
A Measurement Study of Congestion in an
InfiniBand Network

Fatma Alali⇤, Fabrice Mizero⇤, Malathi Veeraraghavan⇤, John M. Dennis†
⇤University of Virginia, Charlottesville, VA, 22904, USA, {fha6np, fm9ab, mv5g}@virginia.edu

‡National Center for Atmospheric Research, Boulder, CO, 80301, USA, dennis@ucar.edu

Abstract—This paper presents a measurement study of con-

gestion on a production, highly utilized, 72K-core InfiniBand

cluster called Yellowstone. The measurement study consists of

a 23-day data collection phase in which port counters of the

Yellowstone switches were read multiple times every hour to

check for stalls during which the port is unable to send data

due to a lack of flow-control credits. A total of 30M data records

were obtained and analyzed. Results showed that a significant

number of the 100-ms intervals over which a port counter was

observed, there were transmission stalls. For example, out of 6M

observations of Top-of-Rack (ToR) switch uplink ports, we found

that the port was forced to wait for credits in 60% of these 100-

ms intervals. Such transmission stalls could increase application

execution time, and also decrease cluster utilization. The latter

will occur when Message Passing Interface (MPI) Barrier calls

are issued for synchronization and communication delays cause

one or more MPI ranks to be slower than others.

Index Terms—InfiniBand; Fat-tree; congestion

I. INTRODUCTION

In July 2016, InfiniBand was reported as the cluster inter-
connect of choice in 70% of the High Performance Computing
(HPC) systems deployed in academic, research and govern-
ment institutions, and as being used in 41% of the Top-500
list of supercomputers [1]. InfiniBand is a switched networking
technology that is designed for lossless, low-latency commu-
nications. For highly parallelized Message Passing Interface
(MPI) applications that are executed on HPC systems, commu-
nication delays can become the key determinant of application
execution time when computing cores are not limited.

The InfiniBand protocol includes a link-by-link flow control,
which is effective in preventing losses in switch buffers, but
has an insidious side effect of causing congestion to spread
in the network. When an output port P1 of a switch becomes
congested, the input-side buffer of another port P2 of the same
switch could fill up. This will cause the port of the upstream
switch connected to port P2 to be denied flow-control credits,
thus effectively reducing the rate of the upstream port. Such
a port is referred to as a “victim port” and flows passing
through victim ports become “victim flows” (bulk-data flows
suffer reduced throughput, and short-messages suffer increased
delays).

Studies have shown that network effects, e.g., congestion,
can increase variability of the total execution time for large
core-count applications [2]. Therefore, many research papers,
[3]–[12], have modeled, analyzed, and proposed solutions for
InfiniBand congestion control, and evaluated these solutions

using simulations or experiments on small testbeds. For exam-
ple, in prior work [12], we studied the conditions under which
congestion occurs by creating various combinations of traffic
on a small experimental testbed, and then we developed and
evaluated a new Dynamic Congestion Management System
(DCMS) solution on this testbed.

In contrast to this prior work, in this paper, we report on a
measurement study of congestion in a production HPC cluster.
To the best of our knowledge, no such measurement study has
been reported in prior work. It is challenging to characterize
congestion events because supercomputing centers typically
disable congestion control in their InfiniBand clusters. The
reason cited for disabling congestion control is that there is no
proven study that provides guidance on how to set congestion-
control parameters [3]. Therefore, a measurement study of
congestion in a production network is not easy.

Specifically, our measurement-based study of congestion
was carried out on a highly utilized 72K-core machine called
Yellowstone [13]. The Yellowstone network is a fat-tree
topology, which consists of Top-of-Rack (ToR) switches, leaf
switches, and spine switches. In addition to the main cluster
of compute nodes, there is a disk I/O subsystem, and a data
analysis and visualization subsystem. A methodology based on
observing a port counter called PortXmitWait is proposed.
For data analysis, a new metric called Forced Idle Time
Fraction (FITF) is defined.

Our key contributions are as follows. (i) Our methodology
and software offers a means for network administrators to
obtain a conservative gauge of the level of congestion in a
production network on which congestion control is disabled.
(ii) We expected congestion to be predominantly in the disk
I/O system, but found that ports in the compute-node cluster
also suffered from congestion. In about 60% of the 100-
ms intervals in which ToR-switch ports were observed, the
ports were stalled waiting for flow-control credits. While
in most 100-ms intervals, a port was denied flow-control
credits for less than 10% of the interval, there were some
instances in which a port was denied credit for significant
portions (in the range 60-80%) of the 100-ms interval, with
several intervals reaching 100%. Such long stalls in data
transmission can impact the completion time of one or more
MPI ranks adversely, which can increase execution time of
highly parallelized communication-intensive applications that
have MPI_Barrier calls for synchronizing MPI ranks.

Section II provides background information on InfiniBand



Fig. 1: Illustrative InfiniBand Network [12]

and Yellowstone. Section III describes our measurement study
(methodology, data analysis, and metrics). The numerical
results are presented in Section IV, and the impact of our
findings is discussed in section V. Section VI reviews related
work. The paper is concluded in Section VII, and our plan for
future work is presented in Section VIII.

II. BACKGROUND

This section provides background information on InfiniBand
networks, and describes the Yellowstone system.

A. InfiniBand

InfiniBand is a packet-switched networking technology de-
signed for high-speed low-latency operation. Packet headers
carry 16-bit source and destination Local Identifiers (LIDs),
and packets are forwarded by switches with a destination-LID-
based table lookup. A centralized subnet manager computes
and downloads forwarding tables to the switches. To avoid
packet loss, a link-by-link flow-control scheme is used. A
transport-layer congestion-control mechanism includes actions
at switches, receiving hosts, and sending hosts.

In the link-layer protocol, a transmitter (switch port or
host port) is not allowed to send out packets unless the
corresponding receiving port has sufficient buffer space. The
receiving port sends a Flow Control Packet (FCP) indicating
how much space is left in its buffer. If the receiving buffer is
full, the transmitter has to wait until it receives an FCP from
the receiver.

Congestion control in InfiniBand is based on Explicit Con-
gestion Notification (ECN). The mechanism used to detect
congestion at a switch port is not defined in the InfiniBand
specification, but rather, it is left up to the vendors. When
congestion is detected on a port P , packets transmitted out on
port P are marked by setting the Forward ECN (FECN) bit
in the transport-layer header. The rate at which the packets
are marked is controlled by a configurable parameter called
the Marking_Rate. When a receiving host receives marked
packets for a flow, it sets a Backward ECN (BECN) bit in the
acknowledgment (ACK) or other packets that are being sent
in the opposite direction. When the sending host receives a
BECN-marked packet for a particular flow, the sender reduces
its sending rate according to a mechanism that dynamically
adjusts inter-packet injection delay.

To understand how the link-by-link flow control mechanism
causes the effects of a port’s congestion to spread even to ports
that have no shared flows with the congested port, consider
the example shown in Fig. 1 [12]. Assume that port p of
switch s becomes congested because the aggregate incoming
rate of packets destined to port p exceeds the port capacity.
This can happen when multiple high-throughput transfers (e.g.,
disk read/write and checkpointing) destined to the same switch
port occur concurrently, as demonstrated in experiments in our
prior work [12]. Now, assume flow F1 traverses ports j and
q of switch r and ports v and p of switch s. When port p
gets congested, the buffer on the incoming side of port v of
switch s will start to fill up with flow-F1 packets. When this
buffer fills up, the rate at which FCPs are generated by port
v of switch s to port q of switch r, to offer the latter credits
for packet transmission, will decrease. Effectively, the rate of
port q of switch r is lowered. Now, consider flow F2, which
traverses ports k and q of switch r and ports v and w of switch
s. The rate of F2 will be reduced even though this flow does
not traverse the congested port p. Flow F2 is a victim flow, and
port q of switch r is a victim port. This example illustrates
how the presence of the link-by-link flow control algorithm
causes the effects of a congested port to spread to other parts
of the network.

This type of spreading of the effects of a congested port
does not occur in IP/Ethernet networks. This is because in
IP/Ethernet networks, when a switch buffer is full, packets
are simply dropped. There is no credit-based flow control
mechanism, and therefore a link transmitter can freely send
packets to a link receiver causing a buffer to overflow. This
approach has the advantage of not creating victim ports.
Consider the example of flows F1 and F2 shown in Fig. 1.
If the switches were Ethernet-based or IP routers, when port
p of switch s becomes congested, its buffer will overflow,
which causes F1 packets to be dropped. Flow F2, which is
not destined to the congested port p, will not experience any
dropped packets and hence will be unaffected, unlike in the
InfiniBand network. However, if flow F2 also used port p, it
would suffer packet losses. Therefore, there are victim flows
in TCP/IP networks but not victim ports; the latter is worse
as flows that do not even traverse the congested port become
victimized.

Therefore, the work presented here is only relevant to
InfiniBand-based HPC systems, which as noted in Section I, is
deployed widely in academic, research and government insti-
tutions. Commercial datacenters typically use Ethernet-based
interconnects. The reason for this difference is that parallel
programs written for scientific research typically use MPI
and require low-latency communications, while commercial
datacenters typically support applications that use TCP sockets
for communications.

B. Yellowstone

Yellowstone is a high-performance IBM iDataPlex cluster,
where the network interconnect is a Mellanox InfiniBand full



Fig. 2: Yellowstone topology

fat-tree. All links carry 4-lane Fourteen Data Rate (FDR) (56
Gbps) signals.

Fig. 2 shows the Yellowstone topology. Each ToR switch has
36 ports, 18 of which are connected to compute hosts, and the
remaining 18 are connected to leaf switches in ORCA1 racks.
Each ToR switch with its 18 compute hosts is called an A-
group. The term B-group is used to represent a group of 18
A-groups. All ToR switches in a B-group are connected to the
same two leaf switches of an ORCA rack, which consists of
29 leaf switches and 18 spine switches. For example, ToR1
to ToR18 of B-group 1 are connected to Leaf 1 and Leaf 2
of ORCA 1, Leaf 30 and Leaf 31 of ORCA 2, etc. In other
words, all ToR switches of B-group 1 are connected to the
first two leaf switches of each of the 9 ORCAs. Similarly,
ToR19 to ToR36 of B-group 2 are connected to Leaf 3 and
Leaf 4 of ORCA 1, Leaf 32 and Leaf 33 of ORCA 2, etc.
Each leaf switch also has 36 ports, 18 of which are connected
via downlinks to ToR switches, and the remaining 18 are
connected to spine switches of the same ORCA rack to which
the leaf switch belongs.

There is a disk I/O subsystem shown as Centralized Filesys-
tems and Data Storage (CFDS) in Fig. 2. This system is named
“Glade.” The Glade leaf switches are connected to the 29th

leaf switch in each ORCA as shown in Fig. 3. There is also
a Data Analysis and Visualization (DAV) subsystem, which is
connected to the CFDS subsystem, as shown in Fig. 2.

Fig. 3 shows the details of the Glade disk I/O subsystem
(marked as CFDS in Fig. 2). The Glade subsystem has 6 Glade
spine and 4 Glade leaf switches, which are connected to GPFS
Network Shared Disk (NSD) servers.

III. MEASUREMENT STUDY OF CONGESTION

This section describes the basis for our methodology, the
data collection process executed on Yellowstone, our data
analysis method, and the definition of a new metric used as a
proxy measure for congestion.

1ORCA does not appear to be an acronym.

Fig. 3: Glade subsystem topology

A. Basis for methodology

InfiniBand switches implement two types of port coun-
ters among others, namely, PortXmitCongTime, and
PortXmitWait. PortXmitCongTime is the amount
of time a port has spent in a congested state, while
PortXmitWait indicates the amount of time a port has data
to send but lacks flow-control credits.

If an administrator disables congestion control, as is the case
on the Yellowstone system, PortXmitCongTime counters
will not register any values, and hence cannot be used to mea-
sure congestion. However, we contend that PortXmitWait
counters can be used as a proxy indicator for congestion, and
offer the following justification.

First, how does a switch decide that a port is congested?
As noted in Section II, the specific mechanism used to detect
congestion is left up to vendor implementation. An approach
proposed by Gran and Reinemo [7] for congestion detection is
as follows: when the fill-ratio of an input-port Virtual Output
Queue (VOQ)2 holding packets destined to a particular output
port exceeds a certain predefined level, the switch will consider
the output port to be congested. The predefined level for fill
ratio is related to the InfiniBand standard congestion-control
parameter called Threshold. This parameter controls how
quickly a switch reacts to congestion, with a value 15 indi-
cating the fastest reaction to congestion onset, and a value 0
for disabled congestion control. Therefore, whether a switch
declares a port to be in a congested state or not (i.e., whether
or not packets sent on that port should be marked with FECNs)
is dependent on these parameters. The PortXmitCongTime
counter increases for ports declared to be in a congested state.

Second, if the PortXmitWait counter of an upstream port
increases, does it necessarily mean that there is congestion on
some corresponding downstream switch port? The answer is
yes. The PortXmitWait counter of an upstream port (e.g.,
port q of switch r in Fig. 1) increases only when the transmitter
has no flow-control credits from the receiver to send packets.
This can only happen if the whole input-side buffer of the

2VOQs are used to avoid the Head-of-Line (HOL) blocking problem.



corresponding receiving port (e.g., port v of switch s) is full.
But if the input-side buffer is full, it means that irrespective of
the Threshold parameter setting, the fill ratio of at least one
VOQ in this input-side buffer is guaranteed to have crossed
the threshold by the time the downstream switch denies flow-
control credits to the upstream switch. In other words, some
downstream-switch port would have been declared as being
congested before a corresponding PortXmitWait counter
of an upstream switch port starts to increase.

Finally, consider the flipped question: does a downstream
congested port necessarily cause the PortXmitWait counter
of an upstream port to increase? The answer is no because
the predefined level for the fill ratio of input-side VOQs
of a downstream port is typically less than 100%, which
means congestion would be declared even before the input-side
buffer fills up completely, while PortXmitWait counter of
the upstream port will not increase until the corresponding
receiving port has no space in its input-side buffer. The
implication is that an increasing PortXmitWait counter is a
conservative monitor for congestion, not an overly optimistic
one. In other words, there were likely more congestion events
than reported here by a reading of the PortXmitWait

counters. Therefore, applying our methodology, if large and/or
frequent increases in PortXmitWait counters are observed,
network administrators can be sure that there is network
congestion.

In general, since InfiniBand switch buffer sizes are small,
e.g., on the order of 64 KB, which is sufficient to hold
just 32 frames [14], it is likely that soon after congestion is
declared for a downstream-switch port, the PortXmitWait
counter on at least one corresponding upstream port will
increase. Our previous paper [12] presented graphs that show
the simultaneous increase in PortXmitCongTime counter
of a downstream port and the PortXmitWait counter of
an upstream port. A similar observation was made in an
experimental study by Subramoni et al. [15], in which the
PortXmitWait counter was seen to register increases when
congestion was caused by an All-to-All Remote Direct Mem-
ory Access (RDMA) communications event.

B. Script implementation and execution for data collection
A Linux command called perfquery is available to read

InfiniBand port counters. This command was used to read the
PortXmitWait counter of switch ports at periodic intervals.
Since the number of ports in Yellowstone is very large, and
we had only limited CPU time to run this script, we decided
to observe a set of randomly selected ports for short durations
every hour. We wrote a shell script to first randomly select
a switch port from across the whole Yellowstone topology,
including the Glade and DAV subsystems, and then to issue the
perfquery command to read the PortXmitWait counter
of the selected port multiple times with a specified inter-query
interval, before selecting the next port for observation.

The approximately 700 switches were divided into 6 sets,
to allow for concurrent monitoring. Six instances of the script
were executed, with each script running on a different host.

The sets of switches are disjoint, and hence no script can
randomly draw a port outside its domain.

The steps executed by the script are as follows: (i) Parse
the script input arguments to obtain the lower and upper
bounds of the assigned set of (approximately 115) switch
LIDs. (ii) Select a switch LID at random (using uniform
distribution) from the set of assigned LIDs, and select one of
the switch ports also at random (using uniform distribution).
(iii) Execute a command to check if the selected port is in
an operational state. If not, select another switch and port.
(iv) Reset the PortXmitWait counter for the selected port
using the perfquery command with the reset (-R) flag.
(v) Submit a sequence of 100 perfquery calls to read the
PortXmitWait counter of the randomly selected port, with
an inter-call time spacing of 100 ms (i.e., the process sleeps
for 100 ms after each command completes). Each sequence
of 100 calls is referred to as a round. In other words, each
port was observed for approximately 10 sec. (vi) Append the
results of each query into an open comma separated values
(CSV) file. (vii) After the 100th query, select another switch
and port at random, and repeat steps (iii)-(v).

A cron job was used to run the 6 instances of the script
(one corresponding to each set of approximately 115 switch
LIDs) every hour. After 20 minutes of execution, the scripts
terminate. To prevent excessive disk I/O, the results of each
perfquery are appended to a file that is stored on the local
filesystem of the compute node on which the script is run.
When the total size of the file exceeds a threshold, the file is
copied to permanent storage.

This data collection process was executed for a period of
23 days in March 2016. The aggregate size of the CSV files
was 2 GB, and each file had approximately 5M records3.

C. Data analysis

Each row in the CSV file, which we refer to as a record,
stores the parameters as well as results of one perfquery

call. Record i in round r is defined to have the following fields:

{tr, sr, pr, tqr,i, t
p
r,i,Wr,i} (1)

where the first three parameters are common for a round r: tr
is the time instant when the 100-call perfquery round r was
initiated, sr is the switch LID (unique across the Yellowstone
network), pr is the port number on switch sr, where pr 2 Psr

and Psr is the set of all ports on switch sr, and the remaining
parameters are specific to a query i within round r: tqr,i is
the time recorded just before the ith perfquery call of
round r was issued, tpr,i is the turnaround time of the ith

query of round r (i.e., the difference between the time recorded
when the perfquery call returns and tqr,i), and Wr,i is the
PortXmitWait counter value of port pr on switch sr at
time t, where t is estimated to be (tqr,i + tpr,i/2) since the
exact time when the switch sr received the message to read
the PortXmitWait counter is not directly measurable.

3The data is publicly available at this web site:
http://pages.shanti.virginia.edu/HSN/tma17-data/



All records were merged into one CSV file, and a switch-
port-classification script was executed to classify the switch
LID into one of 7 categories (ToR, Leaf, Spine, GladeLeaf,
GladeSpine, DAVSpine, and DAVLeaf) based on the role of
the switch in the Yellowstone topology. The port number pr
in each record was used to determine whether the port was
connected to an up or down link in the fat-tree topology
of Yellowstone. For example, the up link of a ToR switch
connects the ToR switch to a leaf switch, while the down

link of a ToR switch connects the ToR switch to a host.
This switch-port-classification script parsed the output of the
ibnetdiscover tool to map LIDs and ports into the 7
switch categories and up/down classifications, respectively,
and then added two columns to each record in the merged
CSV file indicating the switch category and up/down port
classification.

The augmented record, denoted Rr,i, in the merged CSV
file has the following fields:

Rr,i , {�r,�r, tr, sr, pr, t
q
r,i, t

p
r,i,Wr,i} (2)

where the first two fields are new relative to the fields in the
original CSV files, as specified in (1). The first field � is the
switch category and has one of these 7 values: ToR, Leaf,
Spine, GladeLeaf, GladeSpine, DAVSpine, and DAVLeaf, and
the second field � represents the port type as up or down.

D. Metrics
We define a new term Forced Idle Time Fraction (FITF),

represented by Fr[i], as the fraction of time when a transmitter
is made to wait for flow-control credits from the receiver
between the ith and (i + 1)th perfquery calls within
querying round r of a switch port. FITF vector Fr is defined as
a vector with 99 entries corresponding to the 100 perfquery
calls issued to a switch port in one round.

Consider two consecutive records Rr,i+1 and Rr,i in the final
CSV file that belong to the same round r. The ith element of
the vector Fr is given by:

Fr[i] =
⌧ (Wr,i+1 �Wr,i)

(tqi+1 +
tpi+1

2 )� (tqi +
tpi
2 )

, 1  i  99 (3)

where ⌧ corresponds a system tick, which is roughly 22 ns
for an FDR switch port.

The Fr vectors from the various querying rounds of different
switch ports are combined based on their � switch category
and � port type to create a matrix A�,� shown below:

A�,� =

0

BBB@

F1

F2
...

Fk�,�

1

CCCA
(4)

where the switches in all k�,� rounds belong to category �, and
the queried ports belong to the category �. There are 11 (�,�)
combinations C={(Spine, down), (Leaf, up), (Leaf, down),
(ToR, up), (ToR, down), (DAVSpine, down), (DAVLeaf,
up), (DAVLeaf, down), (GladeSpine, down), (GladeLeaf, up),

TABLE I: Total number of querying rounds for each switch
category and port type

Port
type

Switch category
Spine Leaf ToR DAV-

Spine
DAV-
Leaf

Glade-
Spine

Glade-
Leaf

down 63129 63527 60217 1422 1192 1455 1165
up NA 63679 60131 NA 1133 NA 1172

(GladeLeaf, down)}. There are no (Spine, up), (DAVSpine,
up), or (GladeSpine, up) possibilities since Spine is the top-
level of the topology.

IV. NUMERICAL RESULTS

Section IV-A shows examples of how the PortXmitWait
counter grows within a 10-sec interval for two ports. Sec-
tion IV-B presents a comparison of FITF across the 11 switch-
port categories. Section IV-C presents an analysis of the rounds
in which FITF was non-zero (without considering outliers),
and Section IV-D discusses the outlier FITF values.

A. Examples illustrating PortXmitWait growth
Fig. 4 shows two examples of how PortXmitWait

counter value increases within one querying round. Even
though the counter was reset at the beginning of each
round, the PortXmitWait value returned from the first
perfquery call was not zero because there was a time
interval between the resetting action and when the call to read
the counter was issued. In Fig. 4a, for example, the counter
stays unchanged at 25072028 until the 71st query, and then
increases to 25092026, where it stays unchanged until the 94th

query (the values shown on the y-axis of Fig. 4a should be
added to 2.506e7, as shown at the top of the axis, to obtain
the actual PortXmitWait counter readings). On the other
hand, Fig. 4b shows that the counter value increases almost
continually within each 100-ms interval.

B. Zero vs. non-zero FITF values
Table I shows the number of querying rounds k�,� for each

combination of switch category � and port type �. Since the
number of ToR switches is roughly equal to the number of
leaf switches, the number of querying rounds for these two
types of switches were roughly the same. There are much
fewer DAV and Glade switches, and hence there were fewer
querying rounds for these switches.

Fig. 5 shows a stacked bar-plot for the percentage of zero
and non-zero FITF values for each switch category and port
type. In the ToR switches, the number of non-zero FITF values
is greater than the number of zero FITF values for both up and
down port types. For example, a ToR switch down port was
queried in 60217 rounds, which means the PortXmitWait
counter value growth over 100 ms was observed 60217 ⇥ 99
times, which is roughly 6M. In these 6M observations, we
found that the port was forced to wait for credits (which is an
indication of congestion) in 60% of these 100-ms intervals.
The implication of a ToR switch downlink port being held
up waiting for credits is that the corresponding Host Channel
Adapter (HCA) buffer was full.



(a) Switch category: ToR, port type: down (b) Switch category: Spine, port type: down

Fig. 4: PortXmitWait build-up

Fig. 5: The percentage of zero and non-zero FITF values for
each switch category and link (port) type

Fig. 5 shows that for GladeLeaf switches, there is more
congestion on the uplink ports than on the downlink ports.
A possible explanation for congestion on the uplink ports is
as follows. The Glade disk I/O subsystem shown in Fig. 3
offers users multiple filesystems such as scratch and home.
The scratch filesystem is used for temporary data storage.
Users move data from the scratch filesystem to the home
filesystem for permanent storage. These data transfers could
cause congestion on the uplink GladeLeaf ports, as the two
filesystems are likely to be connected to nodes served by dif-
ferent GladeLeaf switches, which would necessitate transfers
through GladeSpine switches.

Fig. 5 shows that on DAVLeaf switches, congestion occurs
at equal rates on downlinks and uplinks. One DAVLeaf switch
is connected to one GladeLeaf switch, via 6 links, and these
links are classified as downlinks on both switches. Uplinks
connect DAVLeaf switches to DAVSpine switches. Since users
move data for analysis from the Glade disk I/O nodes into the
DAV nodes, and store analysis results back into the Glade disk

Fig. 6: The maximum FITF value per non-zero round for each
switch category and link type (outliers removed)

I/O nodes, traffic flows both ways on the DAV-to-Glade links.
We expected congestion to be predominantly in the Glade

disk I/O subsystem switches, but the results in Fig 5 show
that ToR switch ports experience congestion even though they
primarily serve compute nodes. This could be the effect of
cascading rate reductions caused by the link-by-link flow
control procedure. Victim ports could occur anywhere in the
network far from a congested port.

C. Non-zero FITF values

To gain some insights into the fraction of each 100-ms
interval that a port was denied credits, we undertook a study
of just those rounds in which the FITF value was non-zero
for at least one 100-ms interval. We refer to these rounds as
non-zero rounds.

Fig. 6 shows a boxplot of the maximum non-zero FITF
values across all non-zero rounds of all switch ports belonging
to a particular switch category and port type. Using (4), a
maximum FITF was computed for each row of the matrix
A�,�, i.e., the maximum value across the elements of vector
Fr, 1  r  k�,�. From Fig. 6, in which outliers were
removed, we conclude that in most of the 10-sec observation



Fig. 7: The average FITF value per non-zero round for each
switch category and link type (outliers removed)

rounds, a port was denied credits in less than 10% of a 100-ms
interval.

The plot in Fig. 6 shows that the Glade subsystem switch
ports had the highest variability in maximum FITF. This is
because bulk data transfers do not occur continuously, but,
when they do occur, these transfers can cause congestion, and
increase the forced idle time significantly. For example, the
maximum FITF across all querying intervals of GladeLeaf
downlink ports was 85%. The DAV leaf switches also ex-
perienced a high variability due to the bulk data transfers that
occur occasionally. The ToR switches have more variability
when compared to the compute subsystem leaf and spine
switches.

Fig. 7 shows a boxplot of the average FITF across non-zero
rounds for all switch ports belonging to a particular switch
category and port type. The averaging was done across only
the non-zero FITF values. The ToR switches experience more
variability in average FITF when compared to the spine and
leaf switches. This is an interesting result as it is the opposite
of our expectation that leaf and spine switch links would have
more congestion due to oversubscription at the higher levels
of the fat tree.

D. Outlier FITF values

The key finding presented in this section is that there were
some 100-ms intervals in which the port was completely
stalled, i.e., the transmitter was prevented from sending data
due to a lack of flow-control credits for the whole 100-ms
interval. Occurrences of these extreme cases (outliers) were
not included in the boxplots of Fig. 6 and 7 to allow for a
better visualization of the differences between the switch-port
categories. Nevertheless, these outliers are important because
highly parallelized communication-intensive applications with
MPI synchronization calls, e.g., climate-science applications
that use 1000 cores or more, will experience significant
increases in their execution delays if such long stalls occur. An
outlier is defined as a data point that lies 1.5 ⇥ IQR above the
75% number or below the 25% number, where IQR is Inter-
Quartile range (difference between the 25% and 75% values).

Table II shows the outliers statistics for the different switch
ports categories. For example, there were 44807 querying
rounds of ToR switch uplink ports that had a non-zero maxi-
mum FITF, and out of the 44807 querying rounds, there was
a total of 2561 outliers. The max rows in Table II for both
downlink and uplink ports show FITF values that are greater
than 1, which represents 100%. For an explanation of how this
is possible, we provide the details of one example query.

Consider the example query shown in Table III. The rows
correspond to the values of two consecutive records Rr,1

and Rr,2 per (2). To find FITF, the difference between the
PortXmitWait counter readings W in the two consecutive
records is computed, and the difference is divided by the time
difference between the estimated times at which the counter
was read. As shown in (3), the exact time at which the port
counter is read cannot be determined accurately. Instead, the
time is estimated by halving the query turnaround times tpr,1,
and tpr,2. If the first query took a shorter time reaching the
switch, and the second query took a longer time reaching
the switch than estimated by the halving operation, then the
time between the two consecutive readings of the port counter
could be longer than the estimated time difference. Such an
occurrence would result in an estimate of FITF that is greater
than 1. Effectively, such FITF values should be interpreted as
the port being stalled, waiting for flow-control credits, during
the entire 100-ms interval.

V. DISCUSSION: IMPACT OF FINDINGS

In this section, we describe the potential value of our
findings for InfiniBand network operations and for scientific
applications. Specifically, the results could be interesting both
to InfiniBand network administrators, and to scientific re-
searchers who run applications on InfiniBand HPC systems.

Network operations: As stated in Section I, most InfiniBand
HPC administrators do not enable congestion control due to a
perceived lack of proven methods for setting parameters. But
if congestion control is disabled, network administrators are
blind as to whether or not congestion is occurring, because the
PortXmitCongTime counters will not register any values.
Our proposed method for using PortXmitWait counters
as a proxy, and our software for collecting the data and
analyzing the collected data to derive FITF values, can thus be
used by administrators to gain insights into the state of their
networks. Further, administrators could correlate FITF values
with application execution time. Such a correlation study
would show whether or not high variability in application
execution can be attributed to network congestion. If a high
correlation is observed, network administrators could then
enable congestion control.

Administrators can test the various solutions (for setting
congestion-control parameters) that have been proposed in
research literature (reviewed in Section VI). For example,
we designed, implemented and evaluated a scheme called
Dynamic Congestion Management System (DCMS) [12]. Re-
call from Section II that the switch has a parameter called



TABLE II: Details about outliers left out of the boxplot in Fig. 6 and Fig. 7

Port
type

Switch category
Spine Leaf ToR DAV-

Spine
DAV-
Leaf

glade-
Spine

glade-
Leaf

down min 0.027 0.037 0.047 0.049 0.086 0.102 0.078
max 0.865 1.179 0.879 0.432 0.409 0.807 0.852
Number of querying rounds with non-zero maximum FITF 2765 40258 51814 565 550 806 627
Number of outliers 670 2771 3185 56 43 119 81
Number of FITF values � 1 none 37 none none none none none

up min NA 0.022 0.046 NA 0.026 NA 0.116
max NA 1.163 1.158 NA 0.424 NA 0.959
Number of querying rounds with non-zero maximum FITF NA 47167 44807 NA 959 NA 1132
Number of outliers NA 3751 2561 NA 111 NA 128
Number of FITF values � 1 none 23 6 none none none none

TABLE III: Example of two consecutive records belong to the same querying round r

Switch
category (�)

Port
type (�) i tq tp W Wi+1-Wi (tqi+1 +

tpi+1
2 )� (tqi +

tpi
2 ) FITF

Leaf down 1 1.45640989347e+18 18350267 2426695474 6656811 124199424 1.179
Leaf down 2 1.4564098936e+18 24841529 2433352285

Marking_Rate. The key idea of DCMS is to dynamically
adjust this parameter based on whether-or-not victim flows
are being created by a congestion event. This solution was
found to be effective through an experimental evaluation. For
example, the evaluation results showed that a victim flow’s
throughput decreased from 8 Gbps to 2.67 Gbps because of
congestion at a switch port that the victim flow did not even
traverse. However, when DCMS detected the congestion and
took action by adjusting the switch Marking_Rate, the
congestion-causing flows dropped their sending rates, and the
victim flow throughput rebounded back to 8 Gbps.

Applications: We offer three examples of the impact of our
FITF-related findings on scientific-research applications. First,
Petrini et al. [16] presented evidence that even frequent, short-
duration congestion events can have a detrimental impact on
applications that have fine-grained communications (frequent
short message exchanges). In fact, our results show that in
Yellowstone, while FITF values were of short duration, i.e.,
less than 10% (see Fig. 6), the network link stalls occurred
quite frequently (Fig. 5 showed that the PortXmitWait

counter registered increases in a significant percentage of the
observed 100-ms intervals).

Second, we experimented with the climate-science High-
Order Method Modeling Environment (HOMME) application,
and found that it issues a synchronization MPI call 140K
times in one 90-core run (which is a small configuration; in
actual runs by scientists, 1000s of cores are used for each
run). If messages sent by one source MPI rank took longer
to reach their destination MPI ranks (e.g., these messages
were affected by one of the outlier congestion events reported
in Table II), then all MPI ranks will be delayed when an
MPI_Barrier or MPI_Waitall call is encountered. This
could lead to a significant increase in the total execution
time of the application. Furthermore, since synchronization
calls cause MPI ranks to stop processing and wait until the
slowest MPI rank completes, communication delays can result

in under-utilization of compute nodes.
Third, Subramoni et al. [15] stated that their proposed

technique for reducing “the amount of network contention
observed during the All-to-All/FFT operations” resulted in a
“9% improvement in the communication time of P3DFFT at
512 processes.”

In summary, our methodology, new metric, data collection
and analysis software, and specific numerical findings for
Yellowstone, are all useful contributions to the InfiniBand
provider and user community.

VI. RELATED WORK

As noted in Section I, there have been many studies of
InfiniBand congestion control [3]–[12], but none of these
papers measured congestion on a production InfiniBand net-
work as we have done. Some papers [8], [15], [17] used
PortXmitWait as an indicator of congestion, which is also
the basis of our FITF metric.

Papers that suggested mechanisms for seting congestion-
control parameters include work by Pfister et al. [3], Gusat et
al. [4], and Gran et al. [6]. All three studies used simulations
to characterize the effects of various parameter settings on
application metrics.

Several papers, such as VOQsw [18], dFtree [19], vFtree
[20], BBQ [21], Flow2SL [10], and pFtree [22], proposed
using InfiniBand virtual lanes to combat congestion.

Other papers proposed new/enhanced congestion control
mechanisms, unconstrained by the InfiniBand standard. Yan
et al. [5] proposed a Power Increase and Power Decrease
(PIPD) function for controlling sending rate. Michelogiannakis
et al. [23] proposed a Channel Reservation Protocol (CRP)
to prevent congestion. Russell et al. [24] developed Red and
Green light-Based Congestion Control (RGBCC), which is less
sensitive to small changes in parameters when compared to
the standard InfiniBand congestion control mechanism. Liu et
al. [25] proposed improvements to the InfiniBand standard by
adding a Link Bandwidth Availability Report (LABR).



Finally, modifications were proposed to job schedulers, such
as SLURM, to take into account network conditions [17] when
assigning MPI ranks to nodes. The work by Bhatele et al.
[26], which demonstrated the impact of neighborhood jobs on
application performance in Cray networks offers a good model
for a similar study in InfiniBand networks.

VII. SUMMARY AND CONCLUSIONS

This paper presented a 23-day measurement study of con-
gestion on a production, highly utilized, 72K-core InfiniBand
cluster called Yellowstone. We proposed a methodology based
on reading the PortXmitWait counter of ports, and a
new metric called Forced Idle Time Fraction (FITF). While
congestion is likely caused by bulk data flows in the disk I/O
and Data Analysis and Visualization subsystems of Yellow-
stone, our findings were that ports of even ToR switches that
serve compute nodes suffered from such flow-control related
stalls. In about 60% of the 100-ms intervals in which ToR-
switch ports were observed, the ports had to wait for flow-
control credits, but most of these transmission stalls were
shorter than 10 ms. Prior work showed that short but frequent
congestion events are detrimental to applications with fine-
grained communications. Also, some congestion events lasted
for significant portions (in the range 60-80%) of the 100-ms
intervals, with several events even reaching 100%. Such events
can significantly increase execution time of applications that
have MPI synchronization calls.

VIII. FUTURE WORK

The focus of this paper was to determine whether congestion
occurs in production networks. While preliminary answers
were offered based on prior work, we propose to undertake a
thorough simulation study to answer the following questions in
a more rigorous manner: (i) Under what conditions (combina-
tions of network traffic) does congestion occur? (ii) How does
PortXmitWait growth relate to congestion levels at which
the impact on applications becomes important? (iii) What is
the relationship between FITF (as a measure of congestion)
and application performance?

ACKNOWLEDGMENT

This work was supported by NSF ACI-1340910, CNS-
1405171, and CNS-1531065.

REFERENCES

[1] “Life in the Fast Lane: InfiniBand Continues to Reign as HPC Intercon-
nect of Choice.” http://blog.infinibandta.org/tag/top500/, July 8, 2016.

[2] T. Hoefler, T. Schneider, and A. Lumsdaine, “The impact of network
noise at large-scale communication performance,” in Parallel & Dis-
tributed Processing IPDPS,IEEE Intl. Symp. on, pp. 1–8, IEEE, 2009.

[3] G. Pfister, M. Gusat, W. Denzel, D. Craddock, N. Ni, W. Rooney,
T. Engbersen, R. Luijten, R. Krishnamurthy, and J. Duato, “Solving
hot spot contention using InfiniBand architecture congestion control,” in
High Perf. Interconnects for Dist. Comp., Research Triangle Park,2005.

[4] M. Gusat, D. Craddock, W. Denzel, T. Engbersen, N. Ni, G. Pfister,
W. Rooney, and J. Duato, “Congestion control in InfiniBand networks,”
in High Perf. Interconnects (HOTI), 13th Symp. on, pp. 158–159, 2005.

[5] S. Yan, G. Min, and I. Awan, “An enhanced congestion control mecha-
nism in InfiniBand networks for high performance computing systems,”
in Adv. Info. Networking and App.(AINA) 20th Intl. Conf. on, 2006.

[6] E. Gran, M. Eimot, S.-A. Reinemo, T. Skeie, O. Lysne, L. Huse, and
G. Shainer, “First experiences with congestion control in InfiniBand
hardware,” in Parallel Dist. Proc. (IPDPS), IEEE Intl. Symp. on, 2010.

[7] E. G. Gran and S.-A. Reinemo, “InfiniBand Congestion Control: Mod-
elling and Validation,” in Proceedings of the 4th Intl. ICST Conf. on
Simulation Tools and Techniques, SIMUTools ’11, 2011.

[8] W. L. Guay, S.-A. Reinemo, O. Lysne, and T. Skeie, “dFtree: A fat-tree
routing algorithm using dynamic allocation of virtual lanes to alleviate
congestion in InfiniBand networks,” in Proc. of the First Intl. Workshop
on Network-aware Data Management, NDM ’11.

[9] E. Gran, S.-A. Reinemo, O. Lysne, T. Skeie, E. Zahavi, and G. Shainer,
“Exploring the scope of the InfiniBand congestion control mechanism,”
in Parallel Dist. Proc. Symp. (IPDPS), IEEE 26th Intl., 2012.

[10] J. Escudero-Sahuquillo, P. J. Garcia, F. J. Quiles, S.-A. Reinemo,
T. Skeie, O. Lysne, and J. Duato, “A new proposal to deal with
congestion in InfiniBand-based fat-trees,” Journal of Parallel and Dist.
Comp.,2014.

[11] N. R. Tallent, A. Vishnu, H. Van Dam, J. Daily, D. J. Kerbyson, and
A. Hoisie, “Diagnosing the causes and severity of one-sided message
contention,” in ACM SIGPLAN Notices, no. 8, pp. 130–139, ACM, 2015.

[12] F. Mizero, M. Veeraraghavan, Q. Liu, R. Russell, and J. Dennis, “A
Dynamic Congestion Management System for InfiniBand Networks,”
Supercomputing frontiers and innovations, vol. 3, no. 2, 2016.

[13] “NCAR-Wyoming Supercomputing Center (NWSC) Yellowstone.”
https://www2.cisl.ucar.edu/resources/yellowstone.

[14] H. Yi, S. Park, M. Kim, and K. Jeon, “An efficient buffer allocation
technique for virtual lanes in InfiniBand networks,” in Proceedings of
the 2Nd International Conference on Human.Society@Internet, HSI’03,
(Berlin, Heidelberg), pp. 272–281, Springer-Verlag, 2003.

[15] H. Subramoni, A. Venkatesh, K. Hamidouche, K. Tomko, and D. Panda,
“Impact of InfiniBand DC transport protocol on energy consumption of
all-to-all collective algorithms,” in IEEE 23rd Annual Symp. on High-
Performance Interconnects, pp. 60–67, IEEE, 2015.

[16] F. Petrini, D. J. Kerbyson, and S. Pakin, “The case of the missing su-
percomputer performance: Achieving optimal performance on the 8,192
processors of ASCI Q,” in Supercomputing, ACM/IEEE Conf.,2003.

[17] H. Subramoni, D. Bureddy, K. Kandalla, K. Schulz, B. Barth, J. Perkins,
M. Arnold, and D. K. Panda, “Design of network topology aware
scheduling services for large InfiniBand clusters,” in IEEE Intl. Conf.
on Cluster Computing (CLUSTER), pp. 1–8, IEEE, 2013.

[18] M. Gomez, J. Flich, A. Robles, P. Lopez, and J. Duato, “VOQSW: a
methodology to reduce hol blocking in InfiniBand networks,” in Parallel
and Dist. Proc. Symp., 2003. Proceedings. Intl., p. 10, Apr. 2003.

[19] W. L. Guay, S.-A. Reinemo, O. Lysne, and T. Skeie, “dftree: A fat-tree
routing algorithm using dynamic allocation of virtual lanes to alleviate
congestion in infiniband networks,” in Proceedings of the First Intl.
Workshop on Network-aware Data Management, NDM ’11, 2011.

[20] W. L. Guay, B. Bogdanski, S.-A. Reinemo, O. Lysne, and T. Skeie,
“vFtree - a fat-tree routing algorithm using virtual lanes to alleviate
congestion,” in Parallel Dist. Proc. Symp. (IPDPS), IEEE Intl., 2011.

[21] P. Y. Segura, J. Escudero-Sahuquillo, C. G. Requena, P. J. Garcia, F. J.
Quiles, and J. Duato, “BBQ: a straightforward queuing scheme to reduce
HoL-blocking in high-performance hybrid networks,” in European Conf.
on Parallel Processing, pp. 699–712, Springer, 2013.

[22] F. Zahid, E. G. Gran, B. Bogdanski, B. D. Johnsen, and T. Skeie,
“Partition-aware routing to improve network isolation in infiniband based
multi-tenant clusters,” in Cluster, Cloud and Grid Computing (CCGrid),
2015 15th IEEE/ACM Intl. Symp. on, pp. 189–198, IEEE, 2015.

[23] G. Michelogiannakis, N. Jiang, D. Becker, and W. J. Dally, “Channel
reservation protocol for over-subscribed channels and destinations,”
in Proceedings of the Intl. Conf. on High Performance Computing,
Networking, Storage and Analysis, SC ’13, 2013.

[24] Q. Liu and R. D. Russell, “RGBCC: A New Congestion Control
Mechanism for InfiniBand,” in Parallel, Distributed, and Network-Based
Processing (PDP), 2016 24th Euromicro Intl. Conf. on , 2016.

[25] Q. Liu, R. D. Russell, and E. G. Gran, “Improvements to the InfiniBand
Congestion Control Mechanism,” in High-Performance Interconnects
(HOTI), 2016 IEEE 24th Annual Symp. on, pp. 27–36, IEEE, 2016.

[26] A. Bhatele, K. Mohror, S. H. Langer, and K. E. Isaacs, “There goes
the neighborhood: Performance degradation due to nearby jobs,” in
Proceedings of the Intl. Conf. on High Perf. Computing, Networking,
Storage and Analysis, SC ’13, 2013.


