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Abstract—HTTP constitutes a dominant part of the Internet
traffic. Today’s web traffic mostly consists of HTTP/1 and the
much younger HTTP/2. As the traffic of both protocols is
increasingly exchanged over encryption, discerning which flows in
the network belong to each protocol is getting harder. Identifying
flows per protocol is however very important, e.g., for building
traffic models for simulations and benchmarking, and enabling
operators and researchers to track the adoption of HTTP/2.

This paper makes two contributions. First, using datasets of
passive measurements collected in operational networks and Deep
Packet Inspection (DPI), we characterize differences in HTTP/1
and HTTP/2 traffic. We show that the adoption of HTTP/2
among major providers is high and growing. Moreover, when
comparing the same services over HTTP/1 or HTTP/2, we notice
that HTTP/2 flows are longer, but formed by smaller packets.
This is likely a consequence of new HTTP/2 features and the
reorganization of servers and clients to profit from such features.

Second, we present a lightweight method for the classification
of encrypted web traffic into appropriate HTTP versions. In
order to make the method practically feasible, we use ma-
chine learning with basic information commonly available in
aggregated flow traces (e.g., NetFlow records). We show that a
small labeled dataset is sufficient for training the system, and it
accurately classifies traffic for several months, potentially from
different measurement locations, without the need for retraining.
Therefore, the method is simple, scalable, and applicable to
scenarios where DPI is not possible.

Index Terms—HTTP, Characterization, Machine Learning

I. INTRODUCTION

HTTP has occupied a dominant position among Internet
traffic, and it is expected to maintain such position in the future
as more and more applications are getting migrated to the
Web. The constant evolution of the Web has resulted in various
updates to HTTP. Since its first version, the behavior of HTTP
in the wild has been intensively studied and the gained insights
have been used, for example, by web developers to improve
the performance of web applications [1], by researchers to
build traffic models for simulation and benchmarking [2], and
by operators and service providers to track the adoption of
new protocol versions [3].

With the advent of new HTTP versions (e.g., HTTP/2), it
is expected that the traffic share of coexisting protocols will
change. Not a surprise, the biggest Internet companies are
usually the early adopters. As a consequence, our knowledge
about the behavior of web traffic has to be updated, since
these protocols may differ significantly in terms of key metrics,
such as request/response sizes, flow duration and number of

connections. However, identifying the used HTTP version
in large-scale traffic measurements is not trivial. First, since
HTTP/2 traffic is mostly encrypted, and HTTP/1 is fast being
migrated to HTTPS as well, any practical identification method
has to operate without payload inspection. Second, whereas
fields in TLS handshakes still provide hints about the used
HTTP version as we will discuss later, this information is
not available in basic flow-level statistics [4] (e.g., NetFlow
records) usually available in real deployments. Thus, opera-
tors and researchers have no means to monitor the protocol
adoption at large scale, or to study practical differences of the
protocols from the network point-of-view.

This paper makes two contributions. First, using datasets
of flow-level statistics collected in operational networks, aug-
mented with features extracted by means of Deep Packet
Inspection (DPI), we provide a comparison of flow-level
characteristics of HTTP/1 and HTTP/2 traffic. We confirm [3]
a fast increase in HTTP/2 adoption among top Internet play-
ers. Furthermore, we show that new features introduced in
HTTP/2, such as header compression, together with likely re-
organizations of sites and servers to profit from such features,
result in clear differences in the network fingerprints of the
protocols. Indeed, HTTP/2 flows are on average 36% longer
in duration than HTTP/1 flows, while HTTP/2 request and
response packets are on average 40% and 29% smaller than
in HTTP/1 for the same service, respectively.

Second, these differences in basic traffic features motivate
the search for methods to identify HTTP versions when DPI
is not possible. We propose the use of machine learning
with basic features available in NetFlow measurements to
classify HTTP traffic – thus, introducing a classifier that is
able to operate with existing traces and monitoring equipment,
and easily scalable to high-speed networks. We validate the
classifier using the real traces where ground truth is known by
means of DPI on TLS handshakes. We test various learning
algorithms and conclude that decision trees are quite suitable
for this problem. After training the system with a relatively
small set of flows, the classifier can achieve very good accu-
racy at high speed with only basic NetFlow features. Finally,
we show that the system accurately classifies traffic from
different locations and for several months without the need
for continuous retraining.

Next, Section II discusses the evolution of HTTP and related
work. We characterize HTTP traffic based on passive traces



in Section III. Our HTTP classifier is presented in Section IV
and validated in Section V, whereas Section VI concludes the
paper.

II. BACKGROUND AND RELATED WORK

A. Evolution of HTTP

HTTP was initially designed for the delivery of simple web
pages. In HTTP/1.0, a separate network connection is required
to request each resource. HTTP/1.1 introduced the concept of
persistent connections, so that the same connection is reused
to request additional resources from the server. To further
improve speed, pipelining allows the client to asynchronously
send multiple requests to the server without waiting for the
response. However, the specification requires that the server
sends the responses in the same order in which it received
the requests, which can result in so-called head-of-line (HOL)
blocking. A widely used optimization technique in HTTP/1.1
is to open multiple connections to the server.

After standardization of HTTP/1.1 there was no major up-
date of the protocol for nearly 15 years. Instead, several tweaks
like spriting, inlining and domain sharding were introduced
to improve performance. In 2015, HTTP/2 was standardized
with the objective of improving web experience by reducing
latency. Among others, HTTP/2 has the following major fea-
tures: (i) multiplexing, i.e., the use of multiple streams inside
a single TCP connection for concurrent requests; (ii) reducing
bandwidth by using header compression; (iii) allowing servers
to push data to clients; and (iv) content prioritization, to allow
clients to specify the order in which resources should be sent
by servers, so to render pages more efficiently.

B. Related work

Given that HTTP has become the de facto protocol for de-
ploying new applications and services, there are many studies
on HTTP/1 web traffic, e.g., [2], [5], [6]. With the advent of
protocols like QUIC, SPDY and HTTP/2 the characteristics of
web traffic are bound to change. Performance improvements
promised by these new protocols are studied in [7], [8],
[9], [10]. In [3], the authors build a measurement platform
that actively monitors HTTP/2 adoption. They also provide
content analysis and page-level characterization of HTTP/1
and HTTP/2 traffic using active measurements. We use pas-
sive measurements to provide a flow-level characterization of
HTTP/1 and HTTP/2 traffic.

Machine learning has been used for traffic classification
for more than a decade. Various machine learning methods
have been employed to identify the applications and protocols
behind Internet traffic (see [11] for a survey on early work
in this field). We follow a similar idea and explore whether
machine learning algorithms are effective in identifying the
exact HTTP version used in encrypted web traffic.

Most work on traffic classification relies on DPI or on
the analysis of packet-level features, such as packet sizes.
Since our objective is to create a lightweight method, we only
use aggregated flow-level features which are computationally
less expensive. This advantage of flow data has been also

Fig. 1: TLS handshake with application protocol negotiation.

recognized by others: For example, the authors of [12] analyze
NetFlow records to detect HTTPS webmail traffic. As we
are dealing with web traffic transported over TLS, we use
information from TLS handshake messages to identify the
HTTP version to construct the ground truth. This information
is however only exploited for evaluating the performance of
the algorithms, which are trained with basic fields present in
ordinary NetFlow records.

III. CHARACTERIZATION OF HTTP/2 TRAFFIC

The new features of HTTP/2 are expected to result in a
different network fingerprint when compared to HTTP/1. In
this section, we compare flow-level characteristics of HTTP/1
and HTTP/2 traffic. We first describe our datasets and how
we have built the ground truth. Then we discuss the adoption
of HTTP/2 by popular web services and give a flow-level
characterization of the observed traffic.

A. Datasets

We rely on data exported by Tstat [13] in our evaluation.
Tstat acts as an advanced flow exporter, monitoring all TCP
connections in the network and exporting more than 100
metrics for each flow. These metrics include all basic features
present in popular versions of NetFlow — e.g., IP addresses,
bytes and packet counters and flow start/end timestamps. Tstat
adopts the classic five-tuple definition for a flow: client and
server IP addresses, client and server port numbers and the
transport layer protocol define which packets belong to a flow.

We collected traffic traces with Tstat in two different net-
works from June to December 2016. The Campus dataset was
collected at border routers of a European university campus
network. It includes traffic of around 15 000 users connected
through wired network in research and administrative offices
as well as WiFi access points. The Residential dataset was
collected at a Point of Presence (PoP) of a European ISP. This
network includes traffic of around 25 000 households that are
provided access via ADSL and Fiber To The Home (FTTH).

Although the HTTP/2 specification does not require the use
of TLS, currently all major browsers only support encrypted
HTTP/2 traffic. This means that negligible amount of plaintext
HTTP/2 traffic is expected on TCP port 80. Since we are
interested in classifying HTTP flows transported over TLS,
we isolate the flows with server port equal to 443, discarding
all the remaining flows.



	0

	20

	40

	60

	80

	100

facebook

youtube

google

wikipedia

doubleclick

instagram

twitter

linkedin

yahoo

dropbox

Tr
af
fic
	s
ha
re
	(
%
)

Web	applications

HTTP/2 HTTP/1

(a) June 2016

	0

	20

	40

	60

	80

	100

facebook

youtube

google

wikipedia

doubleclick

instagram

twitter

linkedin

yahoo

dropbox

Tr
af
fic
	s
ha
re
	(
%
)

Web	applications

HTTP/2 HTTP/1 others

(b) December 2016

Fig. 2: HTTP/1 and HTTP/2 share of ten popular web applications.

B. Ground truth

To build the ground truth, we analyze the NPN (Next
Protocol Negotiation) and APLN (Application-Layer Protocol
Negotiation) information exported by Tstat. NPN and ALPN
are TLS extensions that allow clients and servers to negotiate
the application protocol to be used in a connection. Since 2016,
NPN is deprecated and has been replaced by ALPN, which
is an IETF standard. Clients may use both NPN and ALPN
extensions, while servers will always use only one of them.
The sequence of steps taken in NPN and ALPN negotiations
is shown in Figure 1.

The negotiation of the application layer protocol using
NPN involves the following steps [14]: (i) the client sends
the next_protocol_negotiation extension in the TLS
ClientHello message with empty extension_data;
(ii) the server sends a list of supported application protocols
in the ServerHello message; (iii) the client selects one
suitable protocol and sends it back in the next_protocol
message under encryption before finishing the TLS handshake.

ALPN is instead negotiated in two steps [15]: (i) the
client sends a list of supported application protocols using
the application_layer_protocol_negotiation
extension in the TLS ClientHello message; (ii) the
server selects one suitable protocol and sends it back in
the ServerHello message. In this way, the protocol
negotiation is done in the clear in a single round trip within
the TLS handshake.

Tstat has methods to extract NPN and ALPN information
from the TLS handshake. It observes non-encrypted TLS
messages and exports the list of protocols offered by clients
and servers. We annotate all HTTPS flows with the selected
application layer protocol using the NPN and ALPN flags
exported by Tstat. Those labels serve as the ground truth
to train the machine learning models (see Section IV), as
well as to validate the classification performance. Remaining
features exported by Tstat are discarded from now on. In our
datasets the HTTPS flows comprise roughly 68% HTTP/1,
27% HTTP/2 and 5% other non-HTTP traffic on port 443.

C. HTTP/2 usage evolution in popular web applications

According to [16], the majority (≈ 77%) of the globally
used web browsers support HTTP/2, therefore the adoption
of HTTP/2 mainly depends on the support provided by the
servers. To find out which HTTP versions are in use by some
of the most popular web applications we use information
from the TLS Server Name Indication (SNI) extension. This
extension allows a client to indicate to the server which
hostname it attempts to connect to. Tstat extracts the SNI
hostname for each flow and we includes this feature in
our ground truth. We aggregate all the flows that belong to
the same second-level domain and also assign flows from
known content delivery networks (CDN) to the respective web
application, e.g., fbcdn is used by Facebook Inc. Figure 2
shows ten popular web applications and their usage of HTTP/1
and HTTP/2 in June and December 2016. Google, YouTube,
DoubleClick ad service and Wikipedia heavily use HTTP/2
and it has remained constant in the last six months. Twitter
increased the usage of HTTP/2 for its services from 45% to
70%. Interestingly Linkedin had around 30% share of HTTP/2
traffic in June, but now it has completely switched back to
HTTP/1. Dropbox still mostly uses HTTP/1 and its share of
HTTP/2 has only slightly increased.

The most interesting change is in Facebook and Instagram
traffic. In the past a majority of this traffic was HTTP/2, but
now only 50% of Facebook and 15% of Instagram traffic
constitutes HTTP/2. In Figure 2b we can see that the 26%
of Facebook and 38% of Instagram traffic on port 443 belong
to some protocol other than TLS. This is caused by a recent
migration of Facebook to a proprietary protocol in mobile
devices [17]. The Facebook protocol, called Zero, is a zero
round-trip (0-RTT) security protocol implemented over TCP
and based on QUIC’s crypto protocol. At the application level,
Facebook still relies on HTTP/2 in connections negotiated
using the Zero protocol. Facebook claims to have significantly
reduced the connection establishment time (and therefore the
mobile app’s cold start time) using this protocol. Since this



traffic does not use standard TLS protocol, it was labeled as
other non-HTTP traffic by Tstat during our captures.

D. Flow-level characterization of HTTP/1 and HTTP/2

It is expected that HTTP/2 will have a different network
fingerprint when compared to HTTP/1 due to the newly
introduced features. For instance, the use of plain-text headers
in HTTP/1 causes the protocol to (usually) take many round
trips to send headers from clients to servers for a single
HTTP request. HTTP/2 can perform similar operations in
a single packet, thanks to header compression, which can
reduce the header size by roughly 30% to 80%. Similarly,
due to multiplexing in HTTP/2, fewer connections can be
used to transfer various objects of a web page as compared to
HTTP/1 [18]. Moreover, it is expected that both browsers and
servers have been adapted to exploit new features of HTTP/2.

We quantify how all such differences impact HTTP traffic
in Figure 3 by utilizing our ground-truth traces. We select
a subset containing 1 hour of web traffic from June 2016
belonging to the five largest web applications (in terms of
number of flows), namely Google, Facebook, Doubleclick,
Youtube and Twitter. The subset contains around 700,000
HTTP/2 and 300,000 HTTP/1 flows.

Figure 3a shows the empirical CDF of the flow duration
for the two protocol versions. We can see that the majority of
HTTP/2 flows have longer duration. Around 25% of HTTP/1
flows are of very small duration, less than 1s, and another 13%
last between 1s and 10s. In HTTP/2 only 5% flows are smaller
than 1s and another 6% between 1s and 10s. Around 33%
HTTP/1 and 53% HTTP/2 flows have a duration longer than
100s. On average, HTTP/2 flows are 36% longer than HTTP/1
flows. Furthermore, the duration distribution of HTTP/2 flows
depicts two pronounced peaks at around 65s and 240s. We
investigated it further and found that the flows in the first peak
belong to Facebook and those in the second peak belong to
Google domains. They are pronounced only in the HTTP/2
curve because majority of the flows of Facebook and Google
belong to HTTP/2 which is evident from Figure 2. The reason
for the two peaks is probably the different timeout values used
at the server side.

We also observe that HTTP/2 flows usually have many
more packets per flow, likely because they are longer in
duration than the HTTP/1 ones. This effect is clearly visible
in Figure 3b. For this figure, the CDF has been calculated
separately for the data sent to the server (request) and received
from the server (response). The conclusion is however similar
for both traffic directions: 50% of the HTTP/2 flows have 20
or more packets in the traffic direction, whereas only 22% of
HTTP/1 flows carry 20 or more packets.

Interesting, while flows are longer and carry more pack-
ets, packet sizes of HTTP/2 flows are reduced substantially.
Figure 3c gives the empirical CDF of the average packet
size of HTTP/1 and HTTP/2 flows. The average packet size
is calculated by dividing the total amount of bytes by the
number of packets in a flow. Again, independent lines are
plotted for request and response packets. HTTP/2 request and

response packets are 40% and 29% smaller in size than in
HTTP/1, respectively. While our data does not prove causality,
we conjecture that most of this effect is caused by header
compression in HTTP/2. Around 80% of HTTP/2 and 55%
of HTTP/1 request packets are smaller than 100 bytes. The
advantage of header compression is clearly more prominent
in smaller response packets (<600 bytes).

Figure 3d quantifies overall effects in flow sizes, by showing
the empirical CDF of bytes per flow for the two protocol
versions. Here a much more complicated figure emerges, in
which many different effects are likely to interplay. Focusing
on lines depicting response flow sizes, notice in the tails
of the distributions that large flows (e.g., larger than 10000
bytes) are more common in HTTP/2 than in HTTP/1. The
longer duration of HTTP/2 flows (e.g., due to client and server
implementations) are again a reasonable explanation for that
effect. On the other hand, observe that flows with very limited
number of bytes (e.g., less than around 4000 bytes) are slightly
more frequent in HTTP/2 than in HTTP/1 as well, probably
thanks to the header compression feature of the former.

Finally, we take a random sample of 1500 flows from each
HTTP version and depict their properties in scatter plots.
Figure 3e shows the request and response packet size. In case
of HTTP/2 most flows are clustered between 400 bytes request
size and 800 bytes response size. For HTTP/1 the request size
is evenly spread throughout the range while the response size
is mostly above 600 bytes. HTTP/1 and HTTP/2 flows look
cleanly separated into different clusters. Similarly, in Figure 3f
HTTP/2 flows are grouped together with higher duration and
smaller request size while the majority of HTTP/1 flows have
smaller duration and larger request size. We next exploit these
characteristics to derive a method to identify traffic of each
protocol without inspecting payloads.

IV. FLOW-BASED IDENTIFICATION OF HTTP/2

A. Outline

It is clear from Figure 3 that HTTP/1 and HTTP/2 traffic
are different. This allows us to develop models that are able
to classify traffic according to the HTTP versions without
payload inspection. Since classification rules are hard to be
manually derived from traffic, we opt to follow a machine
learning approach.

In machine learning, classification is the task of assigning
a class to unknown instances, based on features that describe
the instances and a sample of instances with known classes.
In our case, the instances to be classified are flow records
exported by measurement devices, such as NetFlow exporters.
The features that characterize the instances are the metrics
exported by NetFlow (e.g., client and server IP addresses,
bytes and packet counters etc.), as well as features derived
from these data (e.g, average flow throughput). The classes
to be assigned to flows are the possible HTTP versions (i.e.,
HTTP/1 or HTTP/2) or Others for all remaining traffic.

Generally, the classification follows two steps in what is
called supervised learning. Firstly, a dataset of instances with
known classes is presented to the algorithm for training,
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Fig. 3: Characterization of HTTP/1 and HTTP/2 traffic.

i.e., the algorithm learns relations between features and the
classes of the problem. Secondly, using the model built during
the training phase, the algorithm assigns classes to unknown
instances during the classification phase.

B. Classification algorithms

Our goal is to assess the machine learning approach for the
identification of HTTP versions behind network flows. Among
the many classification algorithms found in the literature, we
take four different options and check their performance with
our data. We are not interested in performing an exhaustive
assessment of which algorithm is the best one, but instead
we want to coarsely select an algorithm that delivers good
performance for the particular problem we are solving.

We consider four algorithms: Bayesian Networks (Bayes
Net), Naive Bayes Tree (NB Tree), C4.5 Decision Tree and
Random Forest. These algorithms are appealing for being fast
and for requiring little parameter tuning. Methods like Support
Vector Machines or k-Nearest Neighbors are not considered
due to their complexity or slower speed. For the sake of
brevity, we refrain from providing details of the classification
algorithms. We use the implementations offered by Weka, and
readers can refer to [19] for further information about the
algorithms and the toolset implementing them.

C. Evaluation methodology

We use the datasets described in Section III-A for training
and testing the machine learning algorithms. Flows are labeled
as HTTP/1, HTTP/2 or Others based on TLS handshakes (see

Section III-B). This enables us to compare actual and predicted
classes and calculate performance metrics.

We evaluate five classic machine learning performance
metrics [20]: (i) Accuracy – the overall number of instances
that are correctly classified; (ii) Precision – the number of
instances correctly classified as belonging to a particular class;
(iii) Recall – the number of instances belonging to a particular
class that are correctly classified; (iv) F-measure:

F -measure = 2× Precision×Recall

Precision+Recall

(v) Kappa statistic:

Kappa =
Po − Pe

1− Pe

where
• Po = Observed Accuracy computed in the experiment
• Pe = Expected Accuracy, i.e. probability of accuracy by

random chance.
Accuracy is the most popular metric, but it can be mislead-

ing particularly when there is large class imbalance. Precision
and Recall are measures of exactness and completeness in
respect to a particular class, whereas F-measure is a balance
between the two. The Kappa statistic is considered a more
robust metric because it takes into account the correct classi-
fications that occur by chance.

The training set contains flows that are used to build
classification models while an independent testing set contains
flows representing the unknown traffic that we want to classify.
To create training and testing sets, we use stratified 10-fold



cross-validation, in which the original dataset is divided into
10 equal subsets. One subset is used for testing while the
remaining are used for training. This process is repeated 10
times and each time a different subset is used for testing. The
results are averaged over all repetitions.

D. Feature selection

The features used for training a classifier are usually key
for the classification performance. It is however hard to
know upfront which features are informative for classification.
Therefore, the training phase in supervised learning is usually
accompanied by a feature selection phase, in which a large
set of features is analyzed for shortlisting those with high
discriminating power. This is achieved, firstly, by defining
and extracting the largest possible number of features from
the input data (e.g., using domain knowledge). Then, feature
selection algorithms determine the most informative ones.

From the salient characteristics of the HTTP versions and
results presented in previous sections, we create a set with
17 candidate features, including: the overall flow duration
and, for both client to server communication and vice-versa,
the number of packets, number of bytes, average number of
bytes per packet, average packet throughput, average byte
throughput, and whether the flows have SYN, ACK or FIN
flag set.

Our goal of building a classifier that can operate with
NetFlow data constraints the set of features we can extract. In
particular, none of the above features requires access to packet
payload, nor they require information beyond the transport
layer (e.g., from TLS handshakes). Moreover, to keep the
classifier lightweight, we do not use features that require
correlation of multiple flows (e.g., the number of connections
between client and server to load a web page), as it would
introduce additional processing steps on raw NetFlow data.

We then apply correlation-based feature subset selection and
best-first search algorithms to rank the features. Again, we
use the implementation available in Weka [19]. We select the
best subset of seven features with highest predictive power for
training our classifiers: (i) Number of client bytes; (ii) number
of server bytes; (iii) number of client packets; (iv) number of
server packets; (v) average client bytes per packet; (vi) average
server bytes per packet; and (vii) flow duration.

V. CLASSIFIER VALIDATION

A. Classification performance

In order to find the optimal size for the training set, we first
test the accuracy of learning algorithms using training sets of
increasing sizes – ranging from 1 K to 1 M flows. We use the
Campus dataset in this experiment. We notice that accuracy
improves for all algorithms, provided that at least 100 K flows
are in the training set, and it practically stalls for training sets
containing more than 500 K samples. Therefore we conclude
that a training set of limited size (e.g., 500 K instances) is
sufficient for training the classifier.

We then perform 10-fold stratified cross-validation using
both Campus and Residential datasets. The results are in
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TABLE I: Evaluation of the algorithms.

Dataset Campus Residential

F-
M

ea
su

re Random Forest 97.3 97.5
C4.5 95.2 95.5

NB Tree 93.2 93
BayesNet 87.7 86.2

K
ap

pa

Random Forest 94.8 94.7
C4.5 90.8 90.4

NB Tree 86.4 87
BayesNet 76.5 70

Figure 4. Random Forest has the highest accuracy – i.e., 97.5%
– followed by C4.5 and NBTree having roughly 95% and 93%
accuracy. Overall, numbers are very similar in both datasets for
these classification models, reinforcing conclusions. BayesNet
has the lowest accuracy of 88% in Campus and 86% in
Residential dataset. Table I shows that F-measure (average
for the three classes) and Kappa coefficient values are quite
high for all algorithms, except BayesNet. This shows the good
classification power of the flow-based approach and confirms
that the high accuracy is not just by chance.

To further explain results, confusion matrices for the campus
dataset are shown in Figure 5. Rows mark the actual classes
of instances, columns mark the predicted classes, and cells are
normalized by number of instances of each actual class – i.e.,
each row sums up to 100%. Cells in the diagonals thus report
the recall of the class, and other cells show how instances are
misclassified. Focusing on Random Forest at Figure 5a, which
has the best results, we notice how it consistently classifies
instances of all classes with recall greater than 96%. Few errors
are observed in particular for HTTP/2 flows that are mistakenly
marked as HTTP/1.

B. Per service performance

There is usually a handful of web applications, such as video
streaming and social networking, that generates the majority
of traffic in any kind of network. It is crucial to verify that
the classification accuracy of the proposed method is due
to the characteristics of the protocol versions and not the
applications.



Fig. 5: Confusion matrices of the algorithms.
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We use the SNI field available in the ground-truth to
select the top-100 domain names according to the number
of flows. We then compute the percentage of flows that are
correctly classified for each domain name. Fig. 6 presents the
accuracy per domain name (left y-axis) of top-100 domain
names (x-axis) and their share of flows (right y-axis). The
red curve represents the accuracy per domain name, while
the blue curve represents the traffic share for each domain.
The black horizontal line marks the overall average accuracy.
As expected, we see that the top-5 domain names account
for the biggest traffic share, with a long tail of less popular
domain names. More important, it is evident from this graph
that the traffic of most domain names has been classified
accurately(¿90% accuracy). It verifies that the learning ability
of the algorithms is not impacted by specific characteristics
of popular applications and the traffic of the applications with
very small share is also classified with high accuracy.

C. Temporal stability

Ground truth collection for training machine learning algo-
rithms is not an easy process but frequent retraining is essential
to maintain a certain level of accuracy in most cases because
the old model becomes outdated after a certain amount of
time. The retraining process can be performed manually under
human supervision or automatically [21], but in either case it
is not convenient for system administrators to frequently use

TABLE II: Long-term classification accuracy.

Date Test Instances Accuracy (%)
Jun 800K 95.8
Jul 700K 94.8

Aug 400K 95.9
Sep 1.5M 95.5
Oct 2.1M 91
Nov 2.2M 90.4
Dec 1.4M 90.8

DPI based methods on network traffic due to legal and privacy
reasons. Therefore, the longer the model stays stable after
initial training, the better it is. The temporal stability measures
how accurate a classification method will remain over time.
To test the temporal stability of our system, we used 1 hour of
traffic trace from start of June 2016 as training set containing
roughly 650K flows to build a classification model with the
Random Forest algorithm.

We used seven test sets, each selected from a random day
and time from each month from June to December 2016. The
details of the test sets and the resulting classification accuracy
are shown in Table II. From October onwards we see a big
drop of 4-5% in classification accuracy. Upon investigation we
found that this is caused by the use of the Zero protocol by
Facebook and Instagram mobile apps which we have explained
in Section III-C. Since this traffic does not use standard TLS
protocol, it is labeled as other non-HTTP traffic by Tstat. It
constitutes a big portion of around 28% of other traffic and
therefore results in the increase of misclassification. In the
future, Facebook is going to subsume this protocol into their
implementation of TLS 1.3. To fix this issue for the time
being, we labeled this traffic of the Zero protocol as HTTP/2
instead of Other for the December test set. We repeated the
classification using the same model that was built from the
training set from June and the accuracy increased to 92.3%.

We can see that the classification model built in June
maintains a minimum accuracy level of at least 92% for
six months, which shows that the system has high temporal
stability and can continue to provide accurate classification for
several months without the need for retraining.

D. Spatial stability

The spatial stability measures how classification models per-
form across different networks. We tested the spatial stability
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Fig. 7: Comparison of training speed of the algorithms.

of our system by using datasets from two totally different
networks. We trained the Random Forest algorithm using
traffic flows from the Campus dataset and used this model
to classify flows from the Residential dataset and vice versa.
500K instances each were used for both training and testing
set. The accuracy in both cases was around 92%, which is
4% lower than in the scenarios where traffic from the same
network dataset is used for both training and testing. This is
probably due to usage of different services in these networks.
The traffic in the campus network will naturally have more
educational and scientific content which might not be there in a
residential network. On the other hand, the residential network
traffic usually has more entertainment-related content. As the
different usage profile is not captured by the model, it may
be the reason for the increase in misclassifications. However,
the accuracy is still good enough for most scenarios and
shows that this method can be extremely useful in cases where
labeled datasets are not available for a particular network. In
such cases a small labeled training set from another network
can be conveniently used.

E. Computational performance

We calculated the time required for training and classifi-
cation by varying the size of the training set from 1K to
1M entries and the size of the testing set from 10K to 10M.
The experiments were performed on a PC with 2.5GHz Intel
Core i7 processor and 8GB RAM. Figure 7 and Figure 8
show the training time and classification time. BayesNet is
the fastest algorithm in training and takes only 12s for 500K
instances. It is followed by C4.5, Random Forest and NB
Tree that take 141s, 305s and 481s respectively. C4.5 is the
fastest classification algorithm and takes only 31s to classify
10 million flows (≈ 323,000 classifications/s). It is followed
by BayesNet and NB Tree that take 63s and 106s respectively.
Random Forest is the slowest algorithm with 861s.

These results show that Random Forest and C4.5 algorithms
are best suited for this particular classification problem. C4.5
can be used in online classification systems where high speed
is required while Random Forest is a better choice for offline
systems as it provides slightly higher accuracy.
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VI. CONCLUSION

We presented a comparison of HTTP/1 and HTTP/2 traffic.
We studied basic statistics usually exported by NetFlow-
like measurement devices and found that differences in the
protocols, likely coupled with client and server adaptations to
exploit new HTTP/2 features, result in very distinct network
fingerprints. This calls for a reappraisal of traffic models, as
well as HTTP traffic simulation and benchmarking approaches,
which we will pursue in future work.

Differences in network fingerprints motivated us to develop
a classifier able to identify the HTTP version based on basic
traffic features. The proposed method is lightweight and uses
only features found in NetFlow data. We showed that decision
trees are suitable for this problem, and once the model is built
on a relatively small training dataset, it stays valid for several
months, thus eliminating the need for frequent ground truth
collection and retraining.

Our work is a step forward in the direction of understanding
modern web traffic. It provides a methodology to identify
HTTP/2 traffic in flow traces where no information about
application layer protocols is available. We expect that our
work will improve visibility into network traffic and help in
analyzing the adoption of HTTP/2 from passive traces.
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