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Abstract—Due to their ability to provide high data rates,
multiple-input multiple-output (MIMO) systems have become
increasingly popular. Decoding of these systems with acceptable
error performance is computationally very demanding. In this pa-
per, we employ the Sequential Decoder using the Fano Algorithm
for large MIMO systems. A parameter called the bias is varied
to attain different performance-complexity trade-offs. Low values
of the bias result in excellent performance but at the expense of
high complexity and vice versa for higher bias values. Numerical
results are done that show moderate bias values result in a decent
performance-complexity trade-off. We also attempt to bound the
error by bounding the bias, using the minimum distance of a
lattice. The variations in complexity with SNR have an interesting
trend that shows room for considerable improvement. Our work
is compared against linear decoders (LDs) aided with Element-
based Lattice Reduction (ELR) and Complex Lenstra-Lenstra-
Lovasz (CLLL) reduction.

I. INTRODUCTION

The two goals of any communication system are achiev-
ing reliability and capacity, in other words, achieving high
performance and high data rates, respectively. Multiple Input
Multiple Output (MIMO) systems employ multiple antennas
at the transmitter and receiver, which allow them to exploit
the spatial dimension in order to achieve higher data rates and
performance.

With the increasing demand of data rate in recent years,
researchers have shown great interest in MIMO Systems.
Unfortunately, a trade-off exists between achieving reliability
and capacity. MIMO systems for instance, when used for
improving data rates by sending different data streams on each
transmit antenna - as opposed to sending the same data streams
on multiple transmit antennas to achieve better performance -
require very complex reliable detection methods, especially
as the system size increases. The Maximum Likelihood (ML)
decoder in particular, although optimal and therefore most
reliable, suffers from exponential complexity in terms of the
number of transmit antennas (M) and constellation size (M).
On the other hand, Linear Decoders (LDs) such as Zero-
Forcing (ZF) and the Minimum Mean Square Error (MMSE)
have only polynomial complexity and are thus widely adopted
in a number of systems. In MIMO systems, however, these
decoders result in very poor performance compared to the
ML decoder due to their sensitivity to ill-conditioned channel
matrices.

Analysis in [1] shows that for MIMO V-BLAST sys-
tems with M transmit antennas and /N receive antennas,
conventional LDs such as ZF and MMSE, can only collect
a diversity of N — M + 1, though they enjoy very low
computational complexity. The ML decoder, on the other hand,
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collects receive-diversity. However, Lattice Reduction (LR)
techniques used to aid LDs, in [1], [2], [3], [4], [5], [6], [7]
achieve receive-diversity at the expense of a small increase
in complexity. It is important to note that a gap does exist
between the performance curves of these LR-aided LDs and
the ML detector due to the sub-optimality of the LDs, the
imperfect orthogonalization of the channel matrix by lattice
reduction and the imperfections introduced by the quantization
operation. Other work such as [8] and [9] employ lattice
reduction techniques as well, to achieve ML detection diversity.
In our work, we employ the Sequential Decoder with the Fano
Algorithm to not only achieve receive-diversity, but to decrease
the gap that exists between the ML detectors performance and
that of LR-aided LDs. By varying a parameter called the bias
in the Sequential Decoder, we are able to attain a very good
performance-complexity trade-off.

Our work will be compared against the Element-based Lat-
tice Reduction (ELR) techniques used in [2] and the Complex
Lenstra-Lenstra-Lovasz (CLLL) reduction technique employed
in [1] to decode MIMO systems. The bias is varied according
to the transmit-to-receive-antenna ratio in order to upper-bound
the error probability according to [10]. Increasing the bias
reduces complexity but results in higher error rates and vice
versa for decreasing the bias. This happens because as the bias
is increased, the decoder approaches the ZF decoder, while
decreasing the bias results in it approaching the ML decoder.
It is shown that the Sequential Decoder, like the CLLL and
ELR, attains receive-diversity and, in fact, performs better than
them.

The rest of the paper is organized as follows: in Section
II, the MIMO system model is introduced. Section III explains
past work done on decoding of MIMO systems using Lattice
Reduction and discusses the ELR and CLLL techniques that
our work will be compared against. Section IV describes
the working of the Sequential Decoder, the framework of
our system, and using the minimum distance of a lattice to
upper-bound the error probability of the Sequential Decoder
by varying a parameter called the bias accordingly. Section
V contains the numerical results of simulations carried out
using the decoding schemes for different systems. Section VI
concludes the paper.

Notation: Throughout the paper, vectors will be denoted
by lower bold faced letters and matrices by upper bold faced
letters. The superscript 7 denotes the transpose, * denotes the
conjugate and 7 denotes the Hermitian. Real and imaginary
parts are denoted by R[.] and [.] respectively. Iy denotes
the N x N identity matrix and 151 the vector of dimension
N x 1 consisting of all ones. Z denotes the the integer set,
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C, the complex field, R for real numbers, and Z[j] for the
Gaussian integer ring with elements of the form Z + jZ.

II. SYSTEM MODEL

Our system is one that employs multiple antennas at
both the transmitter and receiver. Let M denote the number
of transmit antennas, /N the number of receive antennas,
and let N > M. The vectors X, = [Tc1,Te2,---,Tenr)?,
Y. = [yclayCQ; ceey yCN]T and We = [wcla We2y - - - 7ch}
denote the transmit, receive and noise vectors respectively. The
N x M matrix H., represents the channel matrix. The noise
is assumed to be Additive White Gaussian Noise (AWGN)
and the channel to undergo Rayleigh fading; each component
of the noise vector and the channel matrix is independent
identically distributed (i.i.d.) and has a complex Gaussian
distribution with zero mean and unit variance. The channel
is also assumed to be stationary throughout a transmission
block and to vary independently from block to block. The
Channel Side Information (CSI) is assumed to be available at
the receiver but not at the transmitter. The following equation
describes the channel model:

| D.SNR
Ye = THclxc + we (D

= H.x.+ w,, ()

where SN R is the signal to noise ratio, D is a normalizing
factor equal to 12/(M — 1) and H, = /D.SNR/MH,,.
We have chosen the entries of x. to be complex, indepen-
dent and drawn from the QAM constellation S such that
the real and imaginary parts of x. are drawn from the set

{£1,43,..., VM —1}.

The vectors X, y and w are the vectors X., y. and w,
respectively, but with their real components stacked on top
of their imaginary components i.e. x = [R[x |7 S[x 717, y =
Ry )T Sy )"]" and w = [R[w.]TS[w.]T]T. The counterpart
of the matrix H,. is the matrix H, where

H= §R[Hc] _%[Hc]
| S[H RMH.] |’
so that,
y=Hx+w. 3)

Note: x is of dimensions 2M x 1, y and w of 2N x 1 and H
of 2N x 2M.

III. LATTICE REDUCTION TECHNIQUES FOR DECODING
MIMO SYSTEMS

Matrices that are more orthogonal have better properties
such as ease of inversion, than matrices that are singular or
ill-conditioned. The noiseless receive vector, H.x., in MIMO
detection can be interpreted as a point in a lattice with
generator matrix H,. Since the same lattice can be generated
by an infinite number of basis, different reduction techniques
are available that result in a new generator matrix H, that has
a condition number closer to 1, or in other words is more
orthogonal. _

H.=H.T,

where T is a unimodular matrix and so, by definition, for the
complex channel matrix H., all elements of matrices T and
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T~ contain Gaussian integers only and the determinant of T
is £1 or 45 (for real H,, all elements of matrices T and T!
contain integers only and the determinant of T is 1).

We can now translate our original system in (2) to

Yo = (HT)(T'xc) + we )

= HX.+ w,, 5
where X, = T 'x..

Linear detection schemes, such as ZF and MMSE, are
applied to the modified system to obtain X.. X. is then
translated back by multiplying with T followed by quantization
to obtain X, belonging to the M-QAM constellation, which is
an estimate of x..

% = Q(TX.). 6)

The performance of these LR-aided LDs is significantly better
than the LDs without any aid, and there is a small increase in
the computational complexity of the LR-aided LDs. There are
many techniques available to perform lattice reduction and in
this paper we will compare our work to lattice reduction using
the ELR algorithm and the CLLL algorithm constructed in [2]
and [1] respectively.

A. Element-based Lattice Reduction (ELR)

It has been shown in [2] that the Pair-wise Error Probability
(PEP) of incorrect detection of the " transmitted symbol,
Z.,, increases with the corresponding diagonal element C; ; of
matrix C, where C = ((HY)H,)~! . Similarly in the reduced
basis the PEP of incorrect detection of the i transmitted
symbol ofjci increases with the *" diagonal element, Ciis
of matrix C where

~ ~H ~
C ((Hc )HC)_l
T 'c(T HH.

Thus to reduce the PEP, the diagonal elements of C
must be minimized. In particular, increasing SNR results
in the largest diagonal element of C dominating the PEP;
minimizing this is therefore of utmost importance. Two
optimization problems can be formulated from the above
analysis:

- The Dual-Shortest Longest Vector (D-SLV)N reduction,
which minimizes the largest diagonal element of C by finding
an appropriate unimodular matrix

- The Dual-Shortest Longest Basis (D-SLB) reduction, which
also by finding an appropriate unimodular matrix, minimizes
each diagonal element of C in descending order of value

Finding the optimum reduced-basis using the D-SLV and
D-SLB is computationally very demanding. So instead ELR
algorithms are proposed in [2] which iteratively calculate sub-
optimal solutions for the D-SLV and D-SLB reductions.

B. Complex Lenstra-Lenstra-Lovasz (CLLL)

The LLL algorithm presented in [11] is one of the most
popular techniques used for lattice reduction. Like the ELR
algorithm, it does not guarantee finding the optimum reduced-
basis as this may be computationally very complex, but instead
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guarantees to find a reduced basis within a factor of the opti-
mum, in polynomial time. The LLL algorithm works with real
matrices and hence the dimensionality of the channel matrices
is doubled as computations are carried out on H instead of
H.. The CLLL algorithm in [1], on the other hand, performs
complex operations and can reduce complex matrices. As a
result, the computational complexity of the CLLL algorithm
is half of the LLL. Impressively, this reduction in complexity
occurs without any performance loss.

IV. SEQUENTIAL DECODER AND RELATED WORK
A. The Sequential Decoder using the Fano Algorithm

The procedure of lattice decoding basically involves the
following: reducing the lattice basis to a more orthogonal basis,
performing closest lattice point search (CLPS) in the reduced
basis, and transforming the result back to the original basis.

In our work we employ the sub-optimal Sequential Decoder
using the Fano Algorithm. Due to its sub-optimality, the de-
coder has a much lower computational complexity than the ML
decoder but an error performance that, although acceptable,
is worse than that of the ML. From [12] , the working of
a Sequential decoder can be divided into two stages, namely
the Preprocessing Stage followed by a Tree Search Stage. The
purpose of the Preprocessing Stage is to tame the channel,
make it sparser, and to put the problem in the form of a tree
structure. Taming the channel involves a QR decomposition of
the channel matrix so that the detection can be done recursively
due to the upper triangular structure of the modified problem.
MMSE-Decision Feedback Equalizer (MMSE-DFE) may also
be applied to achieve better results at the decision point. To
induce sparsity in the modified problem, a lattice reduction
may be applied to obtain an upper triangular structure more
sparse than the original one. Permutation of the columns of
the upper triangular matrix also results in increased sparsity.
To ensure the problem has a tree structure it must be in an
upper triangular form. The Tree Search Stage involves finding
the best path in the tree of possible codewords.

Since we are trying to avoid high complexity, we have not
focused much on the Preprocessing Stage and simply apply a
QR decomposition to the channel matrix to put our problem in
the form of an upper triangular structure so that the problem
has a tree structure and detection can be done recursively. For
the ease of analysis we will denote the upper triangular system
as follows:

ToM,2M

TaM,1
ZoM 0

SoM
ToM—1,1

ToM—1,2M—1
z : ’ ' ) s
1 0 R 0 ’I“171 L

z S

naM

+ o

ni
——

n
where z represents the modified receive vector, R the modified
channel, s the vector of symbols to be decoded, and n the

modified noise vector.
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This is followed by a Fano Search Stage which is a
type of iterative search. The Fano Algorithm, unlike other
search stage algorithms (e.g. the Stack Algorithm), requires
almost negligible memory due its iterative nature. The price
paid for the low memory requirements is the need to revisit
nodes that the other algorithms do not. In particular, the Fano
Algorithm is a Best-First Search algorithm which means that
any level in the search stage the algorithm chooses the best
possible child node and then checks the validity of the newly
formed path. In general, the tree structure of a code is used to
decode the received sequence by making tentative hypotheses
on successive branches of the tree. These hypotheses may
be changed when subsequent ones indicate an error in the
previous hypotheses.

Nodes are represented by s*, where 1 < k < 2M and
s = (s182...5k), and the bias is denoted by b. Sequential
decoding involves deciding a codeword that minimizes a
certain function. The function is a bit metric called the path
value and is denoted by f(s¥) . The path value used in the
Fano Algorithm of sequential decoding is

k

k
£ = 30 wy(s) — bk,

where

(o (SZ) =

A
5= ) TigSi
j=1

It has been proved that at any decoding stage, extending the
path with the smallest Fano metric minimizes the probability
that the extending path does not belong to the optimal path,
thereby justifying the use of the path value. Making such a
‘locally’ optimal decision at every decoding stage, however,
does not guarantee finding the ‘global’ optimal path (i.e. the
ML detectors result), and hence the error performance of the
Sequential Decoder using the Fano metric is inferior to ML
decoding. The dynamic threshold, 7', is another metric and
is constrained to change in increments of a fixed number
A, called the step size. The changes in the value of T are
determined by the algorithm which tightens and loosens the
bound T as required. Since the Fano Algorithm is a Best-
First Search, only the child node with the best Fano Metric is
considered in an iteration. If this metric is less than 7', the child
node is valid. For a valid child node the algorithm is terminated
if the child node is a leaf node, otherwise tightening of the
dynamic threshold 7" is done. If the child node isn’t valid, the
threshold will be increased if it is too small, and if it isn’t the
algorithm will move back a node and look for the next best
child node.

The Sequential Decoder thus hypothesizes in such a way
that the path value, f(s*), is always less than the dynamic
threshold T'. If f is greater than 7', and 7T is not too small,
the decoder is on the wrong path and searching for a different
path in the tree needs to be done.

The Fano Algorithm allows two types of movements from
one node to another:
1. Forward — the decoder goes one branch to the right in the
received value tree from the previously hypothesized node
2. Backward — moving one branch to the left in the received
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value tree when an incorrect hypothesis has been made, so that
the next best child node can be found.

A record of the previous, current, and successor nodes and
path metrics is kept (i.e. s*71, f(s*71), s*, f(s¥), s**! and
f(s**1)) and the threshold 7' at every node. Initially (i.e. at
k = 0), s* is the origin and 7' = 0.

B. Framework

Since the 2M x 1 vector X in (3) contains elements drawn
from M-QAM constellation ie. {#1,+3,...,+V/M — 1},
X can be rewritten as X, where X = 2X — 1ap/1, so that X
contains elements from Z2M. This translation is required as
the Sequential Decoder works with integer vectors. The system
in (3) can thus be expressed as

y = HE2X—Iloyx1)+w (7
—  2HX — Hlgpy oy + W. )

The system can then be translated to

y = y+Hly 9
— 9HX+w (10)
= Ht+w. (11)

where H = 2H. The set A = {Hx : x € Z*M} is a 2M
dimensional lattice in R2V. Applying a QR-decomposition to
H, we obtain Q; and R;. This is used to calculate

yp = Q'y (12)
= QQ,Rix+Qf'w (13)
— RiX+wi, (14)

where w; = QFw. As the columns of Q are unit vectors,
the distribution of the elements of wy is the same as that of
W. yp is input to the Fano Algorithm in [12] along with Ry,
the step size which is set to be equal to 1 for our work, and
the bias. The bias is the parameter which is varied to obtain
different performance-complexity trade-offs. The output of the
Fano Algorithm is the 2M X 1 vector X, consisting of integers.
It is then translated back to obtain the 2M x 1 vector X1 by
the following

X1 = 2X — 12M><1-

The vector X; consists of the real and imaginary parts stacked
on top of one another, these are then used to obtain the
complex vector X.; of dimensions M x 1. Since the Fano
Algorithm outputs a vector containing integers from the infinite
ring whereas the original transmitted vector contains elements
belonging to the M-QAM constellation, a quantization step
is required to ensure the decoded symbols belong to the M-
QAM constellation. Hence X, which is an estimate of x. in
(2), is obtained by the quantization of X.1, i.e. X, = Q(X.1).

C. Minimum Distance of a Lattice

In this section we will discuss how the minimum euclidean
distance of a lattice generated by the n xm real channel matrix,
H, is used to bound error probability by bounding the bias.
Assuming the all-zero lattice point of dimensions m x 1 is
transmitted, the error probability of the Sequential Decoder
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can be upper bounded as a function of the bias as shown in
Eqgn. (9) of [10]

P.(b) < Pr( U { ox"w > Hx||2(1 - deHEH))} )

XEZ™ min

x7#0
From this we can see that we require the term bm/d? ;, (H)
to be less than 1. Hence, the bias, b, must be lower than
d?,. (H)/m, where d? ; (H) is defined as

min min
dryin (H) = min [|Hx]|[*.
x#£0

Thus we are interested in finding the minimum distance of
the noiseless received vector, obtained after multiplication of
an integer transmit vector x with the channel matrix H. As x
can be any point on the m-dimensional integer space and the
integer space has infinite points, using an exhaustive search
such as ML decoding to find the minimum distance is not
possible. Hence for the calculation of d,,;,(H) we opt for a
technique that has lower computational complexity, namely the
Sphere Decoder presented in [13]. Note, as H is random, an
average minimum distance can be found by averaging over
a large number of realizations of the channel matrix. This
average minimum distance is used for calculating the bias in
our work.

For a particular ratio of transmit to receive antennas, ¢ =
m/n, increasing the number of transmit antennas and hence the
number of receive antennas as well, an asymptotic bound on
the minimum and maximum eigenvalues of channel matrices
was found in [14]. The ratio of the minimum eigenvalue to the
number of transmit antennas, \,;,/m, of an n x m channel
matrix approaches 2(1 — /7j)? as the number of antennas
is increased for a fixed transmit to receive antenna ratio ¢.
Additionally d? , (H) is lower bounded by \,,i, as:

min

dfnin (H) = xrg%% HHX| ‘2
x#0
> min xH” Hx
xezZ™
x#0
> A\pin Min x||2
xeZ™
x#0
= /\mzn
Note:
min [Ix||? =1,
xeZ™
x7#£0

as the smallest norm corresponds to the vector with all entries
equal to 0, except one entry which is equal to 1.

Through simulations using the Sphere Decoder we were
able to calculate and plot d2 ,, (H)/m for different antenna
ratios ¢ with increasing antennas. We require this as we want
to investigate the effect of using bias values in the range of

the lowest d2,,, (H)/m for a particular 4.

min

V. NUMERICAL RESULTS

In this section we compare the performance and complexity
of Sequential Decoders with and without an MMSE extended
system, using different bias values, against LR-aided ZF and
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MMSE LDs. The LR techniques employed for comparison
are the dual ELR SLB and the CLLL. The bias values used
for the Sequential Decoder are 0.4, 0.5, 1 and 5 so that the
performance-complexity trade-off can be observed. All the
systems being analyzed contain equal numbers of transmit and
receive antennas. The bias values of 0.4 and 0.5 were chosen
as the values in the range lower than d2,;, (H)/m for § = 1.

Fig. 1(a) is a plot of the symbol error rate as the number
of antennas is increased. A 4-QAM constellation is used for
transmission and an SNR of 3dB. As expected, the un-aided ZF
decoder has the worst performance. The CLLL-aided ZF shows
some improvement and the ELR SLB-aided ZF has the best
performance among the LR aided ZF decoders. The Sequential
Decoder with a bias of 5 performs not much better than the
unaided ZF, but at a bias of 1 there is a marked improvement in
performance, and bias values of 0.4 and 0.5 show particularly
good performance. In the cases of bias values equal to 0.4
and 0.5, it is also very interesting to note that unlike the other
decoders, performance is decreasing with increasing number of
antennas. The LR aided MMSE and unaided MMSE showed
marked improvement but similar performance trends to their
ZF counterparts. The extended MMSE system was also applied
to the Sequential Decoders and performance improvement
was again noted from the corresponding un-extended case;
the performance with bias values equal to 0.4 and 0.5 is
exceptional.

Fig. 1(b) shows the corresponding complexities of the
Sequential Decoders and the complexity of the lattice reduction
for each technique applied to both the channel matrix (ZF case)
and the extended channel matrix (MMSE case). As expected,
the complexity of the MMSE systems is lower than their
ZF counterparts and the complexities grow with increasing
antennas. Among the LR schemes, ELR SLB reduction has
the highest complexity, followed by CLLL. The rate at which
complexity for the Sequential Decoders increases is larger than
that of the lattice reductions particularly for the smaller bias
values. The complexity of the Sequential Decoder with the
extended MMSE system shows considerable improvement and
is even lower than the SLB-aided MMSE for smaller systems,
but when the number of antennas exceeds around 12 to 20,
the complexity of the Sequential Decoder with lower bias
values becomes larger. The price paid for the performance
gain of the Sequential Decoder is its high complexity for large
systems. For small systems, such as of five antennas, it is
interesting to note that there is a performance gain without
higher complexity.

Fig. 2(a) is the plot of the symbol error versus SNR
of a 32 x 32 system employing a 16-QAM constellation.
As can be seen from the figure, the performance of the
Sequential Decoder is superior and its error curves fall a
lot more sharply and at considerably lower SNR values.
The error curves corresponding to lower bias values fall at
lower SNR and the error curves fall almost parallel to one
another. Additionally, the Sequential Decoder when applied to
an extended MMSE system results in the error curves falling
at even lower SNR values, and the gap can be seen between
them and their corresponding un-extended system. The ELR
SLB-aided ZF and MMSE have the next best performance after
the Sequential Decoders, though the ELR SLB-aided ZF has
better performance at moderate SNR values and at higher SNR
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the ELR SLB-aided MMSE outperforms it. The CLLL-aided
MMSE and ZF perform next best. At low to moderate SNR, the
CLLL-aided MMSE outperforms the CLLL-aided ZF, but at
an SNR of around 20dB, the CLLL-aided ZF’s error falls and
it outperforms its MMSE counterpart. The worst performance
as expected is by the unaided ZF, followed by the unaided
MMSE.

Fig. 2(b) is a plot of the corresponding complexity of the
Sequential Decoders with and without the extended MMSE
system, and the Lattice Reduction techniques applied to the
channel matrix and the extended MMSE channel matrix.
The complexity for Lattice Reduction of the un-extended ZF
systems is constant and independent of SNR; the ELR SLB
having the highest complexity, followed by the CLLL. The
corresponding MMSE systems have lower complexity at low
SNR values, but as SNR increases the complexity of the
MMSE system’s Lattice Reduction reaches that of the ZF
system’s. This can be explained by the fact that in the case
of the MMSE, the channel matrix is replaced by the extended
channel matrix, which is better conditioned. Since both the LR
algorithms perform reduction until the matrix is good enough
in terms of orthogonality of the columns, the extended channel
matrix in a lot of instances does not require reduction as
it is already good enough. When the unit variance channel
matrix is multiplied by a larger factor, the need to reduce
the channel matrix and make it closer to what is defined as
‘minimal orthogonality’ is increased. Increasing SNR therefore
results in more channel matrices undergoing reduction. This
increases until all the channel matrices need to be reduced
and hence we have constant complexity for the higher SNR
values. This can also be seen by varying a parameter of the
CLLL reduction algorithm, §, which is a measure of how
much the channel matrix should be reduced to make it close
to orthogonal. Increasing 0 results in more reduced matrices,
higher computational complexity and better performance. § can
take any value between 0.5 and 1, and was set to 0.5 for all
of our simulations.

The Sequential Decoders in Fig. 2(b) have a particular
complexity trend: a region of low complexity (comparable to
the LR techniques) at low SNR, a region of high complexity
in a particular SNR range, low complexity (comparable to the
LR techniques) at higher SNR. The range of high complexity
shifts towards higher SNR values as the bias is increased. It
should be noted that for each bias value the range of SNR
that has high complexity corresponds to the SNR range in the
error performance curves where the error probability first starts
to drop steeply. After this high-complexity range, at higher
SNR values the complexity of the Sequential Decoders falls
to values comparable and even lower than the LR techniques.
These trends can be explained as follows; initially at low SNR
as the noise is more significant relative to the signal part of
the received message, the decoder finds incorrect branches on
the tree and makes mostly erroneous decisions and without
much effort, corresponding to the high error probability and
low complexity. As the SNR is increased, the decoder is able
to differentiate between the noise and signal components so
the complexity increases and error decreases as more work
is done to decode correctly by finding the right branch. At
higher SNR values, it is easier for the decoder to differentiate
between the error and signal components and correct detection
is done without too much work by the decoder, hence low
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(b) Complexity vs. SNR for different detectors.

Fig. 2: Performance and complexity of different detectors for a 32 x 32 MIMO System employing 16-QAM.

error at low complexity. It should also be noted that the
Sequential Decoders applied to the extended MMSE systems,
although still have higher complexity than the Lattice Reduc-
tion techniques, show a significant complexity improvement
from their un-extended counterparts, have a narrower range of
high-complexity and this range occurs a little before the that
of the un-extended Sequential Decoders which corresponds to
the fact that their error curves drop before those of the un-
extended.
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VI. CONCLUSION

In this paper, we analyzed the performance of Sequential
Decoders for large MIMO systems and compare them to LR-
aided LDs. The results show that the Sequential Decoder
outperforms LR-aided LDs in terms of performance, though
complexity may be high. It can also be extrapolated that there
is room for improvement of the overall system performance,
as the bias and SNR for a particular number of transmit and
receive antennas can be chosen so that significant performance
improvements are achieved in the same or even lower complex-
ity range.
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