
The cookie recipe:
Untangling the use of cookies in the wild

Roberto Gonzalez∗, Lili Jiang†, Mohamed Ahmed∗, Miriam Marciel∗,
Ruben Cuevas‡, Hassan Metwalley§, Saverio Niccolini∗

∗NEC Labs. Europe, †Umeå University, ‡Universidad Carlos III de Madrid, §Politecnico di Torino
{first.last}@neclab.eu, lili.jiang@cs.umu.se, rcuevas@it.uc3m.es, hassan.metwalley@polito.it

Abstract—Users online are commonly tracked using HTTP
cookies when browsing on the web. To protect their privacy,
users tend to use simple tools to block the activity of HTTP
cookies. However, the “block all” design of tools breaks critical
web services or severely limits the online advertising ecosystem.
Therefore, to ease this tension, a more nuanced strategy that
discerns better the intended functionality of the HTTP cookies
users encounter is required.

We present the first large-scale study of the use of HTTP
cookies in the wild using network traces containing more than
5.6 billion HTTP requests from real users for a period of two
and a half months. We first present a statistical analysis of how
cookies are used. We then analyze the structure of cookies and
observe that; HTTP cookies are significantly more sophisticated
than the name=value defined by the standard and assumed by
researchers and developers. Based on our findings we present an
algorithm that is able to extract the information included in 86%
of the cookies in our dataset with an accuracy of 91.7%.

Finally, we discuss the implications of our findings and provide
solutions that can be used to improve the most promising privacy
preserving tools.

I. INTRODUCTION

HTTP Cookies (cookies for short) are critical to the function
of the most common and basic web services including; web
mail, social networks, online retail, advertising, etc. They
are also the most widely used method to track the activity
of users online [1] and may be used to transfer personally
identifiable information (PII) between a user’s browser and
online services [2].

Recent studies consistently point to the growing disconnect
between users’ desire for privacy and the online services
ecosystem’s desire for more/higher-quality information about
users [3]. In particular 28% of the US citizens admit they
have used the Internet in ways to avoid being observed or
seen by advertisers [4]. In response to users’ desire for better
privacy controls, there is today a burgeoning ecosystem of
tools, services, and business models that aim to help users
to better manage their privacy.1 Consequently the deployment
of anti-tracking tools by users is reported to be growing [5].
In response, we have also witnessed the appearance of more
aggressive techniques to track users browsing patterns that
make use of HTTP Cookies. For example, evercookies [2]
are used to avoid users deleting certain cookies and cookie

1see Adblock Plus, Ghostery, Privacy Badger, Blur, Disconnect and etc.

matching/syncing [6][7][8] is used to aggregate the knowledge
different players have about a user.

Today users can protect their privacy by blocking third
party cookies and/or inserting the (often useless [9]) Do Not
Track (DNT) header, both methods are available in most of the
modern browsers. Users can also deploy third party tools such
as browser plugins and network proxies. These tools (including
NoScript, Adblock Plus, Ghostery, and Disconnect) give users
a sense of security, however, they present serious drawbacks,
such as blocking from 6% to 21% of the functional scripts
deployed in web pages, and allowing the execution of between
37% and 78% of the tracking scripts [23].

First, by virtue of their design, these tools typically break
some of the legitimate functionality of websites. Second,
they cannot protect users from tracking cookies set via first
parties [1]. Due to the complex relations that first and third-
parties establish [1][5][11], blocking cookies at a domain-
level alone does not protect users [1]. Lastly, it was recently
estimated by PageFair and Adobe [12] that 6% (198M) monthly
active users deployed ad-blocking in Q2 2015, resulting an
estimated loss in revenue of over $21B. Therefore, web services
have started a fight against ad blockers [13], and it is now
common to find many popular services that require users to
deactivate the protection tools in order to access content.2

All these well known problems have encouraged the re-
searchers and developers to try to define fine-grained solutions
to protect the privacy of users with a minimal effect in the
online advertising ecosystem, c.f. [14][15][16][17]. Neverthe-
less, while these proposals are promising, they have been
designed without a comprehensive understanding of the actual
information sent within the cookies. This fact could make them
either to break some of the web-services they intend to fix, or
to provide a false sense of security to their users.

In order to improve existent tools and develop new tools
that can protect the users without side effects a study of the
real use of the cookies is needed.

This paper presents the largest measurement study to date
on the utilization of HTTP cookies in the wild. Using a
dataset composed by more than 5.6B HTTP connections, from
thousands of real users in a European metropolitan network,

2c.f. http://www.wired.com/how-wired-is-going-to-handle-ad-blocking/

http://www.wired.com/how-wired-is-going-to-handle-ad-blocking/

we study the utilization, structure and content of HTTP cookies.
First, we look at the schematic structure of cookies and find
that they are more complex than what is assumed in both the
academic literature, and by the multitude of tools available to
help protect the privacy of users. We find that cookies routinely
obfuscate their contents by using a variety of proprietary
formats. Moreover, because current studies do not look into
the cookies in any great detail, we find that they make naive
assumptions regarding how cookies are structured and utilized.
In turn these assumptions lead to a gross over simplification of
the complexity of cookies, which results in users having a false
sense of security. Our findings reveal that at least 60% of the
cookies we find in the wild contain complex information that
cannot be interpreted in simple ways. Inspecting the contents
of cookies, we develop a novel method to extract fine-grain
information from the data carried in these complex cookies.
Last, we apply these methods to the cookies in our dataset and
provide analysis of their contents.
Contributions
• We analyze cookies sent by thousands of real users,
in contrast to the vast majority of previous studies
that based their results on traces generated using active
measurements[1][3][15][18][19][20]. The results of our analy-
sis show that the cookie name and value fields are routinely
packed with multiple values, which can change frequently.
This makes it difficult for fine-grain tools [14][16] to correctly
interpret the behavior of cookies.
• We evaluate some of the common assumptions regarding
the identifiability of tracking cookies, finding some of them
to be wrong. Common assumptions, such as “they are long
lasting”, “have high entropy” and are “constant and unique
for every user” [15][20] are found not to hold in a multitude
of cases. This in turn breaks the basic assumptions made by
state-of-the-art methods such as [14][15] on the identifiability
of ‘user identifiers’.
• We develop a method to unpack and parse the contents of
cookies with high accuracy. Our simple and scalable method is
able to parse 86.2% of the cookies with an accuracy of 91.7%.
The formats identified reveal cookies sending PII in clear text
or hiding the user identifiers in complex data structures. The
structures obtained with our method could be used directly to
improve the results of some previous works.

II. BACKGROUND

Our analysis is based on passive measurements collected
from a 10Gbps link (Endace DAG 9.2X2 capture card), serving
several thousand users, across several academic institutions,
at a Large European metropolitan region. We collect from
the TCP/IP headers the (src/dst IP, src port, seqn), and
only the HTTP request headers, on port 80. We analyze in
total approximately twelve weeks of traffic (19/01-9/04 2015)
containing more than 40Tb of network traces. We generate
3.8Tb of metadata, comprising of 135K IP addresses, that make
1.6 billions TCP connections to 3.5M different hosts, and send
5.6 billion HTTP requests.

A. Ethic Considerations

The data collection and experiments presented in this paper
have been conducted in the context of the EU-H2020 project
TYPES. UC3M and NEC have obtained the approval for the
research activity conducted in the context of such project from
its IRB committee and Data Protection Officer3, respectively.
Moreover, UC3M obtained the consent of the Network Operator
to collect the data and use it for research purposes.

To the best of the authors knowledge, the data collection,
storage and processing conducted followed the European as
well as Spanish and German Data Protection regulation. In
particular, we collect exclusively HTTP request and only
analyze the protocol header. Once the metadata is obtained the
raw data is deleted and only the metadata is stored outside
the measurement server. In the data processing the source IP
address is anonymized using one-way hash functions.

B. HTTP Cookies

HTTP cookies are the standard mechanism used to track
state in the browser of users as defined by among others
the IETF RFC6265 [21]. Briefly, a cookie is defined by the
tuple; {Name=Value; [expires=Expiration_Date;] [path=Path;]
[domain=Domain_Name;] [secure]}. To set a cookie, a host either
adds the Set-Cookie header in HTTP reply messages to user
requests [21], or writes an entry via JavaScript. Once a cookie is
stored at a user’s browser, if not explicitly blocked, the browser
adds the cookie’s Name=Value tuple, to the header of each
HTTP request to assets from hosts from the domain defined
in Domain_Name and in Path, until the Expiration_Date. To
isolate resources between domains, the same-origin policy is
used. It states that domains may only set, read, and modify
cookies which match their Domain_Name, and resource Path.

1) First and third party cookies: When a user visits some
web page W1, W1 can in turn initiate connections to different
domains W2...Wn (i.e., to download images from a CDN, ads
from an ad-network, etc.). We refer to the cookies set by the
domain the user intend to visit (W1) as first party cookies
and any of the cookies set by W2...Wn as third party cookies.
Moreover, third party cookies can be used for operational
purposes and some Internet services break if they are blocked.
In contrast, they can also track users online.

The same cookie can act as both third party cookies (i.e.,
Facebook cookies when you see a widget in other website)
and first party cookies (i.e., the same Facebook cookies when
you visit facebook.com). Therefore in this work, we do not
differentiate between first and third party cookies. Nevertheless,
the common way to track users with cookies needs them to
act as third party cookie.

C. Cookie based tracking

The most simplistic scenario for cookie based tracking occurs
when a user U1 visits web page W1, the browser can make

3Note that L. Jiang and H. Metwalley contribution to this work was developed
while they had a contractual relationship with NEC Labs Europe and thus the
approval from NEC Data protection Officer was valid for them.

facebook.com

HTTP requests to one or more trackers (T1...Tn) adding its
URL in the Referer header of the HTTP protocol. In this way,
T1 can set in the users browser a cookie C1id and know that
the user with that cookie has visited W1. Moreover, when the
user visits a different web page W2 that also contains T1 it
will send the cookie C1id together with the Referer header of
W2. In this way, T1 has the knowledge of two different sites
(W1 and W2) visited by U1. This continuous process is used to
track the activity of users, and if the tracker is present on large
number of domains it is able to collect a significant quantity
of data regarding the browsing habits of a user.

III. INSIDE THE COOKIE

While the reach of the cookies gives us an intuition on the
amount of information a potential tracker can infer about the
user, it does not inform about the information that is contained
in the cookie itself.

This section analyzes the information included inside the
cookie. As shown in section II-B, a cookie is defined by a Host
(i.e., google.com) and a Cookie Name (i.e., NID) and when
used as a third party it can track the browsing history of users
among different webpages. Moreover, it contains a Value that is
assigned to that cookie name. To build an intuition of the scale
of the tracking ecosystem networks, in the following we study
the reach of different trackers. Then, we respectively analyze
the information inside the Cookie Name and the Cookie Value.

A. Cookie reach

With respect to domains, the reach of a cookie is the number
of different referrers seen in HTTP connections sending the
cookie. For example, tracking cookies are referred by many
different domains, while functional cookies only appear with
the domains that utilize them. Understanding the cookie reach
based on the number of different domains is of key importance
to understanding the tracking ecosystem - because it enables
us to quantify the fraction of user activity across domains that
a given cookie is able to observe.

Figure 1 gives the complementary cumulative distribution
function (CCDF) of the number of different domains included in
the Referer header of HTTP requests when a given cookie name
is sent by a user. We observe that vast majority of the cookies
have a small reach indicating that they play a functional role
for the sites that set them. In particular, 99.24% of the observed
cookies have the ability to track ≤5 domains. However, we
find cookies such as the id of doubleclick.net that is sent
together with almost 162K different domains in the Referer
header. Moreover, we find 212 cookies that could potentially
track more than 10K different domains. Among these cookies,
we observe the vast majority are directly related with online
advertising ecosystem, for example, the aforementioned id
cookie of doubleclick.net, the icu of adnxs.com or the uid
of criteo.com that reach 162K, 46K, 21K domains respectively.
It is also found that cookies operated by services that are not
directly related with the advertising (even when clearly track
users online), such as the uid cookie of addthis.com and
the __stid of sharethis.com with a reach of 65K and 21K

100 101 102 103 104 105 106

Num. Diff. Domains reached by each cookie

10-7
10-6
10-5
10-4
10-3
10-2
10-1
100

C
C

D
F

Fig. 1: Most of the cookies can see a single domain (normal
webpage cookies), nevertheless, a long tail of cookies can
control a huge number of domains. doubleclick.net cookie id
has been referred for almost 162K domains.

100 101 102 103 104

Num. characters

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Name length

Avg. Value length

Max. Value length

Fig. 2: Only 1% of the cookie names have more than
45 characters. Nevertheless, some names have hundreds of
characters. Moreover, for the cookie values, the distribution of
the Avg. length is similar to the distribution of the max length,
it indicates that most of the cookie values have a fixed length.

domains respectively, and the UID of scorecardresearch.com
which reaches more than 31K domains. These cookies, while
not directly related with the distribution of online ads, still
track the users and directly obtain information that can be
utilized for individual user profiling.

B. Cookie name

The Cookie Name is typically assumed to be intended to act
as a variable name; providing developers with a reference to
access the information inside the Cookie Value. It is normal
to define the cookie itself with its name and as such it has
been treated in this way by previous works [20][14][15]. In
fact all the previous work assumes that websites use a fixed
set of cookie names independently of the user, thus, they draw
a conclusion that the Cookie Name is not expected to contain
any relevant information about the user. This section aims
to understand whether this assumption holds or if additional
considerations are needed.

To test this assumption, we first look at the typical character
length of the cookie name. Figure 2 shows the CDF of the
number of characters per cookie name. 50% of cookies have
a length smaller than 13 characters, a number that seems
reasonable for a variable name. Moreover, more than 99%
of cookie names are composed by less than 45 characters.
However, we also find some names composed by hundreds of

doubleclick.net
doubleclick.net
adnxs.com
criteo.com
addthis.com
sharethis.com
scorecardresearch.com

0 1000000 2000000 3000000

Host Rank

100

101

102

103

104

105

106

107
N

u
m

.
C

o
ok

ie
N

am
es

rlcdn.com spotxchange.comoutbrain.com
gwallet.com ad6media.fr

rlcdn.com

serving-sys.comyoutube.com

Fig. 3: A small percentage of hosts uses a huge number of
cookie names because they tailor information into them.

characters. For example, krxd.net; a domain belonging to the
data management company Krux4 , uses the cookie name to
store different values separated by the pipe symbol “|”:

e_[id]^adid|[Number]^creativeid|[Number]^siteid|
[Number]^campaignid|[Number]^placementid|[Number]
=[timestamp]

This kind of cookie names can grow and store a large
quantify of information invalidating common assumptions that
treat the cookie name as a simple reference to the cookie value.

Furthermore, the tailoring of the cookie name to add values
means that these domains use a large number of cookie
names, for example, more than 22K different cookie names
are contained in our dataset for krxd.net. In turn, this makes it
difficult to block/tamper with specific cookies using the cookie
name. In particular, previous solutions that aim to automatically
find unique identifiers [14] would not work with these cookies.
Moreover, other solutions intended to block or modify cookies
[16] would find difficulties to adapt their behavior and handle
these special cases.

In the following, we analyze those domains using a large
number of cookie names. Figure 3 presents the number of
cookie names used per host. Usually a small number of cookie
names is used per hosts, nevertheless, there exists a small
number of domains that make use of thousands of cookie
names. Unsurprisingly, most of these domains are dedicated
to the online tracking or online advertising, with rlcdn.com (a
domain belonging to liveRamp.com) using more than 1.12M
cookie names. This domain seems to add the user identifier
inside the cookie name, with cookie names starting with drtn
or dids followed by an id of the user. Not all domains in the
top list are adding user ids to their cookies. Some domains use a
large amount of cookie names for operational purposes, without
“hiding” user identifiers. For example youtube.com uses cookies
with the format [V IDEO_ID].resume = [time] to save the
time when the user stops watching a video, allowing the user
to resume the view, thus, youtube.com is potentially using a
number of cookie names equal to the number of videos in their
system.

We leave the methodological analysis of the specific infor-
mation contained inside the cookie names as future work.

4http://www.krux.com/

C. Cookie value

The cookie value is the part of the cookie originally designed
to store the information. We therefore try to untangle the
quantity and type of information contained in it. In particular,
we are concerned with two features used in previous works
to recognize unique identifiers [20]: the length of the value
(stable, constant length, passes the entropy test) and its stability
to finally identify exactly the type of value inside it.

1) Value length: The length of the value defines its potential
entropy. Figure 2 shows the CDF of the average and maximum
length (in characters) of the cookie values. First, 1% of the
cookies send empty values and 17% of them have always a
single character. Most of the cookies sending an empty value
do it for functional purposes. For example, several domains set
an empty cookie named __test to check whether the user
browser accept cookies or not. For cookies for which the value
is always composed by one character the usage varies, such
as the dnt cookie used by some trackers to indicate the user
has opt-out of the tracking.

Very small values cannot hold a user identifier since the
amount of entropy is small and they would not be able to
correctly represent a large number of users. Nevertheless, 72%
of cookies present average value length longer than 7 characters
and could potentially be used as unique identifiers. Furthermore,
the distribution of average and maximum value length is almost
the same for all the values. It only presents differences in the
tail. This similarity indicates that most of the cookie values
have a fixed length. Indeed, 65% of the cookies in our dataset
use always the same length in their value. This behavior is
consistent with the expected one for an identifier in previous
works but also with other functional cookies (e.g., a cookie
storing language setting of the user, ISO 639-1 format).

On the other side, for some cookies the maximum size differs
significantly from the average size. For these cookies the value
length appears to grow. They concatenate information about the
users while they browse the web. As an example the lr_udsc
cookie is used by liverail.com to store information about the
user. This specific example in our dataset adds hexadecimal
values separated by the % symbol to the previous cookie value.

2) Value stability: Another typical requirement for cookie
values to be used as a unique identifier is that it should be long
lasting. Nevertheless, the web sites could periodically change
(update or rotate) the value of their cookies while still tracking
the whole browsing history of the user. To analyze this matter
we study the length of time a cookie value remains the same.

Figure 4 shows the CDF of the median duration of a cookie
value for all the cookies, for the cookies with values bigger
than 7 characters and the 1K most used cookies in our dataset.
For 69% of the cookies the median duration of the value is
less than 1 day, this duration can be understood as the duration
of a browsing session. Moreover, it is less than 1 week for
79.4% of the cookies. These values are even higher in the case
of the cookies with enough entropy to be unique identifiers
(those ones with values longer than 7 characters). Nevertheless,
when we focus on the most popular cookies the scenario is

krxd.net
krxd.net
rlcdn.com
liveRamp.com
youtube.com
youtube.com
http://www.krux.com/
liverail.com

1sec
1min

1hr
1D

1W
1M

0.0

0.2

0.4

0.6

0.8

1.0
C

D
F

All Cookies

length > 7

Top 1K

Fig. 4: Most of the cookies keep the value for a short period.
Nevertheless, cookies reaching a large number of users tend
to use more stable values

completely different, and 782 of the top 1K keep the same
value of the cookie for more than 1 week.

The results suggest the most common kind of cookie is
associated to a session. Nevertheless, the most popular cookies
keep their value constant for long time being able to act as
identifiers.

3) Value type: In this subsection we look at inferring the
kind of data that is embedded inside the cookies. A first
inspection indicates the existence of completely different data
types as well as complex formats inside the cookie values.
Moreover, we found that around 20% of the cookies are
encoded using Base64 and/or URL encoding technologies to
avoid problems with possible non-standard characters.

In order to understand the information contained inside the
values we first apply iterative decoding, and then, we extract
the value type using regular expressions.

a) Iterative Decoding: The first try to decode the cookies
in our dataset reports an unexpected case: after decoding some
of the cookies, they seemed to be still encoded. While we
have not been able to understand why webpages encode the
information more than once, we have found some of them that
encode their cookies several times. To correctly decode these
cookies (and all the others). For every cookie value, we first
check if it is base64 or URL encoded string and decode them.
If the process does not modify the cookie we leave the cookie
value as it is. In case any of the decoders is successful, we
apply the process again to the resulting value until the decoder
does not provide any new result.

b) Extracting the value type: After the cookie value is
decoded, we apply rule-based methods to identify some of the
possible data types including simple types like numbers, hex-
adecimal values, or text; specific formats like email addresses
or URLs; and complex types like JSON, or the format used to
pass parameters in the URLs. We apply regular expressions to
all the values sharing the same domain and cookie name and
if we find the same value type in at least 95% of the cases
we assign that type to the cookie. If, for a given cookie, we
are able to identify the type for at least 95% of the values, but
they are recognized as different types, we define the type as
Unsure. We mark the rest as Other.

Table I shows the percentage of cookies that belong to
each category. More than 40% of the cookies in our dataset

Type %

Hexadecimal 18.96
Text 7.00
Number 6.53
TimeStamp 3.77
URL assign:
name1 = val1&name2 = val2... 1.31

JSON 1.02
True or False 0.88
Simple assign:
name = val

0.84

URL 0.40
IP address 0.05
Email 0.04
Other (Unsure) 57.42 (1.8)

TABLE I: Percentage of cookies with each kind of type.

belong to one of the predefined categories. The analysis
of the cookie values semantics is out of the scope of this
paper, however, a simple inspection discovers more than 3K
hosts sending an email in clear text with their cookies. It
can be considered as a leakage of PII. An inspection of the
cookies sending the mail reveals most of these cookie are
sent by domains using the popular CMS Wordpress that uses
a cookie called comment_author_email_[uniqueID]
where they store the email of the user.

Furthermore, almost 19% of the cookies store hexadecimal
values. This type of data is the one used inside the PHPSESSID
cookie used by thousands of different domains to keep the
user session. Nevertheless, in general we cannot know if the
value is somehow encrypted information or an identifier of
the user. More surprising is the use of complex formats as
JSON, used by more than 72K domains. This format is used
to pack different pieces of information inside the same cookie,
instead of using different cookies for that purpose. This kind
of construction makes difficult the detection and modification
of cookies in a similar way as the tailoring of cookie names
reported at the beginning of this section. These cookies would
force the detection systems to individually interpret the data
inside every JSON field. Finally, almost 60% of cookies whose
data does not belong to any of the analyzed types. A good
example is the ubiquitous __utma cookie of Google Analytics.
It stores multiple different variables inside:

__utma=DomainID.UserID.FistVisitTS.
PreviousVisitTS.CurrentTS.NumSessions

It is worth noting that most of these 60% of cookies use
proprietary formats to pack different values. As an example,
the __utma cookie packs 6 different values including a user
identifier and a timestamp of the current visit. Thus, the
timestamp makes the value change every time the cookie is
sent, even though the user id stays immutable. Thus, a cookie
including a unique identifier does not need to be long lasting.

As in the case of the JSON format, this construction makes
difficult the manipulation of the cookie. Furthermore, it does
not only affect our ability to automatically modify the cookies
on the fly as proposed by other works [16]. It also affects our
ability to correctly store (or share) the data inside the cookies
in a privacy preserving way. A simple anonymization of the
value (i.e., using a hash function like MD5) would render

useless the data for any future analysis. Then, the only way
to correctly process the information is by understanding the
format used to store different values and handle every piece
of information independently.

IV. ENTITY BASED COOKIE INTERPRETER

Having observed that cookies may convey non trivial
information (in their name and value fields), and that this
information may be encoded in a complex manner, in this
section we propose a method to unpack the contents of cookies
in an unsupervised manner. The primary challenge to be able to
correctly parse the contents of cookies is that while the standard
dictates the need for a name=value tuple be specified, it
does not place any structure or limitation on the contents of
either. In turn, cookie origins are able to define arbitrarily
complex schemas to encode values and as shown in the
previous section, pack the value field with many variables.
As an example, consider the following individual cookie value:

’’253024271.1453122666.239.16.utmcsr=host.com/sea/|
utmccn=(10.0.0.5)|utmcmd=org|utmctr=ail@host.com}’’

First, the cookie contains several different types of fields,
specifically, a Unix timestamp (‘1453122666’), an email
address (‘ail@host.com’) and an IP address (‘10.0.0.5’). Second,
we observe several delimiters (‘.’ and ‘|’) that are combined to
form the text. Third, delimiters may be a part of the content
of fields without any special demarcation, e.g., in the example
above, the character ‘.’ is both a delimiter and content, i.e.,
within the IP address.

To automatically interpret such cookies, we develop an un-
supervised entity-recognition method that unpacks the contents
of the cookies. Our method is able to extract the individual
fields in cookie values and interpret the common patterns for
cookie values for different cookie names from each domain.

A. Entity definition

Similar to the concept of named entity in natural language
processing[22], we define an entity in this study as a single,
indivisible piece of information in the value of a cookie.
Examples of entities are IP addresses or timestamps. Because
the cookie developers are free to define any arbitrary field,
instead of attempting to identify an arbitrary list of possible
fields, we have adopted a pragmatic approach and analyzed
more than 100K randomly selected cookies to identify the
most common entity types. Table II lists the most common
entity types (i.e., numeric values, alphanumeric text, boolean,
hexadecimal, json, timestamp, email, url, and ip address).

To accurately identify entities within cookie values, based
on the characteristics and compositions of different types of
entities, we distinguish between singular entities and composite
entities.

Singular entity: Singular entities refer to those ones that
cannot contain a different entity inside. It includes numeric
values, timestamp, alphaNumeric text, boolean, hexadecimal.

Composite entity: Composite entities aggregate numerous
singular entities in an arbitrary order. It includes json, email,

Entity type Example Symbol

Si
ng

ul
ar

Numeric 17 N
AlphaNumeric NewYork A
Boolean True or False B
Hexadecimal 234AD2A5 H
Timestamp 142800298 TS

C
om

po
si

te JSON a:b, c:d... J
Email abc@domain.com E
URL webofknowledge.com/ U
IP 201.202.1.3 I

TABLE II: Entity types and samples

url, and ip address. Clearly, the composite entity may contain
singular entities or other composite entities as part of its content.

In the previous section about 40% of the cookies have been
identified to be formed by a single composite or singular entity.
Moreover, the remaining 60% of the cookies may be formed
of more than one entity using a proprietary format. In order to
avoid losing of information we have to extract different pieces
of information in the correct order (e.g., if we interpret an
IP address as 4 numbers separated by dots, then, we lose the
chance of checking whether that 4 numbers in fact form an IP
address or not).

B. Entity extraction priority

Composite entities may contain singular and/or composite
entities. For instance, an email may be part of a url (e.g.,
https://domain.com?userEmail=myemail@mydomain.com).
Based on this fact, we define an extraction order.

First, the JSON objects should be extracted because it can
contain any of the other data types. Next, we extract the other
composite data types, both IP addresses and email addresses
may be included in an URL, thus, we will first identify the
URLs, following we will extract the email and IP addresses.

Finally, the simple entities will be extracted. In this case we
have to start for the more specific entities like the timestamp
and the boolean that could be also identified as numeric and
alphanumeric, respectively. Following, the hexadecimal values
will be extracted to end up with the numeric and the most
general alphanumeric ones.

C. Cookie interpretation and representation

After the entity extraction, we represent each cookie value
using an entity type as presented in the following example.
Here, “N” denotes numeric value, “TS” denotes timestamp, “A”
denotes alphanumeric text, and “U” denotes URL. This kind
of entity-type representation enables us to interpret cookies in
a fine-grain way and can be used for post-processing.

Input:
’’250607554.1422361545.2.2.utmcsr=host.com|
utmccn=(referral)|utmcmd=referral|
utmcct=thesection’’

Output: N.TS.N.N.A=U|A=(A)|A=A|A=A

Format selection: After all the values associated with
a cookie have been interpreted we obtain a set of value
representations. Those value representations may be different
for different values of the same cookie if the format used by
the hosts changes. Thus, it may happen that the selection of

Algorithm 1 Entity-based cookie interpreter
1: Input: Set_type, Set_cookies; β; count=0

. decoding
2: for cookie in Set_cookies do
3: while count++ <= β do
4: check IsEncoded(cookie) . Base64 or URL
5: if True then
6: cookie = decode(cookie)
7: end if
8: end while

. entity extraction
9: for E in Set_type do

10: markup all entities typed with E in cookie (Section
IV-A)

11: extract entities by extraction priority (Section IV-B)
12: end for
13: end for

. format selection
14: Cookie format generation by following Section IV-C

the format used by a cookie is not straightforward. In this case
we define a threshold α for the minimum percentage of values
that should have the same format to define it as the general
cookie format. We tuned different values finding α = 90 as
the optimum trade-off between accuracy and recall.

Moreover, some of the fields are specific cases of others.
For example, a numeric value can be sometimes classified
as a timestamp or an alphanumeric value could be extracted
as hexadecimal. To avoid those cases, we use also a priority
selection in which the most specific entity (i.e., timestamp)
is selected if it is in at least α% of the cases, if not, it is
interpreted as a more general entity (i.e., number).

With this method we have evaluated the format used by
more than 5M different cookies.

Results analysis: Contrary to the figures in Table I, only
5.7% of the composite cookies include hexadecimal values
while 69.2% of them include numeric values and more than 22%
include text. Moreover, 35% of the cookies pack a timestamp
together with other values. Thus, one third of the cookies
may include unique identifiers even when their values change
continuously. Finally, more than 600 cookies pack the email
of the user inside the cookie value and 8300 cookies includes
an IP address, also considered as private information by the
American and European data protection laws.

D. Algorithm of entity extraction

Algorithm 1 summarizes the whole process of entity-based
interpreter, where Set_type is the entity type list as shown in
Table II. Set_cookies contains all cookies to be processed for
entity extraction. β denotes threshold for iterative decoding.

E. Validating the selected format

The entity based cookie interpreter described above allows
us to identify the format for more than 5M cookies, that is,
the 86.3% of all the cookies that have been sent more than 10

times5 in our dataset. However, the total absence of a ground
truth limits our possibilities to validate the obtained results.

To overcome this problem we have proceeded to do manual
validation. To this end, we have randomly selected 1000 of the
cookies whose formats is to be identified and we have asked 5
independent persons to manually check if the format assigned
fits with the one of the cookie values. It is important to remark
that in some cases it is difficult, even for human beings, to
identify the underlying format (e.g., some annotators were too
confused to differentiate a URL from pieces of text using the
slash “/” as delimiter or even identifying if a string is a JSON
or not). Thus, we gave our independent annotators 3 different
options. They could select whether the cookie values fit the
format, do not fit it or if the annotator is not sure. Then, we
select as the correct answer that one agreed for more than 50%
of the annotators sure of their answer. In case of a tie, we
select the most conservative option. This is, if 2 annotators
vote the format is wrong, other 2 vote that it is correct and
the fifth one is not sure, we mark it as wrong. Nevertheless,
these cases are residual since the 5 annotators gave the same
answer in 66.6% of the cases.

The results indicate our interpreter identifies the correct
format for 91.7% of the cookies. We consider this accuracy
very high for the first implementation of the entity based cookie
interpreter. A manual inspection indicates that our system fails
to interpret three types of cookies: cookies that use more than
one format depending on the user/moment and cookies that
grow, adding more information and changing the format with
the time. In both cases, a manual inspection of the cookie
values is needed to correctly infer the format; 3) the third type
of incorrectly interpreted cookies are in binary format encoded
using Base64 (or other encoders). It is impossible to entangle
the information stored inside them if they are only set and
read by the server. Moreover, if they are set using JavaScript,
only a case by case reverse engineering of the JavaScript code
could shed some light over the format they use.

V. RELATED WORK

The research community has studied online advertisement
and its privacy issues. These studies have been mainly active
measurements, using simulated traffic, with mostly the Alexa
top-K sites [1][18][3][19][20][15]. Furthermore, Ikran et al.
[23] follow a different approach and use machine learning
to identify the javascript snippets used to track users online.
Only the paper from Metwalley et al. [5] presents a passive
measurement study related to advertisement. In [5], authors
find that the top 5 trackers contacted more than 90% of the
users.

Related to the study of cookies, works such as [20][15][2]
study how cookies are used as identifiers by trackers. In order to
protect users from this phenomenon, Papaodyssefs et al. [16]
propose a proxy that maps public users cookies to private,
always keeping the anonymity of the user. The problem is that

5If a cookie has appeared less than 10 times we cannot infer any format
inside it.

they treat cookies as a whole string, when we have shown that
cookies zip several values on them. Another work [17] protects
users by blocking identifiable information from HTTP requests.
But, according to our knowledge, this is the first work that
extract information from HTTP cookies characterizing them.

Englehardt et al. [20] find that it is possible to reconstruct
up to 73% of user’s history using their cookies alone. Li et
al. [15] find that 46% of webpages in the Alexa top 10K
have a third party tracker, and 30% use at least one of the
top 5 ranked trackers. Roesner et al. [1] find similar rates
of tracking of users, but show also that first and third party
domains commonly bypass the same-origin policy protections
in order to track users. Moreover, [24] study the information
exposed when a user cookie jar is cracked.

Recent studies [1][18][5] show that users online are tracked
continuously. As well as cookies, methods include HTML5
Local Storage, Etags, Flash and Finger-printing [2][25][26].
First and third-party domains collect data on users and exchange
information through a complex of web relations [3][1][19].
All with the aim of profiling the complete online activity of
users [18][27], typically for targeted services.

VI. DISCUSSION

The insights obtained from the analysis of the data report two
main implications for the users. First, cookies (not surprisingly)
are still used to transfer PII (Personally Identifiable Information)
of the users. Second, the tools available today to protect the
online privacy of user need to be greatly improved to address
the complexity of modern cookies.

The existence of cookies sending PII in clear text represents
a serious leakage on the users privacy. For example, any agent
with access to the network data (i.e., a malicious user sniffing
traffic in a public WiFi network) could easily identify the real
user behind the connection if the user’s email or other sensitive
information is sent inside a cookie.

However, online advertisement represents one of the main
source of revenue for webpages and the privacy preserving tools
available nowadays (i.e., Ghostery, AdBlockPlus, NoScript,
etc.) are designed to block the ads. Consequently, they severely
damage the freemium Internet ecosystem. Furthermore, they
also affect the user experience by breaking some legitimate
services. Finally, publishers have started an arms-race against
the ad-blockers that may end up with the users adding
exceptions, thus, removing all the protection against privacy
leakages.

A. Integration of our solution in existent tools

The research community is moving to design and develop
new fine-grained privacy protection tools that allow the online
advertising while still avoiding the privacy leaks[16][17].
Nevertheless, these methods make simplistic assumptions about
the composition of the cookies that could be easily fixed by
using the results of this work.

In particular, the methodology to detect unique identifiers in
cookies of our previous paper [14] can be easily extended to

Entity type Anonymization Action

Si
ng

ul
ar

Numeric Hash(number)
AlphaNumeric Hash(text)
Boolean Keep value
Hexadecimal Hash(value)
Timestamp value + random noise

C
om

po
si

te JSON Analyze each variable separately
Email Hash(user)@domain.com
URL host/Hash(path)
IP Mask(IP address)

TABLE III: Anonymization actions

include the format of the cookie value, comparing individual
pieces of information instead of the whole text.

Moreover, solutions like WIT [16] (a network proxy that
translates the user cookies into private ones avoiding the
tracking) would fail to detect the tracking with its actual model.
However, as in [14], the knowledge of the format used inside
the cookie value would help the tool perform more accurately.
Furthermore, WIT also needs to know when cookies include
the user identifiers in the cookie name as demonstrated in
section III-B.

The Cliqz browser [17] already blocks all the third party
cookies protecting the user privacy. Nevertheless, as the authors
admit it causes some services to break. They could use the
methodology described in this paper to analyze the format of
third party cookies and block only those parts that make the
users unique.

B. Other implications

The detection of cookie syncing has attracted the attention
of the research community in the last years [7][8]. Moreover,
this detection is most times based in detecting the transfer of
the id used in the cookies to third parties. In order to be able
to do this effectively, we need to correctly detect the user IDs.
The cookie structures detected in this paper can be used as a
pivotal and fundamental step towards that end.

Finally, the output of the cookie interpreter can also be
used to properly anonymize datasets containing cookie data
in a meaningful way. A naive approach would hash the entire
cookie value in order to anonymize it. However, it would make
impossible any further analysis of the information inside the
cookies (i.e., to find user identifiers). We propose to anonymize
each piece of information inside a cookie independently (using
the structure identified by the interpreter). That way, we propose
to apply different anonymization operations depending on the
type of each piece of information as shown in table III. It
would keep the privacy of the users, and at the same time, it
would allow further analysis of the data.

C. Available datasets

In order to help developers and the research community to
use the results of this paper we make public two datasets. One
containing a list of domains that use to include information
inside the cookie name and a list with the structure found for
more than 5M different cookies.

The first dataset provided can be
found in https://privacyaware.nlehd.de/data/
NumCookiesPerHost_More_1K.csv and includes the
name of all the hosts that use more than one thousand different

https://privacyaware.nlehd.de/data/NumCookiesPerHost_More_1K.csv
https://privacyaware.nlehd.de/data/NumCookiesPerHost_More_1K.csv

cookie names as described in Section III-B (the tail of Fig.
3). The hosts in the list most probably include some kind of
information inside the cookie name. This form of cookie name
tailoring may affect some of the state-of-the-art solutions for
protecting the privacy of the user by intercepting the cookies.
These tools can treat differently the information coming from
the host in the list and researchers can use it as a starting
point to better understand this practice.

Moreover, in https://privacyaware.nlehd.de/data/
patternListComplete.csv we make available a dataset
containing the list with more than five million cookie value
structures discovered using the cookie interpreter described in
Section IV. This dataset can be used to process each piece
of information inside a cookie separately. It will improve the
accuracy of the methods devoted to identify unique identifiers
but also those ones that try to identify cookie syncing. Finally,
it can be used to correctly anonymize other datasets including
cookie data in a meaningful but private manner.

VII. CONCLUSIONS

This paper is the first study that analyzes how the cookies
are used in the wild in a fine-grain way on a large dataset
(more than 40Tb network data) coming from real users.

We discovered the structure of the cookies is much more
complex than it has been assumed by previous works that
following the standard defines a cookie as a pair composed by
a name and a value. We find thousands of websites that tailor
the cookie name to include a unique identifier of the user. It
makes difficult to compare cookies among users, moreover, it
affects our ability to generate black lists of cookies to block
only those ones that represent a risk for the user privacy without
breaking any of the Internet services.

Furthermore, we find almost 60% of the cookies do not use
a simple format for its value. Instead, they pack multiple inde-
pendent values inside a single cookie using proprietary formats.
It makes impossible to correctly analyze the information inside
without knowing the format used. Thus, we have developed
a methodology that iteratively extract the different pieces of
information inside the cookie values. Our methodology is able
to infer the format with a precision of 91.7% and a recall of
almost 80%.

ACKNOWLEDGMENTS

We thank anonymous reviewers and our shepherd for their
valuable comments and suggestions. This work has been
partially supported by the European Union through the H2020
TYPES (653449) and ReCRED(653417) Projects.

REFERENCES

[1] F. Roesner, T. Kohno, and D. Wetherall, “Detecting and defending against
third-party tracking on the web,” in NSDI, pp. 12–12, 2012.

[2] G. Acar, C. Eubank, S. Englehardt, M. Juarez, A. Narayanan, and C. Diaz,
“The Web Never Forgets: Persistent Tracking Mechanisms in the Wild,”
in ACM SIGSAC, pp. 674–689, 2014.

[3] B. Krishnamurthy, K. Naryshkin, and C. E. Wills, “Privacy leakage vs.
protection measures: the growing disconnect,” in W2SP, 2011.

[4] “The state of privacy in post-Snowden America.” http:
//www.pewresearch.org/fact-tank/2016/09/21/the-state-of-privacy-
in-america/, 2016.

[5] H. Metwalley, S. Traverso, M. Mellia, S. Miskovic, and M. Baldi, “The
Online Tracking Horde: A View from Passive Measurements,” in TMA,
pp. 111–125, 2015.

[6] “Cookie Matching.” https://developers.google.com/ad-exchange/rtb/
cookie-guide, 2016.

[7] A. Ghosh, M. Mahdian, R. P. McAfee, and S. Vassilvitskii, “To match
or not to match: Economics of cookie matching in online advertising,”
ACM Transactions on Economics and Computation, vol. 3, no. 2, p. 12,
2015.

[8] S. Englehardt, “The hidden perils of cookie syncing,” Freedom to Tinker,
2014.

[9] J. M. Carrascosa, J. Mikians, R. Cuevas, V. Erramilli, and N. Laoutaris, “I
always feel like somebody’s watching me: Measuring online behavioural
advertising,” in Proceedings of the 11th ACM Conference on Emerging
Networking Experiments and Technologies, CoNEXT ’15, (New York,
NY, USA), pp. 13:1–13:13, ACM, 2015.

[10] M. Stopczynski and M. Zugelder, “Reducing user tracking through
automatic web site state isolations,” in International Conference on
Information Security, pp. 309–327, Springer, 2014.

[11] M. Falahrastegar, H. Haddadi, S. Uhlig, and R. Mortier, “Anatomy of the
third-party web tracking ecosystem,” CoRR, vol. abs/1409.1066, 2014.

[12] “The cost of ad blocking.” http://downloads.pagefair.com/reports/
2015_report-the_cost_of_ad_blocking.pdf, 2015.

[13] D. Thomas, “Ad blockers: How online publishing is fighting back.”
http://www.bbc.com/news/business-35602332. "[Online; accessed 20-
May-2016]".

[14] H. Metwalley, S. Traverso, and M. Marco, “Unsupervised detection of
web trackers,” in IEEE GLOBECOM, 2015.

[15] T.-C. Li, H. Hang, M. Faloutsos, and P. Efstathopoulos, “Trackadvisor:
Taking Back Browsing Privacy from Third-Party Trackers,” in PAM,
vol. 8995, pp. 277–289, 2015.

[16] F. Papaodyssefs, C. Iordanou, J. Blackburn, N. Laoutaris, and K. Papa-
giannaki, “Web identity translator: Behavioral advertising and identity
privacy with wit,” in Proceedings of HotNets, pp. 3:1–3:7, 2015.

[17] Z. Yu, S. Macbeth, K. Modi, and J. M. Pujol, “Tracking the trackers,”
Proceedings of WWW, pp. 121–132, 2016.

[18] P. Barford, I. Canadi, D. Krushevskaja, Q. Ma, and S. Muthukrishnan,
“Adscape: Harvesting and Analyzing Online Display Ads,” in WWW,
pp. 597–608, 2014.

[19] M. Falahrastegar, H. Haddadi, S. Uhlig, and R. Mortier, “The Rise of
Panopticons: Examining Region-Specific Third-Party Web Tracking,” in
TMA, pp. 104–114, 2014.

[20] S. Englehardt, D. Reisman, C. Eubank, P. Zimmerman, J. Mayer,
A. Narayanan, and E. W. Felten, “Cookies That Give You Away: The
Surveillance Implications of Web Tracking,” in WWW, pp. 289–299,
2015.

[21] A. Barth, “HTTP State Management Mechanism,” RFC 6265, 2011.
[22] J. R. Finkel, T. Grenager, and C. Manning, “Incorporating non-local

information into information extraction systems by gibbs sampling,” in
Proceedings of the 43rd annual meeting on association for computational
linguistics, pp. 363–370, Association for Computational Linguistics, 2005.

[23] M. Ikram, H. J. Asghar, M. A. Kaafar, A. Mahanti, and B. Krishnamurthy,
“Towards seamless tracking-free web: Improved detection of trackers via
one-class learning,” Proceedings on Privacy Enhancing Technologies,
vol. 2017, no. 1, pp. 79–99, 2017.

[24] S. Sivakorn, I. Polakis, and A. D. Keromytis, “The cracked cookie
jar: Http cookie hijacking and the exposure of private information,” in
Security and Privacy (SP), 2016 IEEE Symposium on, pp. 724–742,
IEEE, 2016.

[25] T.-F. Yen, Y. Xie, F. Yu, R. P. Yu, and M. Abadi, “Host Fingerprinting
and Tracking on the Web: Privacy and Security Implications,” in NDSS,
2012.

[26] P. Eckersley, “How Unique is Your Web Browser?,” in PETS, pp. 1–18,
2010.

[27] L. Olejnik, T. Minh-Dung, and C. Castelluccia, “Selling Off Privacy at
Auction,” in NDSS, pp. 199–208, 2013.

https://privacyaware.nlehd.de/data/patternListComplete.csv
https://privacyaware.nlehd.de/data/patternListComplete.csv
http://www.pewresearch.org/fact-tank/2016/09/21/the-state-of-privacy-in-america/
http://www.pewresearch.org/fact-tank/2016/09/21/the-state-of-privacy-in-america/
http://www.pewresearch.org/fact-tank/2016/09/21/the-state-of-privacy-in-america/
https://developers.google.com/ad-exchange/rtb/cookie-guide
https://developers.google.com/ad-exchange/rtb/cookie-guide
http://downloads.pagefair.com/reports/2015_report-the_cost_of_ad_blocking.pdf
http://downloads.pagefair.com/reports/2015_report-the_cost_of_ad_blocking.pdf
http://www.bbc.com/news/business-35602332

