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Abstract—Serving user requests from near-by caches or servers
has been a powerful technique for localizing Internet traffic with
the intent of providing lower delay and higher throughput to
end users while also lowering the cost for network operators.
This basic concept has led to the deployment of different types of
infrastructures of varying degrees of complexity that large CDNs,
ISPs, and content providers operate to localize their user traffic.
Prior measurement studies in this area have focused mainly on
revealing these deployed infrastructures, reverse-engineering the
techniques used by these companies to map end users to close-
by caches or servers, or evaluating the performance benefits that
“typical” end users experience from well-localized traffic.

To our knowledge, there has been no empirical study that
assesses the nature and implications of traffic localization as
experienced by end users at an actual stub-AS. This paper
reports on such a study for the stub-AS UOnet (AS3582), a
Research & Education network operated by the University of
Oregon. Based on a complete flow-level view of the delivered
traffic from the Internet to UOnet, we characterize the stub-
AS’s traffic footprint (i.e. a detailed assessment of the locality of
the delivered traffic by all major content providers), examine
how effective individual content providers utilize their built-out
infrastructures for localizing their delivered traffic to UOnet,
and investigate the impact of traffic localization on perceived
throughput by end users served by UOnet. Our empirical findings
offer valuable insights into important practical aspects of content
delivery to real-world stub-ASes such as UOnet.

I. INTRODUCTION

During the past two decades, various efforts among differ-
ent Internet players such as large Internet service providers
(ISP), commercial content distribution networks (CDN) and
major content providers (CP) have focused on supporting the
localization of Internet traffic. Improving traffic localization
has been argued to ensure better user experience (in terms of
shorter delays and higher throughput) and also results in less
traffic traversing an ISP’s backbone or the interconnections
(i.e., peering links) between the involved parties (e.g., eyeball
ASes, transit providers, CDNs, CPs). As a result, it typically
lowers a network operator’s cost and also improves the scala-
bility of the deployed infrastructure in both the operator’s own
network and the Internet at large.

The main idea behind traffic localization is to satisfy a user
request for a certain piece of content by re-directing the request
to a cache or front-end server that is in close proximity to
that user and can serve the desired piece of content. However,
different commercial content distribution companies use dif-
ferent strategies and deploy different types of infrastructures

to implement their business model for getting content closer
to the end users. For example, while Akamai [1] operates and
maintains a global infrastructure consisting of more then 200K
servers located in more than 1.5K different ASes to bring the
requested content by its customers closer to the edge of the
network where this content is consumed, other CDNs such
as Limelight or EdgeCast rely on existing infrastructure in
the form of large IXPs to achieve this task [2]. Similar to
Akamai but smaller in scale, major CPs such as Google and
Netflix negotiate with third-party networks to deploy their own
caches or servers that are then used to serve exclusively the
CP’s own content. In fact, traffic localization efforts in today’s
Internet continue as the large cloud providers (e.g., Amazon,
Microsoft) are in the process of boosting their presence at the
edge of the network by deploying increasingly in the newly
emerging 2nd-tier datacenters (e.g., EdgeConneX [3]) that
target the smaller- or medium-sized cities in the US instead
of the major metropolitan areas.

These continued efforts by an increasing number of inter-
ested parties to implement ever more effective techniques and
deploy increasingly more complex infrastructures to support
traffic localization has motivated numerous studies on design-
ing new methods and evaluating existing infrastructures to
localize Internet traffic. While some of these studies [4]–[7]
have focused on measurement-based assessments of different
deployed CDNs to reveal their global [4], [5] or local [8],
[9] infrastructure nodes, others have addressed the problems
of reverse-engineering a CDN’s strategy for mapping users
to their close-by servers or examining whether or not the
implemented re-direction techniques achieve the desired per-
formance improvements for the targeted end users [6], [7],
[9]. However, to our knowledge, none of the existing studies
provides a detailed empirical assessment of the nature and
impact of traffic localization as seen from the perspective of an
actual stub-AS. In particular, the existing literature on the topic
of traffic localization provides little or no information about
the makeup of the content that the users of an actual stub-AS
request on a daily basis, the proximity of servers that serve the
content requested by these users (overall or per major CP), and
the actual performance benefits that traffic localization entails
for the consumers of this content (i.e., end users inside the
stub-AS).

In this paper, we fill this gap in the existing literature
and report on a measurement study that provides a detailed



assessment of different aspects of the content that arrives at
an actual stub-AS as a result of the requests made by its end
users. To this end, we consider multiple daily snapshots of
unsampled Netflow data for all exchanged traffic between a
stub-AS that represents a Research & Education network (i.e.,
UOnet operated by the University of Oregon) and the Internet
II. We show that some 20 CPs are responsible for most of the
delivered traffic to UOnet and that for each of these 20 CPs,
the CP-specific traffic is typically coming from only a small
fraction of source IPs (Section III). Using RTT to measure
the distance of these individual source IPs from UOnet, we
present a characterization of this stub-AS’ traffic footprint; that
is, empirical findings about the locality properties of delivered
traffic to UOnet, both in aggregate and at the level of individual
CPs (Section IV). In particular, we examine how effective the
individual CPs are in utilizing their infrastructure nodes to
localize their delivered traffic to UOnet and discuss the role
that guest servers (i.e., front-end servers or caches that some of
these CPs deploy in third-party networks) play in localizing
traffic for this stub-AS (Section V). As part of this effort,
we focus on Akamai and develop a technique that uses our
data to identify all of Akamai’s guest servers that delivered
content to UOnet. We then examine different features of the
content that arrived at UOnet from those guest servers as
compared to the content that reached UOnet via servers located
in Akamai’s own AS. Finally, we investigate whether or not
a CP’s ability to localize its traffic has implications on end
user-perceived performance, especially in terms of observed
throughput (Section VI).

II. DATA COLLECTION FOR A STUB-AS: UONET

The stub-AS that we consider for this study is the campus
network of the University of Oregon (UO), called UOnet
(ASN3582). UOnet serves more than 24K (international and
domestic) students and 4.5K faculty/staff during the academic
year. These users can access the Internet through UOnet using
wireless (through 2000+ access points) or wired connections.
Furthermore, more than 4,400 of the students reside on cam-
pus and can access the Internet through UOnet using their
residential connections. UOnet has three upstream providers,
Neronet (AS3701), Oregon Gigapop (AS4600) and the Oregon
IX exchange. Given the types of offered connectivity and the
large size and diversity of the UOnet user population, we
consider the daily traffic that is delivered from the rest of
the Internet to UOnet to be representative of the traffic that
a stub-AS that is classified as a US Research & Education
network is likely to experience.

To conduct our analysis, we rely on un-sampled Netflow
(v5) data that is captured at the different campus border
routers. As a result, our Netflow data contains all of the flows
between UOnet users and the Internet. The Netflow dataset
contains a separate record for each incoming (and outgoing)
flow from (to) an IP address outside of UOnet, and each record
includes the following flow attributes: (i) source and destina-
tion IP addresses, (ii) source and destination port numbers, (iii)
start and end timestamps, (iv) IP protocol, (v) number of pack-

TABLE I
MAIN FEATURES OF THE SELECTED DAILY SNAPSHOTS OF OUR UONET

NETFLOW DATA.

Snapshot Flows (M) TBytes ASes (K) IPs (M)
10/04/16 196 8.7 39 3.3
10/05/16 193 8.5 37 3.0
10/11/16 199 9.0 41 4.1
10/12/16 198 9.1 41 4.7
10/18/16 202 8.8 40 3.7
10/19/16 200 9.1 38 3.3
10/25/16 205 8.7 37 2.9
10/26/16 209 9.1 40 4.1
11/01/16 212 8.6 39 3.5
11/02/16 210 8.7 40 4.3

ets, and (vi) number of bytes. We leverage Routeviews data to
map all the external IPs to their corresponding Autonomous
Systems (ASes) and use this information to map individual
flows to particular providers (based on their AS number) and
then determine the number of incoming (and outgoing) flows
(and corresponding bytes) associated with each provider. In
our analysis, we only consider the incoming flows since we
are primarily interested in delivered content and services from
major content providers to UOnet users. An incoming flow
refers to a flow with the source IP outside and destination
IP inside UOnet. We select 10 daily (24 hour) snapshots of
Netflow data that consist of Tuesday and Wednesday from
five consecutive weeks when the university was in session,
starting with the week of Oct 3rd and ending with the week
of of Oct 31st in 2016. Table I summarizes the main features
of the selected snapshots, namely their date, the number of
incoming flows and associated bytes, and the number of unique
external ASes and unique external IPs that exchanged traffic
with UOnet during the given snapshot. In each daily snapshot,
wireless connections are responsible for roughly 62% (25%)
of delivered bytes (flows) and residential users contributed to
about 17% (10%) of incoming bytes (flows).

III. IDENTIFYING MAJOR CONTENT PROVIDERS

Our main objective is to leverage the UOnet dataset to
provide an empirical assessment of traffic locality for delivered
flows to UOnet and examine its implications for the end
users served by UOnet. Here by “locality” we refer to a
notion of network distance between the servers in the larger
Internet that provide the content/service requested from within
UOnet. Since the level of locality of delivered traffic by
each CP depends on both the relative network distance of its
infrastructure and its strategy for utilizing this infrastructure,
we conduct our analysis at the granularity of individual CPs
and focus only on those that are responsible for the bulk of
delivered content to UOnet. Moreover, because the number of
unique source IPs that send traffic to UOnet on a daily basis
is prohibitively large, we identify and focus only on those IPs
that are responsible for a significant fraction of the delivered
traffic.
Inferring Top CPs: Figure 1 (left y-axis) shows the histogram
of delivered traffic (in TB) to UOnet by those CPs that have the
largest contributions in the 10/04/16 snapshot. It also shows
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Fig. 1. The volume of delivered traffic from individual top CPs to UOnet
along with the CDF of aggregate fraction of traffic by top 21 CPs in the
10/04/16 snapshot.

(right y-axis) the CDF of the fraction of aggregate traffic that
is delivered by the top-k CPs in this snapshot. The figure is
in full agreement with earlier studies such as [10], [11] and
clearly illustrates the extreme skewness of this distribution –
the top 21 CPs (out of some 39K ASes) are responsible for
90% of all the delivered daily traffic to UOnet.

To examine the stability of these top CPs across our 10
daily snapshots, along the x-axis of Figure 2, we list any CP
that is among the top CPs (with 90% aggregate contributions
in delivered traffic) in at least one daily snapshot (the ordering
is in terms of mean rank, from small to large for CPs with
same prevalence). This figure shows the number of daily
snapshots in which a CP has been among the top CPs (i.e. CP’s
prevalence, left y-axis) along with the summary distribution
(i.e., box plot) of each of the CPs rankings among the top
CPs across different snapshots (rank distribution, right y-axis).
We observe that the same 21 CPs consistently appear among
the top CPs. These 21 CPs are among the well-recognized
players of today’s Internet and include major CPs (e.g. Netflix,
Twitter), widely-used CDNs (e.g. Akamai, LimeLight and
EdgeCast), and large providers that offer hosting, Internet
access, and cloud services (e.g. Comcast, Level3, CenturyLink,
Amazon). In the following, we only focus on these 21 CPs
(called target CPs) that are consistently among the top CPs in
all of our snapshots. These target CPs are also listed in Figure
1 and collectively contribute about 90% of the incoming daily
bytes in each of our snapshots.
Inferring Top IPs per Target CP: To assess the locality of the
traffic delivered to UOnet from each target CP, we consider the
source IP addresses for all of the incoming flows in each daily
snapshot. While for some target CPs, the number of unique
source IP addresses is as high as a few tens of thousands, the
distribution of delivered traffic across these IPs exhibits again
a high degree of skewness; i.e. for each target CP, only a small
fraction of source IPs (called top IPs) is responsible for 90% of
delivered traffic. Figure 3 shows the summary distribution (in
the form of box plots) of the number of top IPs across different
snapshots along with the cumulative number of unique top IPs
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Fig. 2. The prevalence and distribution of rank for any CP that has appeared
among the top CPs in at least one daily snapshot.
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Fig. 3. Distribution of the number of top IPs across different snapshots in
addition to total number of unique top IP addresses (blue line) and the total
number of unique IPs across all snapshots (red line) for each target CP.

(blue line) and all IPs (red line) across all of our 10 snapshots.
The log-scale on the y-axis shows that the number of top IPs is
often significantly smaller than the number of all IP addresses
(as a result of the skewed distribution of delivered content
by different IPs per target CP). A small gap between the
total number of top IPs and their distribution across different
snapshots illustrates that for many of the target CPs, the top IPs
do not vary widely across different snapshots. In our analysis
of traffic locality below, we only consider the collection of all
top IPs associated with each of the target CP across different
snapshots. Focusing on these roughly 50K IPs allows us to
capture a rather complete view of delivered traffic to UOnet
without considering the millions of observed source IPs.
Measuring the Distance of Top IPs: Using the approximately
50K top IPs for all 21 target CPs, we conducted a measurement
campaign (on 11/10/16) that consisted of launching 10 rounds
of traceroutes1 from UOnet to all of these 50K top IPs to infer
their minimum RTT.

Note that the value of RTT for each top IP accounts for

1We use all three types of traceroute probes(TCP, UDP, ICMP) and spread
them throughout the day to reach most IPs and reliable capture minimum
RTT
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Fig. 4. Radar plots showing the aggregate view of locality based on RTT of delivered traffic in terms of bytes (left plot) and flows (right plot) to UOnet in
a daily snapshot (10/04/2016).

possible path asymmetry between the launching location and
the target IP and is therefor largely insensitive to the direction
of the traceroute probe (i.e. from UOnet to a top IP vs. from a
top IP to UOnet). Our traceroute probes successfully reached
81% of the targeted IP addresses. We exclude three target
CPs (i.e., Internap, Amazon and Twitch) from our analysis
because their servers did not respond to more than 90% of
our traceroute probes. All other target CPs responded to more
than 90% of our probes.

The outcome of our measurement campaign is the list
of top IPs along with their min RTT and the percentage
of delivered traffic (in terms of bytes and flows) for each
target CP. With the help of this information, we can now
assess the locality properties of the content that is delivered
from each target CP to UOnet. Note that in theory, any
distance measure could be used for this purpose. However,
in practice, neither AS distance (i.e., number of AS hops),
nor hop-count distance (i.e., number of traceroute hops),
nor geographic distance are reliable metrics. While the first
two ignore the commonly encountered asymmetry of IP-
level routes in today’s Internet [12], the last metric suffers
from known inaccuracies in commercial databases such as
IP2Location [13] and Maxmind [14] that are commonly used
for IP geolocation. In this paper, we choose the RTT distance
(i.e., measured by min RTT value) as our metric-of-choice for
assessing the locality of delivered traffic since it is the most
reliable distance measure and also the most relevant in terms
of user-perceived delay.

IV. TRAFFIC LOCALITY FOR CONTENT PROVIDERS

Overall View of Traffic Locality: We use radar plots to
present an overall view of the locality of aggregate delivered
traffic from our target CPs to UOnet based on RTT distance.
Radar plots are well suited for displaying multi-variable data
where individual variables are shown as a sequence of equian-
gular spokes, called radii. We use each spoke to represent the
locality of traffic for a given target CP by showing the RTT
values for 50th, 75th and 90th percentiles of delivered traffic

(in bytes or flows). In essence, the spoke corresponding to a
particular target CP shows what percentage of the traffic that
this CP delivers to UOnet originates from within 10, 20,...,
or 60ms distance from our stub-AS. Figure 4 shows two such
radar plots for a single daily snapshot (10/04/16). In these
plots, the target CPs are placed around the plot in a clock-
wise order (starting from 12 o’ clock) based on their relative
contributions in delivered bytes (as shown in Figure 1), and
the distances (in terms of min RTT ranges) are marked on the
45-degree spoke. The left and right plots in Figure 4 show the
RTT distance for 50, 75 and 90th percentile of delivered bytes
and flows for each CP, respectively. By connecting the same
percentile points on the spokes associated with the different
target CPs, we obtain a closed contour where the sources for
50, 75 or 90% of the delivered content form our target CPs to
UOnet are located. We refer to this collection of contours as
the traffic footprint of UOnet. While more centrally-situated
contours indicate a high degree of overall traffic locality for the
considered stub-AS, contours that are close to the radar plot’s
boundary for some spokes suggest poor localization properties
for some CPs.

The radar plots in Figure 4 show that while there are
variations in traffic locality for different target CPs, 90% of the
delivered traffic for the top 13 CPs are delivered from within a
60ms RTT distance from UOnet and for 9 of them from within
20ms RTT. Moreover, considering the case of Cogent, while
50% of bytes from Cogent are delivered from an RTT distance
of 20ms, 50% of the flows are delivered from a distance of
60ms. Such an observed higher level of traffic locality with
respect to bytes compared to flows suggests that a significant
fraction of the corresponding target CP’s (in this case, Cogent)
large or “elephant” flows are delivered from servers that are in
closer proximity to UOnet than those that serve the target CP’s
smaller flows. Collectively, these findings indicate that for
our stub-AS, the overall level of traffic locality for delivered
bytes and flows is high but varies among the different target
CPs. These observations are by and large testimony to the



success of past and ongoing efforts by the different involved
parties to bring content closer to the edge of the network
where it is requested and consumed. As such, the results are
not surprising, but to our knowledge, they provide the first
quantitative assessment of the per-CP traffic footprint (based
on RTT distance) of a stub-AS.
Variations in Traffic Locality: After providing an overall
view of the locality of the delivered traffic to UOnet for a
single snapshot, we next turn our attention to how traffic
locality of a CP (with respect to UOnet) varies over time.
To simplify our analysis, we consider all flows of each target
CP and bin them based on their RTTs using a bin size of 2ms.
The flows in each bin are considered as a single group with an
RTT value given by the mid-bin RTT value. We construct the
histogram of percentages of delivered bytes from each group of
flows in each bin and define the notion of Normalized Weighted
Locality for delivered traffic from a provider CP in snapshot
s as:

NWL(s, CP ) =
∑

iεRTTBins(CP )

FracBytes(i) ∗RTT (i)

minRTT (CP ))

NWL(s,CP) is simply the sum of the fraction of delivered
traffic from each RTT bin (FracBytes(i)) that is weighted
by its RTT and then normalized by the lowest RTT among
all bin (minRTT (CP )) for a CP across all snapshots. NWL
is an aggregate measure that illustrates how effectively a CP
localizes its delivered traffic over its own infrastructure. A
NWL value of 1 implies that all of the traffic is delivered
from the closest servers while larger values indicate more
contribution from servers that are further from UOnet.

The top plot in Figure 5 presents the summary distribution
of NWL(s, CP ) across different daily snapshots for each CP.
The bottom plot in Figure 5 depicts min RTT for each CP.
These two plots together show how local the closest server
of a CP is and how effective each CP is in utilizing its
infrastructure. The plots also demonstrate the following points
about the locality of traffic. For one, for many target CPs
(e.g. Netflix, Comcast, Valve), the NWL values exhibits small
or no variations across different snapshots. Such a behavior
suggests that the pattern of delivery from different servers is
stable across different snapshots. In contrast, for CPs with
varying NWL values, the contribution of various servers
(i.e. the pattern of content delivery from various CP servers)
changes over time. Second, the value of NWL is less than 2
(and often very close to 1) for many CPs. This in turn indicates
that these CPs effectively localize their delivered traffic to
UOnet over their infrastructure. The value of NWL for other
CPs is larger and often exhibit larger variation due to their
inability to effectively utilize their nodes to localize delivered
traffic to UOnet.

V. TRAFFIC FROM GUEST SERVERS

To improve the locality properties of their delivered content
and services to end users, some content providers expand
their infrastructure by deploying some of their servers in other
networks. We refer to such servers as guest servers and to the
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Fig. 5. Two measures of traffic locality, from top to bottom, Summary
distribution of NWL and the RTT of the closest servers per CP (or minRTT).

third-party networks hosting them as host networks or host
ASes. For example, Akamai is known to operate some 200K
such servers in over 1.5K different host networks, with the
servers using IP addresses that belong to the host networks [7],
[15].

We present two examples to illustrate the deployment of
guest servers. First, our close examination of delivered traffic
from Neronet which is one of UOnet’s upstream providers
revealed that all of its flows are delivered from a small
number of IPs (see Figure 3) associated with Google servers,
i.e. Google caches [5] that are deployed in Neronet. This
implies that all of Google’s traffic for UOnet is delivered
from Neronet-based Google caches and explains why Google
is not among our target CPs. Second, Netflix is known to
deliver its content to end users through its own caches (called
Open Connect Appliances [16]) that are either deployed
within different host networks or placed at critical IXPs [4].
When examined the DNS names for all the source IPs of
our target CPs, we observed a number of source IPs that
are within another network and their DNS name follow the
*.pdx001.ix.nflxvideo.net format. This is a known
Neflix convention for DNS names and clearly indicates that
these guest servers are located at an IXP in Portland, Oregon
[4].

A. Detecting Guest Servers

Given the special nature of content delivery to UOnet from
Google (via Neronet) and Netflix (via a close-by IXP), we
focus on Akamai to examine how its use of guest servers
impact the locality of delivered traffic to UOnet. However,
since our basic methodology that relies on a commonly-used
IP-to-AS mapping technique cannot identify Akamai’s guest
servers and simply associates them with their host network,
we present in the following a new methodology for identifying
Akamai’s guest servers that deliver content to UOnet.

Our proposed method leverages Akamai-specific informa-
tion and proceeds in two steps. The first step consists of iden-
tifying the URLs for a few small, static and popular objects
that are likely to be cached at many Akamai servers. Then,



in a second step, we probe the observed source IP addresses
at other target CPs with properly-formed HTTP request for
the identified objects. Any third-party server that provides
the requested objects is considered an Akamai guest server.
More precisely, we first identify a few Akamai customer
websites and interact with them to identify small, static and
popular objects (i.e., “reference objects”). Since JavaScript or
CSS files are less likely to be modified compared to other
types of objects and thus are more likely to be cached by
Akamai servers, we used in our experiments two JavaScript
objects and a logo from Akamai client web sites (e.g. Apple,
census.gov, NBA). Since an Akamai server is responsible for
hosting content from multiple domain names, the web server
needs a way to distinguish requests that are redirected from
clients of different customer websites. This differentiation is
achieved with the help of the HOST field of the HTTP header.
Specifically, when constructing a HTTP request to probe an IP
address, we set the HOST field to the original domain name
of the reference object (e.g. apple.com, census.gov, nba.com).
Next, for each reference object, we send a separate HTTP
request to each of the 50K top source IP addresses in our
datasets (see Section 3). If we receive the HTTP OK/200 status
code in response to our request and the first 100 bytes of the
provided object match the requested reference object 2, we
consider the server to be an Akamai guest server and identify
its AS as host AS. We repeat our request using other reference
objects if the HTTP request fails or times-out. If all of our
requests time-out or receive a HTTP error code, we mark the
IP address as a non-Akamai IP address.

To evaluate our proposed methodology, we consider all the
601 servers in our dataset whose IP addresses are mapped to
Akamai (based on IP to AS mapping) and send our HTTP
requests to all of them. Since all Akamai servers are expected
to behave similarly, the success rate of our technique in
identifying these Akamai servers demonstrates its accuracy.
Indeed, we find that 585 (97%) of these servers properly
respond to our request and are thus identified as Akamai
servers. The remaining 3% either do not respond or respond
with various HTTP error codes. When examining these 16
failed servers more closely, we discovered that 11 of them
were running a mail server and would terminate a connection
to their web server regardless of the requested content. This
suggests that these Akamai servers perform functions other
than serving web content.

Using our proposed technique, we probed all 50K top source
IP addresses associated with our 21 target CPs in all of our
snapshots. When performing this experiment (on 11/20/16),
we discovered between 143-295 Akamai guest servers in 3-
7 host ASes across the different snapshots. In total, there
were 658 unique guest servers from 7 unique host ASes,
namely NTT, CenturyLink, OVH, Cogent, Comcast, Drop-
box and Amazon. Moreover, these identified Akamai guest
servers deliver between 121-259 GBytes to UOnet in their

2The second condition is necessary since some servers provide a positive
response to any HTTP requests.
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Fig. 6. Locality (based on RTT in ms) of delivered traffic (bytes, left plot;
flows, right plot) for Akamai-owned servers as well as Akamai guest servers
residing within three target ASes for snapshot 2016-10-04.

corresponding daily snapshots which is between 9-20% of the
aggregate daily traffic delivered from Akamai to UOnet. These
results imply that the 34-103 Akamai-owned servers in each
snapshot deliver on average 12 times more content to UOnet
than Akamai’s 143-295 guest servers. Moreover, we observed
that the bulk of delivered bytes from Akamai’s guest servers
to UOnet (i.e., 98%) is associated with guest servers that are
deployed in two CPs, namely NTT (76.1%) and CenturyLink
(21.9%).

B. Relative Locality of Guest Servers

Deploying guest servers in various host ASes enables a
CP to either improve the locality of its traffic or provide
better load balancing among its servers. To examine these two
objectives, we compare the level of locality of traffic delivered
from Akamai-owned servers vs Akamai’s guest servers. The
radar plots in Figure 6 illustrate the locality (based on RTT)
of delivered content from Akamai-owned servers shown at
12 o’clock (labeled as Akamai) as well as from Akamai’s
guest servers in all three host networks in the snapshot from
10/04/16. The guest servers are grouped by their host ASes
and ordered based on their aggregate contribution in delivered
bytes (for Akamai flows) in a clock-wise order. We observe
that traffic delivered from Akamai-owned servers exhibits a
higher locality – 75% (90%) of the bytes (flows) are delivered
from servers that are 4ms (8ms) RTT away. The Akamai traffic
from CenturyLink, NTT and OVH is delivered from servers
that are at RTT distance of 8, 15 and 20ms, respectively. While
these guest servers serve content from further away than the
Akamai-owned servers, they are all relatively close to UOnet
which suggests that they are not intended to offer higher level
of locality for delivered content to UOnet users.

VI. IMPLICATIONS OF TRAFFIC LOCALITY

Improving end user-perceived performance (i.e. decreasing
delay and/or increasing throughput) is one of the main moti-
vations for major CPs to bring their front-end servers closer to
the edge of the network. In the following, we examine whether
such performance improvements are indeed experienced by the
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Fig. 7. Summary distribution of average throughput for delivered flows from
individual target CPs towards UOnet users across all of our snapshots.

end users served by UOnet and to what extent for a given CP
the observed performance is correlated with that CP’s traffic
locality.

We already showed in Figure 4 that the measured min RTT
values for a majority of CPs (with some exceptions such as
OVH, Quantil, Cogent) are consistently low (<20ms) across
all flows. The average throughput of each flow can be easily
estimated by dividing the total number of delivered bytes by
its duration 3. To get an overall sense of the observed average
throughput, Figure 7 shows the summary distributions of the
measured throughput across delivered flows by each target CP.
We observe that 90% of the flows for all target CPs (except
Level3) experience low throughput (< 0.5MB/s, and in most
cases even < 0.25MB/s). This raises the question why these
very localized flows do not achieve higher throughput.

In general, reliably identifying the main factors that limit
the throughput of individual flows is challenging [17]. The
cause could be any combination of factors that include

• Content Bottleneck: the flow does not have sufficient
amount of content to “fill the pipe”;

• Receiver Bottleneck: the receiver’s access link (i.e. client
type) or flow control is the limiting factor;

• Network Bottleneck: the fair share of network bandwidth
is limited due to cross traffic (and resulting loss rate);

• Server Rate Limit: a CP’s server may limit its transmis-
sion rate implicitly due to its limited capacity or explicitly
as a results of the bandwidth requirements of the content
(e.g. Netflix videos do not require more than 0.6 MB/s
for a Full-HD stream [18]).

Rather than inferring the various factors that affect individual
flows, our goal is to identify the primary factor from the
above list that limits the maximum achievable throughput by
individual CPs. To this end, we only consider 3-4% (or 510-
570K) of all flows for each target CP that their size exceeds

3Note that we may have fragmented flows for this analysis. This means that
long flows will be divided into 5min intervals. However, 5min is sufficiently
long to estimate average throughput of individual flows.
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Fig. 8. Maximum Achievable Throughput (MAT) vs MinRTT for all CPs.
The curves show the change in the estimated TCP throughput as a function
of RTT for different loss rates.

1 MB and refer to them as “elephant” flows.4 These elephant
flows have typically several 100s of packets and are thus able
to fully utilize available bandwidth in the absence of other
limiting factors (i.e. content bottleneck does not occur). More
than 0.5 million elephant flows for individual CPs are delivered
to end users in UOnet that have diverse connection types
(wireless, residential, wired). Therefor, receiver bottleneck
should not be the limiting factor for the maximum achievable
throughput by individual CPs. This in turn suggests that either
the network or the server are responsible for limiting the
achievable throughput.

To estimate the Maximum Achievable Throughput (MAT)
for each CP, we group all elephant flows associated with that
CP based on their RTT into 2ms bins and select the 95%
throughput value (i.e. median of the top 10%) in the bin as its
MAT with its mid-bin RTT value as the corresponding RTT.
Since a majority (96%) of these flows are associated with TCP
connection and thus are congestion controlled, we can examine
the key factors responsible for limiting throughput. Figure 8
shows a scatter plot where each labelled dot represents a target
CP with its y-value denoting its MAT and its x-value denoting
the associated RTT. We also group all Akamai flows from its
guest servers at each host ASx, determine their separate MAT
and exclude them from ASx’s own flows to avoid double-
counting them. For example, Akamai flows that are delivered
from OVH are marked as AK-OVH. To properly compare the
measured MAT values across different RTTs, we also plot
an estimated TCP throughput as a function of RTT for three
different loss rates that we obtain by applying the commonly-
used equation [20]: T < MSS

RTT ∗ 1√
L

. In this equation, MSS
denotes the Maximum Segment Size which we set to 1460; L
represents the loss rate. We consider three different loss rate
values, namely 10−2, 10−3, 10−4, to cover a wide range of
”realistic” values.

Examining Figure 8, we notice that the relative location

4Selecting the 1 MB threshold for flow size strikes a balance between
having sufficiently large flows [19] and obtaining a large set of flows for each
CP.
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Fig. 9. Average loss rate of closest servers per target CP measured over 24
hours using ping probes with 1 second intervals. For each CP we choose at
most 10 of the closest IP addresses.

of each labelled dot with respect to the TCP throughput lines
reveals the average “virtual” loss rate across all elephant flows
of a CP if bandwidth bottleneck were the main limiting factor.
The figure shows that this virtual loss rate for many CPs is at
or above 10−3. However, in practice, average loss rates higher
than 10−3 over such short RTTs (<20ms) are very unlikely in
our setting (e.g., UOnet is well provisioned and most incoming
flows traverse the paths with similar or identical tail ends). To
test this hypothesis, we directly measure the loss rate between
UOnet and the closest servers for each CP using 170K ping
probes per CP.5 Figure 9 depicts the average loss rate for each
target CP and shows that the measured average loss rate for
all of the target CPs is at least an order of magnitude lower
than the virtual loss rate for each CP. This confirms that all of
the measured MAT values must be rate-limited by the server,
either explicitly (due to the bandwidth requirements of the
content) or implicitly (due to server overload).

Figure 8 also shows that the measured MAT values for
Akamai guest servers are often much larger than those for the
servers owned by the host AS. For example, the MAT value for
AK-CLINK (AS-DRPBX or AK-NTT) is much higher than
the MAT for CLINK (DRPBX, or NTT). Furthermore, the
measured MAT value for all the flows from Akamai’s guest
servers is lower than its counterpart for all flows from Akamai-
owned servers.

To summarize, there are two main take-aways from our
examination of the performance implications of traffic locality.
On the one hand, traffic locality is key to achieving the
generally and uniformly very small measured delays for traffic
delivered to UOnet. On the other hand, our results show that a
majority of flows for all target CPs are associated with small
files and thus do not reach a high throughput. Furthermore, the
throughput for most of the larger flows are not limited by the
network but rather by the front-end servers. In other words,
high throughput delivery of content at the edge is either not
relevant (for small objects) or not required by applications.

5Note that ping measures loss in both directions of a connection.

VII. RELATED WORK

There exists an extensive literature on various aspects of
content delivery. Past studies in this area can be broadly
divided into two groups. The first group consists of studies
that focus on uncovering the delivery strategy [5], [7], [8] or
discovering the CP-specific infrastructures used for delivering
content across the globe (e.g. Netflix [4], [6] or Akamai [15]).
The latter are measurement studies that either rely on the
availability of multiple vantage points across the globe [6]–
[8], [15] or leverage a single vantage point by exploiting an
intrinsic feature of the infrastructure of interest [4], [5].

The second group of studies is mainly concerned with
assessing or measuring the performance of a specific content
delivery infrastructure [21], [22] or of a specific type of
traffic [9], [10], [23], [24]. These studies often examine
various performance-related metrics to evaluate the efficiency
of a given platform or to assess user-perceived quality-of-
experience. For example, Jiang et al. [23] present a cluster-
ing algorithm to identify common features of subpar video
sessions while Bermudez et al. [21] and Ager et al. [10]
are concerned with the geo-disparity of content that is de-
livered to various regions, Akhtar et al. explore the latency
of various photo CDNs from multiple vantage points. The
work by Gehlen et al. [9] is most closely aligned with our
work and utilizes passively collected packet level traces (with
payload) from three ISPs to perform deep packet inspection
algorithms to uncover the corresponding application (e.g. P2P,
Web). The authors characterize the delivery strategy for web
traffic, present the distribution of measured RTT values and
throughput across all flows and then argue that the observed
bimodal distribution for throughput across Akamai flows is due
to the CDN’s caching strategy. Cordero et al. [25] also employ
an edge centric view of a network footprint. However, they
mainly focus on the overlapping paths among incoming flows
from different sources and do not offer any characteristics of
traffic on a per CP basis.

Our work is also related to prior studies that examine the
effects of new content delivery techniques on the AS-level
hierarchy of the Internet topology. While some of this work is
concerned with global implications of content delivery on the
nature and volume of inter-domain traffic in the Internet [26]–
[28], other work illustrates the emergence and growing im-
portance of strategies whereby content providers deploy their
own servers in third-party networks [4], [11]. In contrast,in
this paper we are concerned with the implications that these
strategies have on user-perceived performance at a stub-AS.

VIII. SUMMARY

Our work contributes to the existing literature on content
delivery by providing a unique view of different aspects of
content delivery as experienced by the end users served by a
stub-AS (i.e., a Research & Education network). To this end,
we examine the complete flow-level view of traffic delivered to
this stub-AS from all major content providers and characterize
this stub-AS’ traffic footprint (i.e. a detailed assessment of the
locality properties of the delivered traffic).



We also study the impact that this traffic footprint has on
the performance experienced by its the end users and report
on two main takeaways. First, this stub-AS’ traffic locality is
uniformly high across the main CPs; i.e., the traffic that these
CPs deliver to this stub-AS experiences in general only very
small delays. Second, the throughput of the delivered traffic
remains far below the maximum achievable throughout and is
not limited by the network but rather by the front-end servers.

Lastly, to complement the effort described in this paper,
assessing the locality properties of the traffic that constitutes
the (long) tail of the distribution in Figure 1 and is typically
delivered from source IP addresses that are rarely seen in
our data or are responsible for only minuscule portions of
the traffic delivered to UOnet looms as an interesting open
problem and is part of future work.
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