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Abstract—This paper presents a methodology for 

forecasting the average downlink throughput for an LTE cell 
by using real measurement data collected by multiple LTE 
probes. The approach uses data analytics techniques, namely 
forecasting algorithms to anticipate cell congestion events 
which can then be used by Self-Organizing Network (SON) 
strategies for triggering network re-configurations, such as 
shifting coverage and capacity to areas where they are most 
needed, before subscribers have been impacted by dropped 
calls or reduced data speeds. The presented implementation 
results show the prediction of network behaviour is possible 
with a high level of accuracy, effectively allowing SON 
strategies to be enforced in time.   
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I.  INTRODUCTION  
The overall traffic generated by mobile networks has 

increased by 75 % in 2015 and the pace of growth continues to 
accelerate. To address the capacity needed to transport the 
increasing mobile traffic, telecom operators have been heavily 
investing in 4G networks, based on Long Term Evolution 
(LTE) standard and its evolution, LTE-A. This increase in 
capacity, taking place especially in urban centres, has been 
achieved thanks to mobile network densification, which 
implies large investments from the mobile operators to acquire 
new base stations and other network equipment. Furthermore, 
as the 4G system will need to coexist with existing networks 
(2G/3G/Wi-Fi), the result will be a dense, and complex, 
heterogeneous network topology (HetNet). This situation poses 
new challenges in the management of the radio access network, 
which has operating and maintenance costs implications.  
 
To address the requirements of today’s connectivity demands, 
LTE radio access networks have many features. These however 
increase the complexity of network planning and maintenance, 
cell optimisation operations and network troubleshooting. 
Mobile Network Operators (MNOs) use to require independent 
benchmarking companies to perform drive tests, to check 
coverage and capacity of their networks in order to identify 
problems and improve network performance in specific 
geographical areas. These drive tests are typically conducted 

using a vehicle, in a predetermined test route, with a test 
engineer operating advanced on-board radio equipment to 
collect network key performance indicators (KPIs).  
 
The high efforts for executing these drive tests result in high 
costs and therefore in a low frequency of execution. Typically, 
this kind of measurement is executed no more than 2 or 3 times 
per year, while changes in the network and the radio 
environment occur on a much more frequent basis. In 
comparison to the existing market solutions, the described 
approach as some clear advantages, as depicted in Table 1. 
 
The methodology proposed in this paper uses historic 
measurements that have been collected by a set of LTE probes, 
as the input for forecasting future network behaviour. The 
measurements were performed daily, automated and with 
affordable cost. The LTE probes have been developed in the 
scope of the European H2020 Research Project MONROE - 
Measuring Mobile Broadband Networks in Europe [1][2][3]. 
These LTE probes have been deployed in existing 
transportation fleets however they can also be used in taxis, 
buses, private cars and trains, without need for dedicated field 
personnel, effectively reducing the cost of operation by up to 
70%. 
 
By using forecasting, this paper also exploits the concept of 
Self-Organizing Network (SON) strategies. SON has the 
potential to minimize the lifecycle cost of running a mobile 
network by eliminating manual configuration of equipment and 
troubleshooting during operation, which can significantly 
reduce service cost. MNOs are keen to capitalize on SON to 
minimize rollout delays and operational expenditures 
associated with their ongoing LTE deployments [4]. The SON 
ecosystem is increasingly witnessing convergence with other 
technological trends such as Machine Learning and Big Data 
Analytics. Learning and prediction of network behaviour are 
key enablers towards the implementation of the SON 
paradigm. SON can use machine learning predictive 
functionality to adapt mobile networks to demand in a 
controlled manner (e.g., shifting coverage and capacity to areas 
with the most need before subscribers have been impacted by 
dropped calls or reduced data speeds). Therefore, this paper 
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also addresses machine learning algorithms to predict average 
throughput per user for a specific cell and time of the day - 
leveraging on priori measurements from the LTE probes. 
 
In the literature, there are some research studies that address a 
similar topic. In [5] load balancing algorithms are studied and 
compared to solve localized congestion problems. Methods 
based on reinforcement Q-learning algorithm are used for 
forecasts load status for every node and combined with the 
related concepts of self-organization network. In [6] the authors 
propose a reactive load balancing algorithm based also in the 
Q-learning algorithm. In [7] the autoregressive integrated 
moving average (ARIMA) model and exponential smoothing 
model are used to predict the throughput in a single cell and 
whole region in a LTE network. 
 
The remaining of the paper is organized as follows: Section II 
introduces the MONROE setup; Section III presents the 
forecast models whereas the case study and experimental 
results are presented in Section IV. Finally, the conclusions are 
given in Section V. 

II. MONROE SETUP  
The MONROE LTE probe software technology is based on 

Dockers (Docker Containers) [8]. Dockers provide an isolated 
environment to run applications, by wrapping software code in 
a complete filesystem that contains everything needed to run. 
This guarantees the software will run the same, regardless of its 
environment. Docker containers share the underlying resources 
of the Docker host but they only include what they need to run 
their applications. By using Dockers, multiple experiments can 
be scheduled to run at the LTE probe. This concept is 
illustrated in Figure 1. To reflect the specific needs of required 
measurements, the original MONROE LTE probe hardware 
was updated in order to also support the benchmarking of voice 
calls (see Figure 2 and Figure 3). This upgraded probe is 
described simply as an LTE probe henceforward. The hardware 
setup for this probe is depicted in Figure 2. 
 

 
Figure 1: MONROE LTE probe software technology 

 
Figure 2: The LTE probe 

The APU1d4 is the probe’s system board. It interfaces with  
4 LTE wireless network cards (1 Sierra Wireless MC7304 LTE 
mPCIe and 3 USB SIMCom SIM7100E-EVM) enabling the 
simultaneous benchmarking of 4 different LTE MNOs. In fact, 
for the time being, the Sierra Wireless interface is restricted 
only for probe management operations. The Raspberry Pi is 
used to send AT control commands to the SIMCom cards for 
the establishment and termination of voice calls, the playout of 
audio files and collection of some of the network KPIs. These 
functionalities can be accessed by the Experiment Container 
through a web service running on the Raspberry Pi. This 
concept is depicted in Figure 3. 
 

Experiment 1 Experiment 2 Experiment 3

Table 1 – proposed solution vs existing solutions for MNO benchmarking 

Key market solutions Summary of the main characteristics Our proposed solution added value 
InfoVista/TEMS, 
previously known as 
ASCOM 
(www.tems.com) 

Reference solution in mobile network benchmarking 
(voice+data).  Is based on a mobile application that runs on 
smartphones (depends on user permissions to use GPS). It 
provides the main benchmarking KPIs. 

 Improved location – due to a dedicated GPS, our solution can 
improve up to 50% the location precision, when compared to 
triangulation performed by MNOs. 

 Personalized KPIs –capability of measuring a wider diversity of 
network parameters, which could also be of interest to MNOs.  

Keysight 
Technologies, 
previously known as  
Anite/NEMO 
(www.keysight.com) 

Reference solution in mobile network benchmarking 
(voice+data). It uses advanced specialized measurement 
equipment that needs a professional technician to operate the 
equipment. It also enables importing measurements performed 
by smartphones though a dedicated application. 

 Lower cost of implementation – the proposed network 
benchmark probes are autonomous (also remotely accessible) 
and do not need dedicated/specialized field personnel or driver 
(in case of a mobile probe).   

CellMining 
(cellmining.com) 

Solution that does not use real measurement equipment. The 
approach is based on the concept of ‘virtual probes’, which in 
fact are algorithms that analyze and correlate information 
based on call-detail records (CDRs) . 

 Improved location – {same as above}. 
 Wider and deeper scope –wider diversity of network 

parameters to be monitored and deeper insight on the 
information obtained, when compared to what is included in 
CDRs.  

MedUX 
(www.caseonit.com) 

Recent player, still improving their solution (fixed and mobile 
probes) for mobile network benchmarking (data only). It also 
uses network information obtained from crowdsourcing sites. 

 Voice benchmark – capability to measure voice KPIs 
(narrowband, wideband/VoLTE and super-wideband)  

 Personalized KPIs –– {same as above}. 
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 With this setup, the LTE probe provides the information 
depicted in Table 2. The data connection properties are 
obtained by subscribing metadata feeds provided by the 
MONROE base container, whilst the data specific 
measurements are obtained through dedicated Experiment 
Containers. Experiments are submitted through a scheduler that 
allows the user to specify where the Experiment Container is 
located, in which probe will the experiment be executed and 
which interfaces (each corresponding to a different MNO) are 
to be used. Experiments can also be scheduled for the first 
available slot or for a specific date. In any case, recursive 
options are available. Once the experiment has started, the data 
are collected by the LTE probe and stored on the probe’s local 
storage until the experiment is concluded, only then the data 
are uploaded to the MONROE repository (a Cassandra 
database). Alternatively, during the experiment, data can also 
be sent in real-time to external servers for immediate 
processing however this approach consumes more traffic quota. 
Considering Cassandra is not a relational database, our 
approach performs daily synchronizations between the 
MONROE repository and its own MySQL database. This is 
where data is fetched for various purposes, including learning 
the network behaviour for specific areas and predict eventual 
capacity issues in an automated fashion as explained in the next 
section. This lifecycle of an experiment is depicted in Figure 4. 

 
Figure 3: The LTE probe high-level architecture 

 
Figure 4: The lifecycle of an experiment 

 
Figure 5: allbesmart LTE Dashboard showing the RSSI measured by 

a MONROE LTE probe deployed in a bus in Madrid 

Table 2:  Key information retrieved from the LTE probe 
General Information 
• Unique experiment identifier (Guid); 
• Experiment status (Defined, Aborted, Stopped, Finished, …); 
• Experiment start and stop time; 
• Node identification (NodeId). 
Data connection properties 
• Integrated Circuit Card Identifier (ICCID); 
• International Mobile Station Equipment Identity (IMEI); 
• International Mobile Subscriber Identity (IMSI); 
• Mobile Country Code (MCC); 
• Mobile Network Code (MNC); 
• Radio access technology used (mode) by a specific modem; 
• Received Signal Strength Indicator (RSSI) for a specific modem; 
• Reference Signal Received Power (RSRP) for a specific modem; 
• Reference Signal Received Quality (RSRQ) for a specific modem; 
• Frequency Band (band) used by a particular modem; 
• Local Area Code for the connected cell (LAC) for a specific modem; 
• Operator name for a specific modem; 
• Node interface(s) name(s), used by the experiment; 
• Cell Identification (CID) for a specific modem; 
• State (DeviceState) reported to the network by a particular modem; 
• Connection submode (DeviceSubmode) for a specific modem;  
• IP address used by a particular radio interface; 
• GPS location. 
Data specific measurements 
• Packet loss (UDP only); 
• Interarrival jitter (UDP only); 
• Round-trip-time (RTT) to a particular destination; 
• Download and upload throughput. 
Voice KPIs 
• Call connection establishment delay; 
• Call connection establishment error ratio; 
• Call connection loss rate (related to call retainability); 
• Call transfer delay of user data frame; 
• GSM network registration delay. 
 
 



The conversion of the raw data in a meaningful and easy to 
understand manner is performed by the allbesmart LTE 
Benchmark Tool, which also acts as a dashboard. It is capable 
of overlaying data related to RSSI, CID, upload and download 
throughput, amongst others, with the LTE probe’s geolocated 
position. It also provides animations that show how the 
different network KPIs behave throughout a day, or during 
specific time periods. Figure 5 depicts the dashboard layout 
reflecting the RSSI measurements taken by a mobile LTE 
probe in Madrid, Spain, in a specific time period, whilst  
Figure 6 provides the details for the download throughput 
variation for a particular fixed LTE probe. 

 
Figure 6: Sample of the average download speed variation as 

measured by a fixed MONROE LTE probe in a time period of 3 days. 

III. FORECAST MODELS 
Machine learning is a kind of artificial intelligence that 

provides systems with the ability to learn without being 
explicitly programmed. Machine learning focuses on 
developing computer programs that can change when exposed 
to new data. The algorithms use data to detect patterns and 
adjust program actions accordingly. Typically, these algorithms 
can be categorized as being supervised, unsupervised or 
reinforcement learning. Supervised algorithms can apply what 
has been learned to new data. Unsupervised algorithms can 
draw inferences from datasets. In reinforcement learning the 
algorithm learns a policy of how to act given an observation of 
the world. Every action has some impact on the environment, 
and the environment provides feedback that guides the learning 
algorithm.  
 
In our proposed approach, the Machine Learning Engine uses 
the measurements collected by the LTE probes and stored in a 
local relational database to learn the network event patterns 
and forecast its future behaviour. The predicted KPI values are 
then forwarded to a Self-Optimization Process that uses these 
values to take timely preventive actions. In this analysis, the 
network is seen as a dynamic system, and to forecast its 
behaviour we need to use past output measurements. In other 
words, given observations 𝑦𝑦(𝑡𝑡) = {𝑦𝑦(1), … ,𝑦𝑦(𝑛𝑛)}  of the 
output of the network, forecasting is the prediction of the 
outputs 𝑦𝑦(𝑛𝑛 + 1), … ,𝑦𝑦(𝑛𝑛 + ℎ) until a future time horizon h. 
 
In order to apply forecast, a model that fits past measured data 
from the network needs first to be identified. This can be a 
linear time series model, state-pace models, or a nonlinear 
model. In the literature, there are numerous time-series and 

regression forecasting methods [5][6] that can be used. This 
paper focuses on two well-known algorithms, the naïve 
persistence model and a derivation of Autoregressive 
Integrated Moving Average model (ARIMA) [13]. 

A. Method 1 
The first method is based on a linear time series model that 
includes a regression component, a variant of ARIMA model, 
named ARIMAX model (Autoregressive Integrated Moving 
Average with Explanatory Variable [9]). This model also 
considers a seasonality effect to estimate the new model 
coefficients for forecasting the future outputs.   
 
A linear time series model for response process 𝑦𝑦𝑡𝑡  and 
innovations 𝜀𝜀𝑡𝑡 is a stochastics process that has the form of 
equation 1. 
 
𝑦𝑦𝑡𝑡 = 𝑐𝑐 + ∅1𝑦𝑦𝑡𝑡−1 + ⋯+ ∅𝑝𝑝𝑦𝑦𝑡𝑡−𝑝𝑝 + 𝜀𝜀𝑡𝑡 + 𝜃𝜃1𝜀𝜀𝑡𝑡−1 + ⋯+ 𝜃𝜃𝑞𝑞𝜀𝜀𝑡𝑡−𝑞𝑞   (1) 
 
The model expresses the conditional mean of 𝑦𝑦𝑡𝑡  as a function 
of both past observations, 𝑦𝑦𝑡𝑡−1, … ,𝑦𝑦𝑡𝑡−𝑝𝑝, and past innovations, 
𝜀𝜀𝑡𝑡−1, … , 𝜀𝜀𝑡𝑡−𝑞𝑞. Where 𝑝𝑝 is a positive integer that indicates the 
degree of the nonseasonal autoregressive polynomial and 𝑞𝑞 a 
positive integer that indicates the degree of the nonseasonal 
moving average polynomial.  
 
A maximum likelihood function is used to estimate the 
parameters of the ARIMAX model given the observed 
univariate time series 𝑦𝑦𝑡𝑡 . Given its history, the innovations are 
conditionally independent. Let 𝐻𝐻𝑡𝑡  denote the history of the 
process available at time t, where t=1, …, T. The likelihood 
function of the innovations is obtained from equation 2. 

𝑓𝑓(𝜀𝜀1, … , 𝜀𝜀𝑇𝑇|𝐻𝐻𝑇𝑇−1) = �𝑓𝑓(𝜀𝜀𝑡𝑡|𝐻𝐻𝑡𝑡−1)
𝑇𝑇

𝑡𝑡=1

                     (2) 

where f is the standard Gaussian or t probability density 
function.  

B. Method 2 
This method uses the Naïve model [6] which is a forecasting 
method that uses the last observation (time step (t)) to predict 
the expected outcome at the next time step (t+1). The naïve 
approach can be used with a stable series, with seasonal 
variations, or with trend. With a stable series, the last data 
point becomes the forecast for the next period. As example, if 
the throughput in the last hour was 25Mbps, the forecast for 
this hour is 25Mbps. 
 
This method is used as a supervised machine learning 
algorithm to identify trends, seasonality and forecast the 
estimated future values. The historical univariate data 
(throughput as a function of time) is transformed in a 
supervised learning problem with inputs and outputs in the 
way that the throughput of instance (t) is the output of instance 
(t+1). Typically, for stable time series data, 
 

 𝑦𝑦𝑡𝑡� = 𝑦𝑦𝑡𝑡−1 (3) 



considering the seasonal variations, 

 𝑦𝑦𝑡𝑡� = 𝑦𝑦𝑡𝑡−𝑛𝑛  (4) 

where n is the cycle last n periods. 
 
For data with trends, 

 𝑦𝑦𝑡𝑡� = 𝑦𝑦𝑡𝑡−1 + (𝑦𝑦𝑡𝑡−1 − 𝑦𝑦𝑡𝑡−𝑛𝑛) (5) 

, if there are constant trends between 𝑦𝑦𝑡𝑡−1 and 𝑦𝑦𝑡𝑡−𝑛𝑛. 
 

IV. EXPERIMENTAL RESULTS 
The goal is to forecast one entire week of the cell average 

downlink (DL) throughput, with a resolution of one hour. The 
input data for our model was obtained from a fixed LTE probe 
deployed in the city of Lisbon (Portugal) in a dense urban area 
connected to a LTE (4G) mobile network operator. Three 
weeks of historical collected measurements have been used for 
training the prediction models and one week was used to 
compare the observed throughput with the forecast values, as 
illustrated in Figure 7. 
 
For method 1, the comparison between the forecast values and 
the actual DL throughput is highlighted in Figure 8. We can 
observe the confidence interval (uncertainty) increases as the 
time goes on.  
 
The ARIMAX model proved to give a very good estimation 
during the first 20 hours, actually enabling us to predict cell 
congestion events. A Cell congestion event was considered 
when we measured a drop of at least 75% on the average 
download speed per user (considering an average of 20Mbps 
per user during off-peak hours).  
 
The prediction capability is very relevant for a SON 
implementation - if the self-optimization process estimates 
that a change in the mobile network configuration will 
compensate possible trade-offs (e.g., interruption in service) it 
may schedule an optimization process that performs changes 
in the cell’s parameters (such as the activation of additional 
LTE carriers) to compensate a forecasted cell outage event 
[10]. 
 
Figure 9 depicts the forecasting results obtained from method 
2 in comparison with the real (measured) values of DL 
throughput. 
 
Figure 10 presents the comparison between the two forecast 
models.  
 
The Mean Squared Error (MSE) computed for the 2 methods, 
presented in Table 2, shows that method 2 is more accurate 
than method 1, for this dataset. Although the Naïve persistence 
model is quite simple, usually it is quite efficient and assertive 
in the time series forecasting. 
 

 
Figure 7: Downlink average throughput: 3 weeks for training and 1 

week for forecasting. 

 

 
Figure 8: One week of throughput forecast and associated confidence 

intervals (Method 1) 

 

 
Figure 9: One week of throughput forecast (Method 2) compared to 

real measurements  

Cell congestion 



 
Figure 10: Comparison between the two forecast models 

Table 3: Forecasting errors (MSE) expressed in Mbps 

Method MSE [Mbps] 
Method 1: ARIMAX model 7.16 
Method 2: Naïve persistence model 6.90 

V. CONCLUSIONS 
This work describes a data analytics methodology and 

modelling capable of forecasting the average downlink 
throughput of an LTE base station by using two forecast 
models, the ARIMAX and the Naïve persistence models. The 
obtained results have shown that both models are able to 
forecast the network behaviour with high accuracy. We are 
able to estimate a cell congestion event up to 30 hours in 
advance which provides SON strategies, enough time to react 
(e.g., by shifting coverage and capacity to areas in need, before 
subscribers have been impacted by dropped calls or reduced 
data speeds). As future work it is suggested the comparison 
with other forecasting models, probabilistic and fuzzy.  
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