= {ca, occ12.5, occ3.125, ft3.125} 8.8614 12.7020

TABLE III
ESTIMATION OF me-max WITH COMBINATION OF CLUTTER TOPOLOGY FEATURES. HERE, THE SET F i

me−max
DENOTES THE SET OF i FEATURES WHICH

ACHIEVE THE MINIMUM errme−max .
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