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Abstract—Access to reliable high-quality communication ser-
vices on trains is important for today’s mobile users. Train-
mounted aggregation routers that provide WiFi access to train
passengers and bundle external communication over multiple
cellular modems/links is an efficient way of providing such
services. Still, the characteristics of such systems have received
limited attention in the literature. In this paper we examine the
communication characteristics of such systems based on a large
data set gathered over six months from an operational Swedish
railway system. We characterize the conditions in terms of usage
load, train velocity profiles, and observed throughput and delay
as well as the relation between these parameters. Furthermore,
we examine the data from an anomaly detection perspective.
Based on a changepoint detection method, we examine how the
collected metrics varies over the six months. Being able to detect
shifts in the metrics over time can help detect anomalous changes
in the hardware or environment, and also further helps explain
the factors affecting the observed behaviors.

I. INTRODUCTION

In todays society most personal communication devices are
multi-radio and capable of both cellular 3G/4G, as well as
WiFi, connectivity. Being portable, these devices naturally
follow along wherever a person goes. A common transporta-
tion is railway travel. This mode of transport brings interest-
ing challenges for mobile communication. At high vehicular
speeds there are frequent handovers, and rapidly changing
signal quality as the signal fades by the distance to the cell
towers, and also experiences signal multipathing by objects in
the environment. This is further aggravated by the number of
persons on a train, which can each carry a number of devices,
which increases the load on the network infrastructure.

Instead of having each device communicate with the cellular
infrastructure, they can instead be directed to a train-local
access network, or aggregation router. This router provides
clients with WiFi access, and traffic is then transported in
aggregate via roof-top antennas for better coverage. Such
aggregation routers can also utilize multi-operator connectivity
transparently to the client, which can enable communication
resiliency in case of blind spots for one or the other operator.
An illustration of such a system is provided in Figure 1.

This paper analyzes train communication based on real-
life measurements captured at train aggregation routers. It
provides two main contributions. First we provide an over-
all characterization of train journey details, communications
usage, radio technology and handover distributions along with
observed system throughput and delay characteristics. As the
system can be bounded by limited aggregate demand, there is

Figure 1: Train communication system based on a cellular
router structure [courtesy of Icomera AB]

a visible dependency between the number of active users and
throughput and delay. Secondly, we highlight longitudinal ef-
fects in the data, using a sigmoid-fitting changepoint detection
approach. The approach is shown to be able to automatically
detect relevant changes in metric behavior over time. In the
following, we describe the related work in section II, followed
by a description of the collection and characteristics of the
dataset (sections III and IV) which form the basis for the
changepoint analysis in section V. Finally the conclusions are
presented in section VI.

II. RELATED WORK

Our work involves measurements in high-velocity railway
communication scenarios using LTE and its characteristics.
Other studies in this environment include for example [1],
[4], [7], [10], [11], [12]. These studies are primarily concerned
with radio level aspects, or using LTE in general, for enabling
connectivity on trains. Access can be provided in a number of
ways to users, for example via direct connection to the users,
via local base stations, or proxy access terminals. A survey of
different solutions is provided in Masson et al. [9], where the
authors remark that train access terminals “represents the best
technical solution to optimize performance and throughput".
A train access terminal then provides the users with WiFi
access, routed through an aggregation gateway that itself uses
mobile broadband or satellite connections. For this paper, we
perform studies of such an access terminal system consisting
of an aggregation gateway with WiFi on the LAN side and
LTE on the WAN side. In further related work, Mueller et
al. [11] compare the performance of using a train access
terminal versus users having a direct connection, by means
of simulation studies. The results show that access terminals



Figure 2: Train routes

Line Track Nr of Nr router Nr of Avg
name Length journeys ids cellids velocity

StoGbg 485 km 2380 54 5589 103 km/h
StoMal 615 km 3900 36 5048 137 km/h
StoKsd 325 km 1458 52 2765 135 km/h
Overall 7738 97 11644 125 km/h

Table I: Train route characteristics
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Figure 3: Route velocity distribution

provide the best performance, but individual connectivity is
also performing well.

Handling of handovers is an issue with train-based com-
munication. By using dual radios, the handover time can be
improved where base station coverage is overlapping, as shown
in an analytical study by Lin et al. [7].

The radio link performance at high velocities is studied
by Merz et al. [10]. They use two traces collected from
operational trains, with several hours of trace time. The most
important factor for reliable operation is shown to be the signal
to noise ratio. In [6], Li et al. identify problems on high-
speed trains, revealing that disconnections, dropped packets
and RTT spikes cause severe problems for TCP. Lutu et
al. [8] perform measurements on Norwegian trains. Based
on measurements of download performance and packet loss,
they provide a mapping of operators and their coverage.
These measurements are using individual connections of user
equipment to the operator infrastructure. In contrast, our work
studies the aggregate traffic of all users connected via the
access terminal, and then aggregated over a number of uplink
3G/4G connections to multiple operators.

III. DATA SET OVERVIEW

A. Data set collection

The underlying data for this study is trace measurements
collected from live train journeys during an extended time
period (6 months) in 2016. They are from three different
train routes, between the Swedish cities Stockholm-Göteborg,
Stockholm-Malmö and Stockholm-Karlstad. Figure 2 shows
a map with the outline of the routes. From these routes,
data from over 7000 train journeys are used, from 97 unique
routers, each corresponding to an individual train set. Table I
shows the details of the routes. Among the data collected by
the modems is the cellid. As outlined in the table, the average
number of unique cellids per kilometer of track varies between
the different stretches. For example Stockholm-Malmö has
8.2 cellids per km, while Stockholm-Göteborg has 11.5. For
performance, it is however more important how the cells are
geographically clustered, and their distance to the track, rather
than the average density.

Data collection occurs every five seconds, and is done by
the on-board router. The data collection includes for example
how many active devices that are connected, the GPS position

of the train and the current velocity. Data concerning radio-
related metrics, aggregated throughput and active latency
measurements using ping are also included and plays a key
role in the analysis. The onboard router on each train has
four mobile broadband modems (Sierra Wireless MC7710)
with LTE capability. Two cellular operators (Op 1 and Op
2) are contracted for the connectivity with two modems
connected to each. Traffic scheduling over the modems and
operators is handled by the on-board router, using a proprietary
scheme based on monitoring of individual link conditions and
characteristics.

B. Train and usage characteristics

Train velocity is a factor that may influence the ability to
provide cellular communication as higher speed means more
handovers per unit of time. Figure 3 shows the distribution
of train speeds. It can be observed that the ordering of the
medians are consistent with Table I, and that the medians are
larger than the average as would be expected due to the train
being stationary during stops.
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Figure 4: Histogram of active devices per velocity interval

A factor of interest is also the load to the system in terms of
number of active communication devices. To gain access to the
cellular connectivity, the user of each device has to accept the



service agreement, and the device is by that considered active
and has the ability to use the provided communication services.
The service policy in use at the time of data collection allowed
each user 200MiB of download data per journey without
capping the rate for the user. After 200MiB, the rate is capped
at 0.5Mbps. The number of active devices can be expected to
have some coupling to the train velocity as during the initial,
lower speed, phase of the journey not all of the communication
users will have authorized themselves to the train network. The
distribution of active devices in relation to four intervals of
train velocity is shown in Figure 4. It is clearly visible that the
highest velocity interval has the majority of the measurements,
which is consistent with Figure 3, and also that the highest
velocity interval has a larger fraction of the measurements
for high number of active devices as compared to the other
velocity intervals. However, for all velocity intervals, a sizable
fraction of measurements are collected with a load of 150 or
more active devices.

IV. MEASURED OVERALL CHARACTERISTICS

A. Cellular aspects

The modems report the cellular technology which they are
connected to at each measurement collection. This data can
be seen as a snapshot of the current state of technology
deployment in the geographical regions. The distribution of

Link tech. StoGbg StoMal StoKsd
(%) Op1 Op2 Op1 Op2 Op1 Op2

LTE 99.979 72.333 99.977 96.667 99.814 90.814
HSPA+ 0.000 18.506 0.000 2.462 0.001 8.396

DC-HSPA+ 0.018 3.186 0.009 0.336 0.128 0.526
HSDPA 0.001 2.848 0.003 0.323 0.006 0.076
HSPA 0.001 2.295 0.003 0.149 0.018 0.117
UMTS 0.000 0.518 0.000 0.044 0.002 0.033

Nr obs. 15.79MR 15.61M 24.65M 24.86M 4.91M 4.97M

Table II: Observations of link technology per operator

cellular technologies per line and operator is shown in Table II.
Out of the over 90 million link measurements 93.8% were
using LTE. On a per operator basis, Op 1 obtained 99.9%
LTE and Op 2 87.7% LTE. As the router selects which links
to use based on the link conditions, the link aggregation
algorithm might chose not to use a slower technology although
connectivity exists.

The handover frequency is another aspect of interest. As
there are four modems in each train, the maximum number
of changed cellids between consecutive observations that can
occur is 4, when handovers has been performed at least
once for all four modems. Table III shows the distribution
of handovers per line.

Modems with cellid changes: 0 1 2 3 4

Stockholm-Göteborg 59% 24% 13% 3.6% 0.77%
Stockhlm-Malmö 55% 23% 16% 4.2% 1.5%

Stockholm-Karlstad 56% 23% 15% 4.4% 1.4%

Table III: Cellid changes since previous observation

B. Aggregated throughput and delay aspects

Now considering the achieved aggregate throughput, this
will be bounded by the lesser of cellular radio constraints
and aggregate demand from the users. The observed through-
put can be bounded by the aggregate demand since these
measurements are passive. Figure 5 shows the ECDFs of
the aggregated throughput in relation to other metrics. The
relationship between number of devices and throughput is
shown in Figure 5b. In this figure it is apparent that there
is a very large coupling between the number of devices
and the aggregate throughput. The coupling between velocity
interval and aggregate throughput is shown in Figure 5c. Some
differences are observed for the different velocity intervals.
However, this variation is to a large extent a reflection of the
variation in number of active devices per velocity interval as
shown in Figure 4 rather than an effect of the variation in the
speed itself.

Another metric of interest is the ping round trip time (RTT),
which is measured on a per link basis from the aggregation
router to specific internet hosts. The overall observed ping
RTT per train line is shown in Figure 6a. As can be seen in
the figure, the ping times vary greatly from just over 10 ms to
well over 2000 ms for all lines. We can further see that the line
with the lowest aggregated throughput, StoGbg, also has the
lowest ping times. As the throughput is connected to the load,
this suggests that the ping times are also strongly correlated to
the load in the system. This is confirmed by Figure 6b which
shows the impact of offered load on the observed round trip
times, displaying the ping times per active device quantile. For
the quantile with the highest load, 50% of the ping times are
over 150 ms, while less than 20% of the ping times are above
150 ms for the quantile with the lowest load. Similar as for
the aggregate throughput, differences in load is very likely the
main underlying cause for the difference in ping times seen
for the different velocity intervals in Figure 6c.

The ping times in Figure 6, and their relation to load, would
indicate that the amount of buffers in the cellular infrastructure
can be substantial, and the connections suffer from consider-
able bufferbloat. As the amount of concurrent downlink traffic
increases, the buffers in the cellular network fills up causing
high delays for the ping traffic. This is consistent with previous
studies of cellular networks that have also observed substantial
bufferbloat in the presence of concurrent traffic [5], [2]. For
all train lines, it is clear from Figure 6 that running interactive
applications, like VoIP, could be challenging during parts of
many train journeys.

V. CHANGEPOINT DETECTION

In the previous section the characteristics of several metrics
were provided, providing an overall intuition for the range
of values present, and some of their interrelationships. In this
section we instead focus on examining data from a longitudinal
perspective. As the data was collected over a six month period,
data stationarity aspects can be explored. Being able to detect
shifts over time in the collected metrics can be very useful,
both to detect anomalous changes in hardware or environment,
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Figure 5: Aggregated downlink throughput characteristics
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Figure 6: Ping RTT characteristics

but also to gain further understanding of the factors affecting
observed behaviors.

Here, we in particular consider changepoint detection, and
propose an approach which is generic but also well suited
to the characteristics of this particular data set. Changepoint
detection allows the automated detection of changepoints, and
by examining for which metrics the changepoints happen at
the same points in time, hints on the underlying relationships
between metrics as well as an increased understanding of the
reasons for changes in metric values can be obtained.

Changepoint detection has applicability in a wide range of
domains, and has been studied extensively. A changepoint for
some metric can occur with respect to a change of the location
of the mean, variance, or time series autocorrelation of the
metric data series. Changepoint detection approaches can be
on-line or off-line, where on-line approaches aim to detect a
change in a continuously arriving stream of data, and off-line
approaches process a complete data set. Different algorithms
are available for only detecting the presence or absence of a
changepoint, or also estimating the time placement of single or
multiple changepoints. A detailed description of methods and
applications of changepoint detection is provided in [3]. Here
the main interest is the detection, and placement in time, of
one changepoint for the location of the mean using an off-line
approach.

A. The Sigmoid-fitting changepoint detection approach

Based on the wide variety of the distributional properties
observed in the metrics present in the data set, and weaknesses
of the tested implementations of changepoint detection algo-
rithms such as CUMSUM, a novel approach for changepoint
detection based on least-squares non-linear regression of a
restricted sigmoid function is proposed. The sigmoid function
can be seen as a generalized logistic function, and thus
represents two stationary means with a changeover period. The
function is in this context expressed as:

Y (T ) =
Y1 − Y0

1 + e−S∗(T−TC)
+ Y0 (1)

where Y0 and Y1 corresponds to the mean values before
and after the changeover, which occurs at time Tc. The S
parameter models the shape of the changeover transition and
is dependent on the considered time period. Here it is fixed at 1
which, for the considered data, will create a steep slope at the
changeover time. By restricting the sigmoid shape parameter S
a fairly steep changeover is guaranteed, and fitting is simplified
when only three parameters (Y0,Y1,TC) needs to be located.
Fitting of the sigmoid parameters is done using non-linear
Levenberg-Marquardt (LM) least-squares regression. While
regular linear least-squares regression is guaranteed to find
the global minimum, non-linear least-squares regression may
become stuck at local minima. To avoid the risk of non-global
minima being selected, the fitting is performed with 20 runs
having uniformly distributed Tc seed values. This multiple



fitting with different starting points has the advantage that the
gradient-descent based optimization function employed for the
non-linear regression will help to reflect the relative strength of
the detected changepoint. A very clean and abrupt change will
thus lead to all the 20 regression runs finding the same global
changepoint. Weak changes will only result in a single or a
few regressions located at that changepoint and the remaining
regressions will be located at other minima. This allows for a
natural way to perform a post-computation trade off between
the true-positive and false-positive rates of the changepoint
detection. This is an advantage given the large data amounts,
and an aspect which can be problematic for other changepoint
detection methods.

Based on the parameters obtained from the LM regression
fitting, a changepoint coefficient is calculated for each of the
20 regression runs. The changepoint coefficient captures the
relative amount of change that is present in the considered
changepoint and is computed as follows:

C(Tc) =
|Y1−Y0|

min(Y0, Y1)
(2)

The regression with the maximum C is used as changepoint
candidate for the data, and the number of regression runs
located around a similar Tc is counted.
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Figure 7: Changepoint detection on synthetic example

A synthetic example is shown in Figure 7. The data in the
figure is generated by two normal distributions with parameters
Y0 = 10, Y1 = 9, σ1,2 = 3, Tc = 70. There were 800
data points generated as shown in Figure 7. Also shown in
the figure is the detected changepoint as red bars, the fitted
sigmoid functions, the maximum changepoint coefficient and
the number of regressions that located the changepoint to
within Tc± 0.1. As can be seen, out of the 20 LM regression
runs each with different TC initial values (blue sticks on top),
8 runs regressed to the same changepoint of 71.14.

As part of ongoing work we are examining approaches
to extend the changeover coefficient calculation by including
outlier rejection, Box-Cox transformation and data scaling to
further improve the detection characteristics over diverse data
sets.

B. Cellid changepoint examination

We employ our changepoint detection approach on a subset
of the data described earlier in order to highlight its usefulness.
For the Stockholm-Karlstad route, 200 frequently occurring
cellids out of the 2765 observed on the route were selected and
used for further processing. This data set comprised of around
8 million data points, which were grouped into bins according
to cellid and individual train passings. The metrics of interest
were then averaged over each such cellid - trainpassing event.
This resulted in 282166 cellid - trainpassing aggregated data
points. These data points were then used for the changepoint
detection. In summary, the steps taken are thus: (1) for all
metrics, compute aggregated averages per cellid - trainpassing
event. For each metric and cellid then: (2) use aggregates to
compute 20 LM sigmoid fittings, (3) find time locations of
highest changepoint coefficient, (4) threshold on the number of
LM fittings located within 0.1 days of the highest changepoint
coefficient. Here, the threshold on the number of fits for a
changepoint candidate to be considered valid was set to 5 out
of 20.

The changepoint detection was performed for ten of the
metrics available in the data set. The selected metrics can be
grouped into three distinct categories. The first category con-
sists of metrics that are related to external characteristics that
may affect other observed metrics, and include train velocity
and the number of active devices. The second category is user-
level performance metrics and these include per-link uplink
and downlink throughput, and ping RTT. The third category
contains radio-related metrics as reported by the modem and
includes dbm, RS-SINR, RSRP, RSRQ and Transmit power.

The distribution of the aggregated data over time, and the
detected changepoints are shown in Figure 8. The figure shows
two example cellids out of the 200 processed cellids, showing
one cellid per column. It can be observed that for both cellids,
changes were detected for the two topmost external metrics.
Although we cannot conclusively determine the cause of the
detected changes, we note that the detected change occurs
at a time consistent with the start of the Swedish vacation
period. As these external metrics are mainly journey-related
and have little relation to individual cellid conditions, it could
be expected that changepoints are present for many of the
cellids. It was found that a considerable majority of all cellids
indeed had changepoints detected at similar locations, although
more active device changepoints than velocity changepoints
were noted.

Looking at the user-level metrics, it can be seen that only
one changepoint was detected, for the ping RTT metric of the
second cellid. The placement of the changepoint is very close
to the changepoint in number of active devices. Consistent
with the buffer-bloat discussion in Section IV-B, it can be
reasonably assumed that the increase in number of active
devices is causing the detected increase in ping RTT. It can
be noted that the changepoint was rather weak with 6 close
fits. A similar visual pattern for the ping, with fewer low-value
pings after the potential changepoint, is also hinted in the data
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Figure 8: Time evolution of metrics for two example cellids,
day since measurement start on x-axis

for the first cellid.
For the final group of radio related metrics, the second cellid

shows a distinct pattern. Several of the radio related metrics
show a changepoint at the same point in time. It can also be
noted that there appears to be a gap in the collected data.
This could suggest that this cell was inoperable for a short
period of time. When back online again, some aspect of cell
operation had changed for the worse, which is reflected in the
worse numbers observable for several of the radio metrics. As

can be seen, dbm and RSRP changes were easily detected,
with high number of fits indicated. A change in RSRQ is
detected, but with a slight offset. The somewhat anomalous
changepoint detected for transmit power is due to a lack of
numerical stability for the changepoint coefficient calculation
when the parameters Yo and Y1 involve a zero-crossing, as is
the case here for the dominant changepoint around day 54.
Addressing this issue is part of ongoing work.

VI. CONCLUSIONS

In this paper we provide a large-scale analysis of the charac-
teristics of train-based communication systems, where external
communication is bundled over multiple cellular links. It is
based on an extensive data set gathered over six months from
over 7000 journeys within an operational Swedish railway
system. The results confirm the strong correlation between
the number of users in the system and the observed aggre-
gate throughput. The ping round trip times are also highly
dependent on the number of users and increase significantly in
the presence of higher load, indicating serious buffer bloating
issues in this context. Based on a changepoint method, we
examine changes in the collected metrics over time. This to
identify possible anomalies in the hardware or environment
and to further our understanding of the factors affecting the
observed behaviors.

For future work we plan to refine our changepoint detection
approach and also hope to complement the current passive
measurements with additional active measurements which
could provide further insights into the observed behaviors.
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