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Abstract—In participatory sensing (PS), users use smartphones
to collect information related to a certain phenomenon of interest,
and report their sensed data to the service provider through
cellular or Wi-Fi networks. Previous studies on the incentive
mechanism design for user participation often neglect the details
of data reporting, which is non-trivial given the user mobility,
location-dependent network availability, and transmission cost. In
this paper, we study the decisions of the service provider and the
users in PS applications that involve photo or video transmissions,
where the reporting cost through the cellular network is non-
negligible. The service provider uses a deadline reward scheme
to motivate users to participate, and optimizes its reward to
maximize its expected surplus. Users make their participation
and reporting decisions based on the reward announced by
the service provider. We jointly consider the user mobility and
multiple access methods with different transmission costs and
location heterogeneity in the problem formulation and analysis.
For the general case with a time-discounted reward, we formulate
a user’s reporting decision problem as a sequential decision
problem, and propose an optimal participation and reporting
decisions (OPRD) algorithm using dynamic programming. For
the special case with a fixed reward, we derive the closed-form
participation and reporting decisions. Simulation results show
that the OPRD algorithm improves the user payoff over the
patient and impatient schemes by 9.8% and 13.2%, respectively.

I. INTRODUCTION

Smartphones are becoming increasingly popular in our daily

lives. According to Ericsson, the total smartphone subscrip-

tions will reach 1.9 billion at the end of 2013, and are

expected to grow to 5.6 billion in 2019 [1]. Most of the

smartphones today include a rich set of embedded sensors,

such as camera, microphone, global positioning system (GPS),

and accelerometer, which enable smartphone owners to easily

extract information from the surrounding environment [2].

Together with the popularity of App Stores for application

distribution, and the development of mobile computing cloud

for the processing of large-scale data, we are witnessing the

rapid development of mobile crowdsensing [2], [3].

Mobile crowdsensing refers to a new sensing paradigm

that involves a large number of individuals, who use their

smartphones or mobile devices to collectively extract and

share information related to a certain phenomenon of interest.
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Interesting applications include traffic jam alerts [4], citizen-

journalism [5], tourist query [5], wireless indoor localization

[6], and urban tomography [7]. We can classify the mobile

crowdsensing applications into participatory sensing or oppor-

tunistic sensing according to the level of user involvement

[2], [3]. In participatory sensing (PS), users need to actively

engage in the data collection process (e.g., taking pictures

and videos in citizen-journalism [5]). In opportunistic sensing,

the data collection process is fully automated without any

human intervention (e.g., building up the fingerprint database

automatically in wireless indoor localization when a user turns

on his smartphone [6]), users experience minimum burden

during the data collection process. In this paper, we mainly

focus on the delay-sensitive PS applications that involve the

collection of photo or video data [4], [5], [7] within a given

deadline. For example, in real-time tourist query [5], tourists

may ask for the facility at a location and specify how long the

query remains valid. People around the location can respond

to the query with multimedia contents. In citizen-journalism

[5], citizens can play the role of journalists, and report events

in their everyday lives by sending audio and video information

through mobile social networks as soon as possible, because

the value of the data may degrade rapidly shortly after the

events have happened.

In PS applications, the service provider (SP) usually needs

to provide incentives to the users to encourage their partic-

ipations. A number of results have focused on the incentive

mechanism design in PS. Xie et al. in [8] proposed a stim-

ulation mechanism to promote message tradings between a

pair of mobile users. They modeled the message transaction

between two users using the Nash bargaining framework. Lee

et al. in [9] designed an incentive mechanism to stimulate

user participations based on an iterative reverse auction. They

aimed to stabilize the incentive cost and maintain a satisfactory

level of user participation by giving losers of auctions some

extra virtual credits. Jaimes et al. in [10] extended the incentive

mechanism in [9] by taking into account the location of the

users and considering the coverage and budget constraints

of the SP during the participant selection. Duan et al. in

[11] proposed a reward-based collaboration mechanism for

data acquisition. They formulated the problem as a two-

stage Stackelberg game, and considered both the cases with

complete and incomplete information. Yang et al. in [12]

considered two possible system operations to incentivize user

participation. In the platform-centric model, the SP announces

a total reward, and each user determines its level of partici-

pation accordingly. In the user-centric model, they considered

an auction design, where a user selects the sensing tasks and

submits the corresponding bids, while the SP selects the final
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participants. Koutsopoulos et al. in [13] considered the reverse

auction design in participatory sensor network. The objective

of the SP is to minimize the total payment to the users, subject

to the quality of experience of its customers.

The related studies on incentive mechanism design for PS

mentioned above mainly focus on the user participation in

terms of performing the sensing task. However, most of the

studies neglect the details of the data reporting process from

the users to the SP, which may lead to overly-simplifying de-

cisions for both the SP and users. First, these previous studies

usually consider the sensing task at a particular location with

static users. In practice, a single user can move aroundmultiple

locations to sense and report at different locations and different

times. Second, these studies do not consider the difference in

terms of the transmission cost and network availability when

choosing between cellular or Wi-Fi networks for reporting.

More specifically, for the cellular network with ubiquitous

coverage, its usage cost is non-negligible, especially for PS

applications that involve large amount of data transmissions

in the form of photos or videos. For the Wi-Fi network,

although the transmission cost can be lower, it typically has

a smaller coverage and hence its availability depends on the

user’s mobility pattern. In fact, Liu et al. in [14] also studied

the reporting issues related to the choices of cellular and

Wi-Fi networks. However, [14] mainly studied the choice

between cellular and Wi-Fi networks given some extra cellular

budget without considering any incentive mechanism, while

we focused on the incentive issue of reporting sensed data for

a reward. Without considering the user mobility and network

heterogeneity in terms of transmission cost and availability,

the participation decisions of users may be suboptimal and the

design of incentive mechanism for the SP may be ineffective.

In this paper, we analyze the decisions of both users

and the SP in two stages by modeling the details in data

reporting. First, each user needs to make participation and

reporting decisions based on its past mobility statistics, Wi-Fi

availabilities at different locations, and the reward provided

by the SP. We propose an optimal participation and reporting

decision (OPRD) algorithm, which achieves the maximal user

payoff in the general case with a time-discounted reward from

the SP. We also derive closed-form decisions for the user in

the special case of a fixed reward. The key challenges of the

analysis are due to the location-dependent Wi-Fi availability

and user mobility. For the SP, it needs to choose the reward

to incentivize enough users to participate and report. We

formulate the SP’s problem as a discrete optimization problem

that can be solved with an algorithm of linear complexity.

The main contributions of this paper are as follows:

• Practical modeling: To the best of our knowledge, this is

the first paper that considers the joint participation and

reporting decisions of the mobile users and the reward

optimization of the SP under a common framework with

user mobility and network heterogeneity.

• Optimal user’s participation and reporting decisions: We

show analytically that when the reward is small, a user

will only report to the SP probabilistically due to the
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Fig. 1. An example of the network setting, where the users are moving
within a set of L = {1, . . . , 16} locations. The users are always under the
coverage of a cellular base station, but Wi-Fi is only available at locations 1
and 9.

stochastic Wi-Fi availability. However, when the reward

is larger than a threshold, we can guarantee a sure

participation and reporting.

• Service provider’s reward optimization: We analyze how

the SP chooses an optimal reward that balances its utility

and the total payment to the users.

• Superior performance: Simulation results show that the

OPRD algorithm improves the user payoff over the

patient and impatient benchmark schemes by 9.8% and

13.2%, respectively.

The rest of the paper is organized as follows. We describe

our system model in Section II. Section III analyze users’

decisions under both discounted and fixed rewards in stage

two, and Section IV analyzes the reward optimization of the

SP in stage one. Simulation results are given in Section V,

and the paper is concluded in Section VI.

II. SYSTEM MODEL

We consider a participatory sensing (PS) application that

involves the real-time sensing and reporting of photo and video

contents by a deadline T (e.g., citizen-journalism and real-

time tourist query [5]). As shown in Fig. 1, the PS system

consists of a service provider (SP) and a set of I = {1, . . . , I}
multiple mobile users (MUs) who may act as the participants.

The SP aims to extract information from a set of locations L =
{1, . . . , L}. Each MU makes its own decisions on whether or

not to participate in the sensing task, and whether to report

the information to the SP based on the reward and costs. For

simplicity, we assume that the MUs are honest and will report

their actual measurements to the server of the SP truthfully

(once they have decided to report) [8].

Considering the location heterogeneity in terms of the

availability of Wi-Fi, we let L(0) and L(1) be the set of

locations without and with Wi-Fi, respectively. As an example,

in Fig. 1, we have L(1) = {1, 9}.
We consider a Markovian user mobility model that has been

widely used in the literature [15], [16]. Time is divided into a

set of time slots T = {1, . . . , T}. Let li(t) ∈ L be the position

of user i ∈ I at time t. The location transition matrix of user

i ∈ I is Pi =
[

pi(l
′|l)

]

L×L
, where pi(l

′|l) is the probability

that MU i ∈ I will move to l′ ∈ L in the next time slot given

that it is currently at location l ∈ L.
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Fig. 2. The two stages that we consider in this paper.

Fig. 2 illustrates the two-stage decision process of the SP

and users. In stage one, the SP announces the reward scheme to

the potential participants. Specifically, we consider a deadline

discounted reward scheme, where any participant who obtains

measurement at its initial location li(1) at time t = 1 and

reports its data to the SP at time t ∈ T will be given a reward

r = θt−1R, where R ≥ 0 is the initial reward and 0 < θ ≤ 1 is

the discount factor. The SP will not grant any reward for data

reported after deadline T . This reward scheme is practical for

delay-sensitive PS applications, such as real-time tourist query

and citizen-journalism [5] mentioned above, where the value

of data degrades with time.

In stage two, each user makes its participation and reporting

decisions to maximize its expected payoff, by considering its

sensing cost, transmission cost, and the reward scheme of the

SP. Let σi be the sensing cost of MU i ∈ I, which may be

related to its privacy and energy costs in participation [11],

[13]. Let ci be the cost of using the cellular network for MU

i ∈ I to report its sensed data to the SP. We assume that the

users can use Wi-Fi networks free of charge. Moreover, we

assume that the sensing and reporting tasks can be completed

in one time slot. In this stage, user i needs to consider the

following decisions:

• Participation Decision: User i decides whether it should
perform sensing and obtain measurement at its initial

location li(1) at time t = 1, by comparing the expected

payoff between participation and no participation.

• Reporting Decision: If user i has decided to participate in

sensing, it should decide further on when to upload the

data to the SP using what type of network, depending

on the stochastic network availability in the future T
time slots. That is, it is possible for a user to decide

not to report its sensed data after it has decided to

participate and has performed sensing. This is one of the

key surprising results from our analysis.

We use backward induction to analyze the sequential deci-

sions of the SP and users. In Section III, we first study the

participation and reporting decisions of user i given the reward
scheme from the SP. In Section IV, based on the response of

each user, we then study the reward optimization of the SP.

III. STAGE TWO: PARTICIPATION AND REPORTING

DECISIONS OF MOBILE USERS

In this section, given the reward scheme of the SP parame-

terized by R, θ, and T , we study the participation and reporting

decisions of each user in stage two. We first consider the

general case with a discounted reward in III-A, and propose

an optimal algorithm based on dynamic programming. Then,

we consider the special case with a fixed reward in Section

III-B, and derive the closed-form decisions.

A. General Case: Discounted Reward

Assuming that user i has chosen to participate in the sensing

task, the optimal reporting decision of user i can be solved by

using dynamic programming. Specifically, the decision epochs

of user i are
t ∈ T = {1, . . . , T}, (1)

where T is the set of all time slots.

The system state is defined as s = (k, l). The state element

k ∈ K = {0, 1} keeps track of whether user i has reported the

data to the server or not, where k = 0 means that user i has

reported the data and k = 1 means that the data has not been

reported. The state element l ∈ L = {1, . . . , L} is the location

index, where L is the total number of possible locations that

the user may reach within the T time slots.

The action a ∈ Ak ⊆ A = {0, 1} specifies the reporting

decision of the user at a decision epoch, where a = 0 means

that user i decides not to report, and a = 1 means that user

i decides to report. As reporting through the Wi-Fi network

has a zero cost, it is always optimal to choose action a = 1
whenever the data has not been reported (i.e., k = 1) and

the current location has Wi-Fi (i.e., l ∈ L(1)). Since the user

should report only if it has not done so, the feasible action set

Ak depends on the state element k as follows:

Ak =

{

{0, 1}, if k = 1,

{0}, if k = 0.
(2)

It should be noted that user i will only report (i.e., choose

action a = 1) at most once within the T time slots.

We define the user surplus (i.e., reward minus transmission

cost) at state s = (k, l) with action a ∈ Ak at time slot t ∈ T
as

φt(k, l, a) =

⎧

⎪

⎨

⎪

⎩

θt−1R, if a = 1, k = 1, and l ∈ L(1),

θt−1R − ci, if a = 1, k = 1, and l ∈ L(0),

0, if a = 0.
(3)

The first and second rows refer to the surplus of reporting

through Wi-Fi and cellular networks, respectively. The third

row corresponds to the idle action, where there is no reward

or transmission cost. As a result, the surplus is zero.

The state transition probability p
(

s
′ | s, a

)

=
p
(

(k′, l′) | (k, l), a
)

is the probability that the system

enters state s
′ = (k′, l′) if action a ∈ Ak is taken at state

s = (k, l). Since the movement of the user from l to l ′ is

independent of the value of k and action a, we have

p
(

s
′ | s, a

)

= p
(

(k′, l′) | (k, l), a
)

= p(l′ | l) p(k′ | k, a), (4)

where

p(k′ | k, 1) =

{

1, if k′ = 0,

0, otherwise,
(5)
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and

p(k′ | k, 0) =

{

1, if k′ = k,

0, otherwise.
(6)

Here, we assume that p(l′ | l) is defined according to an

Markovian model estimated based on the past mobility pattern

of the MU [15], [16].

Let δt : K × L → A be the decision rule that specifies the

reporting decision of user i at state s = (k, l) and time slot

t. We define a policy π = (δt(k, l), ∀ k ∈ K, l ∈ L, t ∈ T )
as the set of decision rules for all states and time slots. We

denote s
π

t = (kπ

t , lπt ) as the state at time slot t if policy π is

used, and we let Π be the feasible set of π. We consider that

user i aims to find an optimal policy (i.e., optimal reporting

decisions) π
∗ that maximizes its expected surplus as

ξ∗i = maximize
π∈Π

Eπ

s1

[

T
∑

t=1

φt

(

s
π

t , δt(s
π

t )
)

]

. (7)

Eπ

s1
denotes the expectation with respect user i’s mobility

pattern and policy π with an initial state s1 =
(

1, li(1)
)

,

where li(1) is the initial location of user i at time slot t = 1.
Given the optimal reporting decisions of user i above, we

can obtain its optimal sensing decision. Specifically, user i
chooses to participate in the sensing only if the maximal

expected surplus is greater than its sensing cost (i.e., ξ ∗
i ≥ σi),

and not to participate otherwise.

Let vt(s) be the maximal expected surplus of the MU from

time slot t to time slot T , given that the system is in state s

immediately before the decision at time slot t. The optimality

equation [17, pp. 83] relating the maximal expected surplus at

different states for t ∈ T is given by

vt(s) = vt(k, l) = max
a∈Ak

{ψt(k, l, a)}, (8)

where for any k ∈ K, l ∈ L, and a ∈ Ak, we have

ψt(k, l, a)=φt(k, l, a)+
∑

l′∈L

∑

k′∈K

p
(

(k′, l′)|(k, l), a
)

vt+1(k
′, l′)

(9)

= φt(k, l, a) +
∑

l′∈L

p(l′ | l)
[

avt+1(0, l′) + (1 − a)vt+1(k, l′)
]

.

(10)

The first and second terms on the right hand side of (9) are

the immediate surplus in time slot t and the expected future

surplus in the remaining time slots for choosing action a,
respectively. The derivation of (10) from (9) follows directly

from (4), (5), and (6). Moreover, we set the boundary condition

at t = T + 1 as

vT+1(s) = vT+1(k, l) = 0, ∀ k ∈ K, l ∈ L. (11)

With the optimality equation, we propose Algorithm 1 for

user i to make its participation and reporting decisions under

a discounted reward. First, in the planning phase, based on

the optimality equation in (8) and the boundary condition in

(11), we obtain the optimal policy π
∗ that solves problem

(7) using backward induction [17, pp. 92]. Specifically, we

Algorithm 1 Optimal Participation and Reporting Decisions

(OPRD) Algorithm for user i ∈ I.
1: Planning Phase:

2: Set vT+1(k, l) := 0, ∀ k ∈ K, l ∈ L
3: Set t := T
4: while t ≥ 1
5: for l ∈ L
6: Set k := 0
7: while k ≤ 1
8: Calculate ψt(k, l, a), ∀ a ∈ Ak using (10)
9: Set δ

∗
t (k, l) := arg max

a∈Ak

{ψt(k, l, a)}

10: Set vt(k, l) := ψt

(

k, l, δ∗t (k, l)
)

11: Set k := k + 1
12: end while
13: end for
14: Set t := t − 1
15: end while
16: Output the optimal reporting policy π

∗

17: Participation and Reporting Decisions:
18: Set t := 1 and k := 1
19: Set ξ∗i = vt

(

k, li(t)
)

20: If ξ∗i ≥ σi (i.e., the participation decision)
21: Obtain measurement at its current location li(1) at t = 1
22: while t ≤ T and k = 1
23: Determine the location index l := li(t) from GPS
24: Set action a := δ∗t (k, l) based on the optimal policy π

∗

(i.e., the reporting decision)

25: If a = 1 and l ∈ L(0)

26: Report through cellular network at time t
27: else if a = 1 and l ∈ L(1)

28: Report through Wi-Fi network at time t
29: end if
30: Set t := t + 1
31: end while
32: end if

first set vT+1(k, l) based on the boundary condition in (11)

(line 2). Then, we obtain the values of δ ∗
t (k, l) and vt(k, l) by

updating them recursively backward from time slot t = T to

time slot t = 1 (lines 3 to 15). The complexity of Algorithm

1 is O(LT ).

Theorem 1: The policy π
∗ = (δ∗t (k, l), ∀ k ∈ K, l ∈ L, t ∈

T ), where

δ∗t (k, l) = argmax
a∈Ak

{ψt(k, l, a)}, (12)

is the optimal solution of problem (7).

Proof: The proof is based on the principle of optimality

[18, pp. 18].

Based on the optimal policy computed offline in the plan-

ning phase, user i decides to participate if ξ ∗
i ≥ σi, and not

to participate otherwise (lines 19 and 20). If it decides to

participate, it first obtains measurement at its current location

(line 21), and carries out its reporting decision based on the

optimal policy π
∗ through checking a table (lines 24 to 29).

Notice that the optimal policy π
∗ is a contingency plan that

contains information about the optimal reporting decision at

all possible states (k, l) in any time slots t ∈ T .
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In fact, it is possible for user i to decide not to report

its sensed data after it has decided to participate and has

performed sensing. The intuition for this possibility is that user

i may not be able to meet any Wi-Fi before the deadline as

expected, and the reward is not enough for him to use cellular

for reporting. We will show this insight more explicitly for the

special case with a fixed reward in Section III-B.

B. Special Case: Fixed Reward

In this section, we consider a fixed reward, which is a special

case of the discounted reward with θ = 1. Any participant who
can obtain measurement at its initial location and report their

data to the SP by deadline T will receive a reward r ≥ 0. We

derive the closed-form expressions related to the participation

and reporting decisions.

1) Four Scenarios of Rewards and Wi-Fi Availabilities:

We consider the decisions of user i in the following four

scenarios, for different values of reward r and different Wi-Fi

availabilities at the initial location.

Scenario (i) r ≤ σi: Since the reward is too small, user i
will not participate in the sensing task.

Scenario (ii) r ≥ σi + ci: Since the reward is large enough,

user i will definitely participate in the sensing. After sensing,

user will report when it first meets a Wi-Fi network within

the deadline. If it does not meet any Wi-Fi network within T
time slots, it will use the cellular network for data reporting

in time slot T .

Scenario (iii) σi < r < σi + ci and li(1) ∈ L(1): The

reward is medium and the Wi-Fi network is available to the

user during the first time slot. User i will sense and report

immediately using Wi-Fi in the first time slot.

Scenario (iv) σi < r < σi + ci and li(1) ∈ L(0): This is

the most challenging scenario, and will be discussed in details

next.

2) Closed-Form Participation and Reporting Decisions:

Let pnowifii (T ) be the probability that user i will not meet any

Wi-Fi by deadline T . We can compute the participation and

reporting decisions of user i in closed-form in Theorem 2.

Theorem 2: (a) For a small reward 0 ≤ r < ci:

• Participation Decision: User i chooses to participate if

r ≥ σi

1−pnowifi
i

(T )
, and not to participate otherwise.

• Reporting Decision: If user i chooses to participate, then

it will wait for a Wi-Fi network to report until deadline

T . If no Wi-Fi network is available within T time slots,

user i will choose not to report.

(b) For a large reward r ≥ ci:

• Participation Decision: User i chooses to participate if

r ≥ σi + pnowifii (T )ci, and not to participate otherwise.

• Reporting Decision: If user i chooses to participate, then

it will wait for a Wi-Fi network to report until deadline

T . If no Wi-Fi network is available within T time slots,

user i will report through cellular network in time slot T .

Let γ
(1)
i � σi

1−pnowifi
i

(T )
and γ

(2)
i � σi + pnowifii (T )ci be the

two thresholds in Theorem 2(a) and (b), respectively. Theorem

2 confirms the intuition that when the reward is small, user i
will only report to the SP probabilistically due to the stochastic

Wi-Fi availability. When the reward is larger than the threshold

γ
(2)
i , user i will always report within the deadline. The proof

of Theorem 2 is given in Appendix A. Notice that Theorem 2

is general, and can be applied to any one of the four scenarios

in Section III-B1.

Theorem 2 enables us to compute p report
i (r), which is the

probability that user i will report its sensed data to the SP

given reward r in the following theorem.

Theorem 3:

preporti (r) =

⎧

⎪

⎨

⎪

⎩

0, if r < γ̌i,

1 − pnowifii (T ), if γ̌i ≤ r < γ̂i,

1, if r ≥ γ̂i,

(13)

where the thresholds γ̌i and γ̂i are defined in three cases:

• Case 1: ci < σi: γ̌i = γ̂i = γ
(2)
i .

• Case 2: ci ≥ σi and pnowifii (T ) > 1− σi

ci

: γ̌i = γ̂i = γ
(2)
i .

• Case 3: ci ≥ σi and pnowifii (T ) ≤ 1 − σi

ci

: γ̌i = γ
(1)
i and

γ̂i = ci.

The proof of Theorem 3 is given in Appendix B.

IV. STAGE ONE: REWARD OPTIMIZATION OF SP

Given the response of user i under a fixed reward derived in

Section III-B, we will discuss how the SP chooses a reward to

maximize its expected surplus in this section. For the general

case with a discounted reward, we will consider it in our future

work.

Let Il = {1, . . . , Il} ⊆ I be the set of users with an

initial location l ∈ L, where the SP wants to obtain some

measurements. Let Ml(n) be the set of all possible subsets of

set Il with n users, where n = 0, 1, . . . , Il. As an example,

for Il = {1, 2, 3}, we have Ml(2) =
{

{1, 2}, {1, 3}, {2, 3}
}

for n = 2. We define P (n, r) as the probability that n =
0, 1, . . . , Il users report their sensed data when the reward is

equal to r. We can express it as

P (n, r) =
∑

M∈Ml(n)

(

∏

m∈M

preportm (r)
)(

∏

k∈Il\M

(

1−preportk (r)
)

)

.

(14)

Let u(n) be the utility function of the SP when n users in

set Il report their measurements. We assume that u(n) is a

nondecreasing function in n with u(0) = 0. Overall, the SP

aims to select reward r that maximizes its expected surplus

(i.e., utility minus payment) as

maximize
r≥0

g(r) �

Il
∑

n=0

(

u(n) − rn
)

P (n, r). (15)

where rn is the total payment to the users.

Let R = {γ̌1, γ̂1, . . . , γ̌Il
, γ̂Il

} be the thresholds of all users

in set Il. Let r∗ be the optimal solution in problem (15). We

can prove that the SP should choose r∗ ∈ R∪{0} to maximize

its expected surplus.

Theorem 4: r∗ ∈ R ∪ {0}.
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Fig. 3. The expected user payoff versus the deadline for θ = 0.9, R = 25,
σi = 10, ci = 11, and pstay = 0.5.

The proof of Theorem 4 is given in Appendix C. As a result,

we can simplify the reward optimization problem in (15) as

maximize
r∈R∪{0}

Il
∑

n=0

(

u(n) − rn
)

P (n, r), (16)

which is a discrete optimization problem with a linear com-

plexity. Since there are at most 2Il +1 values of r to consider

in (16), we can apply the exhaustive search to solve it.

V. PERFORMANCE EVALUATIONS

In this section, we evaluate the performance of our proposed

OPRD algorithm (i.e., Algorithm 1) by comparing it with two

heuristic benchmark schemes in terms of the expected payoff

achieved by a user. We also show the simulation result related

to the reward optimization of the SP for the fixed reward case.

Each data point in the plots represents the average value

based on 1000 randomly generated scenarios with different

network availabilities and user mobility patterns. Unless spec-

ified otherwise, we assume that the probability that a Wi-Fi

connection is available at a particular location is 0.4. Each time

slot corresponds to ∆t = 10 seconds. Each user is moving

around L = 16 possible locations in a four by four grid

(similar to that in Fig. 1). For the state transition probabilities

pi(l
′ | l), we assume that probability that user i stays at a loca-

tion is given by pi(l | l) = pstay, ∀ l ∈ L. Moreover, the user

is equally likely to move to any of the neighbouring locations.

Take location 7 in Fig. 1 as an example, if pstay = 0.5, then
the probability that the user will move to one of the locations

3, 6, 8, or 11 is equal to (1 − 0.5)/4 = 0.125.

A. Performance Evaluation of the OPRD scheme

First, we compare the expected user payoff, which is the

reward minus the total sensing and transmission costs, under

the OPRD scheme (denoted as optimal) with two benchmark

schemes:

• Patient scheme: A user will always participate in sensing,

and wait for a Wi-Fi network for reporting. If no Wi-

Fi network is available within T time slots, it will use

cellular to report in time slot T if θT−1R ≥ ci, and not

to report otherwise.
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Fig. 4. The expected user payoff versus the cellular transmission cost ci for
θ = 0.9, R = 25, σi = 10, pstay = 0.5, and D = 1 minute.

• Impatient scheme: The user will always participate and

report in the first time slot. It will use a Wi-Fi network

to report if li(1) ∈ L(1), otherwise it will use the cellular

network to report if li(1) ∈ L(0).

In Fig. 3, we plot the expected user payoff under the

three schemes for different values of deadline D (in minutes,

so T = 60D/∆t). We assume that the discounted factor

θ = 0.9, initial reward R = 25, sensing cost σi = 10,
cellular transmission cost ci = 11, and probability of staying

at a location pstay = 0.5. As we can see, our proposed

OPRD scheme results in the maximal expected user payoff

as compared with the two heuristic schemes under different

deadlines. Specifically, it improves the user payoff over the

impatient scheme by 9.8% and 13.2% for D = 1 minute and

D = 6 minutes, respectively. Also, the payoff improvements

over the patient scheme are 19.4% and 9.8% for D = 1
minute and D = 6 minutes, respectively. As the user under

the impatient scheme will report in the first time slot anyway,

its expected payoff is independent of D. In contrast, for the

OPRD scheme and the patient scheme, the longer the deadline,

the higher the chance in meeting Wi-Fi, so the expected payoff

increases with D initially. As the deadline D increases beyond

5 minutes, the chance of meeting Wi-Fi is already very high,

so the expected payoff saturates.

In Fig. 4, we plot the expected user payoff against the

cellular transmission cost ci, where we assume that θ = 0.9,
R = 25, σi = 10, pstay = 0.5, and D = 1 minute. As we

can see, as ci increases, the expected user payoff under all the

three schemes decreases. Also, we observe that our proposed

OPRD scheme results in the maximal expected user payoff as

compared with the two heuristic schemes for different values

of ci. When the cellular transmission cost ci is small, the

impatient scheme performs similarly as the optimal scheme.

However, as ci increases, it is better for the user to be patient

and wait longer for the availability of Wi-Fi.

In Fig. 5, we plot the expected user payoff against the

discount factor θ for R = 30, ci = 11, σi = 10, pstay = 0.5,
and D = 5 minutes. When θ is close to 1, it is a good decision
for the user to be patient and wait for Wi-Fi to report. However,

when θ is smaller, it is better to be impatient and report in the
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Fig. 5. The expected user payoff versus the discount factor θ for R = 30,
ci = 11, σi = 10, pstay = 0.5, and D = 5 minutes.

first time slot, as the reward reduces at a faster rate. As a user

under the impatient scheme reports in the first time slot, its

achieved payoff is independent of θ.

B. Reward Optimization of the Service Provider

We consider that the SP is interested to collect measure-

ments at location l with Il = 12 users. Since all the users

are responsible for sensing the same phenomenon of interest

at the same initial location, we assume that the sizes of

the sensed data are the same and the cellular prices for all

users are the same. Therefore, we assume that the cellular

transmission cost is ci = 8, ∀ i ∈ Il. We assume that the

sensing cost σi is a Gaussian random variable with mean

equal to 5 and a unit variance (i.e., N (5, 1)), and pnowifi
i (T )

is a uniformly distributed random variable in (0.1, 0.9) (i.e.,

U(0.1, 0.9)). In the reward optimization, we consider the step

utility function of the SP in the form u(n) = Z if n ≥ n̂ and

u(n) = 0 otherwise, where Z is the amplitude of the utility

function. It is related to PS applications that require at least

n̂ users to participate in order to reach its full functionality

[11]. We also consider a concave utility function in the form

u(n) = Z log(1 + n) with u(0) = 0. It is related to PS

applications that exhibit a diminishing marginal utility for

every extra report received.

In Fig. 6, we plot the average number of reports received by

the SP with the optimal reward r∗ in problem (16) against the

amplitude Z in the utility function. For the step functions,

when Z increases, we notice that the number of received

reports first increases, and then stays constant. On the other

hand, for the concave function, the number of received reports

increases until it reaches Il.

In Fig. 7, we show an example of P (n, r), which is

the probability of receiving n reports given reward r, by

plotting it against n ∈ {0, 1, . . . , Il} and the reward thresholds

r ∈ R. It can be seen that for r < ci = 8, the non-zero

probabilities of P (n, r) are usually less than one, which is due

to the probabilistic reporting decision using Wi-Fi as stated in

Theorem 2(a). On the other hand, for r ≥ c i, the non-zero

probabilities of P (n, r) are always equal to one, which is due

to the sure reporting decision as stated in Theorem 2(b).
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VI. CONCLUSION

In this paper, we studied the decisions of both the mobile

users and service provider (SP) in a participatory sensing

system. We first considered the participation and reporting

decisions of users under a deadline reward scheme. For the

general case with a time-discounted reward, we proposed an

optimal participation and reporting decision (OPRD) algorithm

that achieves the maximal expected surplus for each user.

For the special case with a fixed reward, we derived the

user’s participation and reporting decisions in closed-form.

Next, given the responses from the users, we considered

the reward optimization of the SP, who aims to choose an

optimal reward to maximize its expected surplus. Simulation

results showed that our proposed OPRD algorithm achieves

the highest expected user payoff as compared with the patient

and impatient benchmark schemes. For future work, we will

consider the reward optimization of the SP under incomplete

user information and the general case with a discounted

reward.

APPENDIX

A. Proof of Theorem 2

Let ρi be the payoff (i.e., the reward minus the total sensing

and transmission costs) of user i. Assume that user i has
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already performed sensing.

(a) In this case, with probability pnowifi
i (T ), user i will not

meet any Wi-Fi, and it will not report to the SP, so ρi =
−σi < 0. With probability 1 − pnowifi

i (T ), user i will report

by Wi-Fi, so ρi = r − σi. User i chooses to participate if and

only if its expected payoff E[ρi] = pnowifii (T )(−σi) +
(

1 −
pnowifii (T )

)

(r − σi) ≥ 0.
(b) In this case, with probability pnowifi

i (T ), user i will not

meet any Wi-Fi, but it will report by cellular at deadline T
to obtain the reward, so ρi = r − σi − ci. With probability

1 − pnowifii (T ), user i will report by Wi-Fi, so ρi = r − σi.

User i chooses to participate if and only if its expected payoff

E[ρi] = pnowifii (T )(r−σi − ci)+
(

1− pnowifii (T )
)

(r−σi) ≥ 0.
For the reporting decisions, with a fixed reward before

the deadline, there is no harm for user i to wait for Wi-Fi

until deadline T under both cases (a) and (b). However, the

difference in reporting decisions for these two cases at time

T is due to the fact that user i can recover the cellular cost in

(b) with a larger reward r (i.e., r ≥ ci), but not in (a).

B. Proof of Theorem 3

The participation and reporting decisions under a fixed

reward for different values of σi, ci, and pnowifi
i (T ) are sum-

marized in the three cases in Fig. 8. The decisions for r ≤ σ i

and r ≥ σi + ci have been described in scenarios (i) and

(ii) in Section III-B1. Here, we consider the decisions for

σi < r < σi + ci.

• Case 1: ci < σi. In this case, σi < r < σi + ci implies

that r > ci. The result in Theorem 2(b) applies.

• Case 2: ci ≥ σi and pnowifii (T ) > 1 − σi

ci

. For the first

interval σi < r < ci, since γ
(1)
i = σi

1−pnowifi
i

(T )
> σi

1−(1−
σi

ci
)

=

ci, we conclude from Theorem 2(a) that user i will not

participate. For the second interval ci ≤ r < σi + ci, since

γ
(2)
i = σi + pnowifii (T )ci > σi + (1 − σi

ci

)ci = ci, the result in

Theorem 2(b) applies.

• Case 3: ci ≥ σi and pnowifii (T ) ≤ 1 − σi

ci

. For the first

interval σi < r < ci, as γ
(1)
i ≤ ci, the result in Theorem 2(a)

applies. Since γ
(2)
i ≤ ci, we conclude from Theorem 2(b) that

user i will participate in the second interval ci ≤ r < σi + ci.

From Fig. 8, we observe the distinct responses of user i in
three ranges characterized by the thresholds γ̌ i and γ̂i defined

in Theorem 3: User i decides not to participate if r < γ̌ i,

participate and report with Wi-Fi with probability 1−pnowifi
i (T )

(i.e., the probability of meeting Wi-Fi by deadline) if γ̌ i ≤ r <
γ̂i, and participate and report for sure if r ≥ γ̂ i.

C. Proof of Theorem 4

Assume on the contrary that r∗ /∈ R ∪ {0}. From (14) and

the threshold descriptions of preport
i (r) in (13), we can always

find r̄ ∈ R ∪ {0} such that r̄ < r∗ and P (n, r∗) = P (n, r̄).
As a result, we have g(r∗) < g(r̄), which contradicts that r∗

is the optimal solution in problem (15).
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