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Abstract. Extended Finite State Machine (EFSM)-based passive fault
detection involves modeling the system under test (SUT) as an EFSM
M, monitoring the input/output behaviors of the SUT, and determining
whether these behaviors relate to faults within the SUT. We propose a
new approach for EFSM-based passive fault detection which randomly
selects a state in M and checks whether there is a trace in M starting
from this state which is compatible with the observed behaviors. If a
compatible trace is found, we determine that observed behaviors are not
sufficient to declare the SUT to be faulty; otherwise, we check another
unchecked state. If all the states have been checked and no compatible
trace is found, we declare that the SUT is faulty. We use a Hybrid method
in our approach which combines the use of both Interval Refinement and
Simplex methods to improve the performance of passive fault detection.

1 Introduction

Passive fault detection is a fundamental part of passive testing which determines
whether a system under test (SUT) is faulty by observing the input/output
(I/O) behaviors of the SUT without interfering with its normal operations [10].
Compared with active fault detection, in which a tester has complete control
over the inputs and devises a test sequence to reveal possible faults of the SUT,
passive fault detection is more applicable under circumstances where the control
is impractical or impossible, such as network fault management [10].

In Extended Finite State Machine (EFSM)-based passive fault detection, the
specification of an SUT N is modeled as an EFSM M, N is treated as a blackbox,
and the observed I/O behaviors of N is represented as a sequence E of observed
I/O events. Determining whether N is faulty with respect to M is then based
on the existence of traces in M that are compatible with E, i.e., a trace in M

is compatible with E if E maps to a sequence of consecutive transitions of M

starting at a state s of M . If the number of traces in M compatible with E is
zero, then E is sufficient to determine that N is faulty. Otherwise, E is declared
to be insufficient to determine whether N is faulty, i.e., there is at least one
trace in M compatible with E and E needs to be augmented with additional
I/O events of N to continue with passive fault detection.



Usually, EFSM-based passive fault detection approaches are derived from
Finite State Machine-based passive fault detection approaches. The FSM-based
fault detection approach in [9] checks the observed sequence of I/O events one-
by-one from the beginning, and reduces the size of the set S′ of possible current
states by eliminating impossible states until either S′ is empty (N is faulty) or
there is at least one state in S′ (no fault is detected). The approach in [9] has been
applied for passive fault detection in FSM-based systems [22, 23]. This approach
has been extended to systems specified in the EFSM model by [7, 10, 11, 21]
and adopted to systems specified in the Communicating Finite State Machine
(CFSM) model by [14, 15, 16, 17, 18]. Another approach to EFSM-based passive
fault detection focuses on characterizing specifications of an SUT in terms of
invariants [3, 4, 5, 6].

This paper proposes a new approach for EFSM-based passive fault detection
which is summarized as follows: assume that the subset S0 of states of M contains
all possible starting states of E. Randomly pick a state s in S0 and determine
whether there exists a trace in M that starts at s and is compatible with E. If
such a trace is found, then stop and declare that E is not sufficient to determine
whether N is faulty. In this case, the starting state and the current state of N

can be determined readily using this trace. Otherwise, continue to check other
states in S0. After checking all the states in S0, if no trace in M is found to be
compatible with E, then N will be declared faulty.

The proposed approach provides information about possible starting state
and possible trace compatible with E at the end of passive fault detection.
Such information cannot be provided by the existing approaches derived from
[9] unless a post-processing is performed or a backward checking approach is
taken for exploring the information about possible starting state and possible
trace [1, 2]. In addition, the proposed approach utilizes a Hybrid method to
evaluate constraints in predicates associated with transitions in an EFSM which
combines the use of both Interval Refinement [8, 19] and Simplex [13] methods
for performance improvement during passive fault detection. We show that using
only the Interval Refinement method has a similar performance to the Hybrid
method but suffers from inaccuracy whereas using only the Simplex method has
the same accuracy as the Hybrid method but suffers from poor performance.

The rest of the paper is organized as follows. Section 2 gives preliminaries
needed for our discussion, including definitions and notations used in our pre-
sentation. Section 3 presents the proposed approach for EFSM-based passive
fault detection in detail. Section 4 provides experimental evaluations. Section 5
concludes this paper with some final remarks and directions for future research.

2 Preliminaries

The proposed approach for EFSM-based passive fault detection is based on the
specification of SUT N given as a Simplified Extended Finite State Machine
(SEFSM) and the sequence of I/O behaviors a tester observes during the execu-
tion of N given as a sequence E of observed I/O events.



A Simplified Extended Finite State Machine (SEFSM) M is (S,Em, x̄, T ):

1. S = {s1, . . . , sn} is a finite set of states;
2. Em is a finite set of I/O events. e(ȳ) ∈ Em is an input or output event, and

ȳ = (y1, y2, . . . , yp) is a vector of parameters of the I/O event e, called local

variables;
3. x̄ = (x1, . . . , xr) is a vector of global variables which are accessible within all

transitions;
4. T is a finite set of transitions.

The difference between ȳ and x̄ is that ȳ is observable from SUT N while
x̄ is unobservable. Note that all variables are integers. An example SEFSM is
shown in Figure 1.

Global Variables: initial values

- attempts: [0, 10]

- pin: [0, 9999]

- lang: [0, 6]

- op: [1, 30]

- cb: [0, MAX],  MAX=1E7, MIN=-1E7

s0

s1

T1: ?Card(p, w)

[TRUE]

pin := p;

cb := w;

attempts := 0;

T2a: ?PIN(p)

[(p - pin ≤ -1) (attempts ≤ 2)]

attempts := attempts + 1;

T4: ?PIN(p)

[p-pin=0]
s2

s6

T3a: ?PIN(p)

[(p – pin ≥ 1) (attempts ≥ 3)]

T2b: ?PIN(p)

[(p – pin ≥ 1) (attempts ≤ 2)]

attempts := attempts + 1;

T3b: ?PIN(p)

[(p - pin ≤ -1) (attempts ≥ 3)]

T12: ?operate(k)

[k=10]

T5: ?Language(l)

[TRUE]

lang := l;

s3

T6: ?operate(k)

[k=4]

T13: ?operate(k, w)

[(k = 1) (w ≥ cb - 100)]

s5

T7: ?operate(k, w)

[(k = 1) w < cb – 100)]

cb := cb - w;

op := k;

T8: ?operate(k, w)

[k = 2]

cb := cb + w;

op := k;

T11: !Receipt(l, c, o)

[(l = lang) (c = cb) o = op)]

s4

T9: ?operate(k)

[k = 3]

op := k;

T10: !print(l, w)

[(l = lang) w = cb)]

start

Notation for a transition

Si Sj

e( y )

[P( x, y )]

A( x, y )

t#:

Fig. 1. The SEFSM ATM for an Automatic Teller Machine (ATM) system

A transition t ∈ T in an SEFSM is (si, sj , e(ȳ), P (x̄, ȳ), A(x̄, ȳ)):

1. si is the starting state of t ;
2. sj is the ending state of t ;
3. e(ȳ) ∈ Em is an input event prefixed with “?” or output event prefixed with

“!” that can be observed once t is activated;
4. P (x̄, ȳ) is a predicate expressing the conditions to be satisfied for the acti-

vation of t which consists of conjunctive terms, each of which is defined as
a constraint, connected by “ ∧ ” (and) operators;

5. A(x̄, ȳ) is an action consisting of a sequence of assignment statements, each
updating a global or local variable as a function of elements of x̄ and ȳ.

Examples of an I/O event, predicate, and action are: “!display(y)” is an I/O
event “display” which outputs the value of y, “(3 × x1 + (−1) × x2 ≥ 0) ∧ (1
× x1 + 4 × y2 ≤ 4)” is a predicate, and “x3 := 3 × x1 + (-1) × x2 + (-5); x1

:= x3;” is an action, respectively.



Because ȳ is observable from N while x̄ is unobservable, the I/O events with
global variables as parameters must be modified. For example, if x is a global
variable, an input event “?read(x )” will be transformed to “?read(a) x :=a;”
where a is a local variable and the action “x :=a;” assigns the value of a to x ;
similarly, an output event “!display(x )” will be transformed to “!display(a) [a
= x ]” where the predicate “[a = x ]” guarantees the output value is equal to the
value of x.

In this paper, a constraint cs is represented by
∑k

i=1 aixi = I (ai is a coeffi-
cient, xi is a global variable, I is an interval) after replacing the local variables
of ȳ by the actual values of the parameters observed during the execution of N.
For example, the constraint “3 × x1 + (-1) × x2 ≥ 0” is represented by the
expression “3 × x1 + (-1) × x2 = [0, MAX]”. MAX is defined as 1 ×107 and
MIN is defined as -1 ×107 in this paper.

Note that an event-driven extended finite state machine (EEFSM) model is
used in [10]. The differences between EEFSM and SEFSM models are as fol-
lows: the SEFSM model simplifies the structure of predicates in transitions by
eliminating the “or” operator in EEFSM. Therefore, in SEFSM, a transition is
executable if and only if all the constraints in the predicate are evaluated to be
TRUE. Also, in actions associated with transitions in EEFSM, [10] only con-
sidered the assignment statements where the left hand side is a global variable,
whereas we consider both global and local variables to be on the left hand side
of assignment statements.

The sequence E of observed I/O events represents a sequence of I/O behaviors
a tester observed during the execution of N, i.e., e1e2. . . en. Like an I/O event
in Em, an observed I/O event ei, 1 ≤ i ≤ n, in E is also categorized as an
observed input event prefixed with “?” or an observed output event prefixed with
“!”. Different from the I/O event in Em, an observed I/O event in E contains
determined values instead of symbols for variables. For example, “?read(3)” is
an observed I/O event in E while “?read(y)” is an I/O event in Em.

A configuration depicts a possible status of the SUT N during EFSM-based
passive fault detection. A configuration c is a quadruple (#, s, [x̄], CS(x̄)) where

1. # is the number of observed I/O events that have been checked to reach the
configuration;

2. s is the possible current state of N ;
3. [x̄] is a vector of intervals which represents the ranges of possible values

which the variables in x̄ can take;
4. CS(x̄) records the constraints on variables in x̄. These constraints are ob-

tained from both predicates and actions. As CS(x̄) contains only global
variables, we shall henceforth use CS as the abbreviation of CS(x̄).

For example, c = (3, s6, {x1 = [0, 5], x2 = [1, 2]}, {x1+x2 ≥ 0; 3x1−x2 ≤ 9; })
is a configuration. (see Figure 2) According to configuration c in Figure 2, 3
observed I/O events have been checked; the current possible state of N is s6;
the value of x1 is greater or equal to 0 and less than or equal to 5, and the value
of x2 is greater or equal to 1 and less than or equal to 2; the values of x1 and



Fig. 2. A configuration c

x2 must satisfy two constraints “x1 + x2 ≥ 0” and “3x1 − x2 ≤ 9” at the same
time.

A trace represents the sequence of status of the SUT N during EFSM-based
passive fault detection. Trace-Tree records all the traces that have been checked
during EFSM-based passive fault detection.

1. A trace trace is a sequence of configurations, which are connected by tran-
sitions;

2. A Trace-Tree Tree for s consists of all the traces starting from a state s ∈
S0. Each node in Tree represents a configuration and each edge stands for a
transition between two configurations. Every trace tracei of length k, from
s to a leaf in Tree, is compatible with a prefix of E (e1e2 . . . ek, k ≤ |E|);

3. A trace in M compatible with E, henceforth called compatible trace of E, is
defined as a trace in Trace-Tree for s with length equal to |E | .

3 The Proposed Approach

Given a specification SEFSM M of an SUT N, a sequence E of observed I/O
events, and S0 ⊆ S, the proposed approach proceeds as follows:

1. Pick an unchecked state s from S0;
2. Build a Trace-Tree for s by finding all the possible traces starting from state

s ∈ S0;
3. If a compatible trace of E is found, declare this trace as a compatible trace

of E ; if no compatible trace of E can be found in Trace-Tree for s, go to (1);
4. If all states in S0 have been checked and no compatible trace of E is found,

declare that “N is faulty”.

3.1 Algorithm Main

In algorithm Main, we randomly select a state s from S0 ⊆ S of SEFSM M

and try to find a compatible trace of E starting from s. If trace is found to
be a compatible trace of E, this algorithm will terminate and declare trace as a
compatible trace of E ; if all the states in S0 have been checked and no compatible
trace of E is found, the algorithm will report “N is faulty”.



Algorithm 1 Algorithm Main

1: Given: an SEFSM M,
2: a sequence E of observed I/O events, and
3: S0 = { s1, s2, · · · , sn}
4: Return: “N is faulty”, or “trace is a compatible trace of E”
5: Begin:
6: while (S0 6= ∅)
7: randomly select a state s from S0;
8: S0 ← S0 \{ s } ;
9: trace ← Search Trace Tree(M, s, E);{search for a compatible trace of E}

10: If(trace 6= NULL)
11: return (“trace is a compatible trace of E”);
12: endwhile
13: return (“N is faulty”); {no compatible trace of E is found}
14: End

3.2 Algorithm Search Trace Tree

Algorithm Search Trace Tree searches for a compatible trace of E starting from
a state s using the data structures for configuration and Trace-Tree.

3.3 Algorithm Check Trace and the Hybrid method

A trace consists of a sequence of configurations which represents the sequence
of changes in the status of N through E. Algorithm Check Trace(M , trace,
E, Tree) checks if there is a trace compatible with E. It first initializes the cur-
rent configuration ccurrent to the first configuration from trace, sets the current
possible state s to the state in ccurrent and gets the observed I/O event e to
be considered from E. Then, all transitions in M starting from s (i.e., set Ts

of transitions) are checked one by one. Those transitions passing both control
portion and data portion fault detection will be considered as executable tran-
sitions corresponding to the observed I/O event e. As there may be more than
one executable transition, algorithm Check Trace picks the first one of them to
continue checking and adds all other transitions as branches into the Trace-Tree
Tree. The procedure of checking a Trace-Tree is described in Figure 3. In Figure
3, Tree consists of three traces. For example, when checking configuration c11,
there exist two executable transitions, t121 and t122. For each executable tran-
sition, a new configuration will be built. For c21, which corresponds to the first
executable transition t121, we add c21 to the end of trace1; for c22, we build a
new trace, trace3, and set c22 as the starting configuration of trace3. Then we
continue checking trace1 with c21. trace3 will be checked if and only if trace1

and trace2 are determined not compatible with E. Whenever a compatible trace
of E is found, algorithm Check Trace returns this trace.

When searching for executable transitions within algorithm Check Trace, two
steps are applied to a transition t ∈ Ts: In the first step, which corresponds to
function control portion checking in algorithm Check Trace, we compare the I/O



Algorithm 2 Algorithm Search Trace Tree(M, s, E )

1: Given: an SEFSM M,
2: a state s ∈ S0, and
3: a sequence E of observed I/O events
4: Return: a compatible trace trace, or NULL
5: Begin:
6: Tree ← NULL; {initialize the Trace-Tree Tree}
7: trace ← NULL; {initialize the trace trace}
8: [x̄]0 ← set the initial intervals of the global variables in M ;
9: c0 ← (0, s, [x̄ ]0, ∅ ); {create the initial configuration c0 =(#, s, [x̄], CS)}

10: trace.add(c0); {add c0 as the first configuration in this trace}
11: Tree.add(trace);
12: while (Tree 6= ∅ )
13: trace ← Tree.get(0); {get the first trace in Tree}
14: succ← Check Trace(M, trace, E, Tree); {check if this trace is compatible

with E}
15: if (succ = TRUE) {if trace is compatible with E}
16: return (trace);
17: else
18: Tree.delete(trace); {delete trace from Tree}
19: endwhile
20: return (NULL); {no trace compatible with E has been found}
21: End
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detection



event associated with transition t with the observed I/O event e (in E ) by the
prefix symbol, event name and possibly the number of parameters. If this com-
parison produces a mismatch, we stop processing transition t. Otherwise, we
continue with the second step, which corresponds to the data portion fault de-
tection, where we replace the local variables of ȳ in predicate t.P (x̄, ȳ) by the
actual values of the parameters of the observed I/O event e and then transform
the predicate into a list of constraints stored in newCS. After the replacement,
the data portion fault detection problem is reduced to a Constraint Satisfaction

Problem (CSP) which is defined as follows: given (1) a configuration c, in which
c.[x̄] contains a vector of intervals representing the ranges of possible values of
global variables and c.CS stores existing constraints on x̄; and (2) a set newCS

of new constraints, which is generated from t.predicate(x̄, ȳ), determine if there
exists at least one combination of values, called solution, in c.[x̄] that satisfies
the existing constraints in c.CS and new constraints in newCS simultaneously. If
there exists a solution, the predicate t.predicate(x̄, ȳ) will be considered consis-
tent with the configuration c. If no solution exists, it means that an inconsistency
has been detected.

To solve this CSP, the Interval Refinement method can be used, as done in
[10]. However, because of the dependency problem, the results of the Interval
Refinement method may not be accurate, i.e., some transitions may falsely be
reported as executable. For example: assume a configuration c with c.[x̄] : x1 =
[1, 2], x2 = [1, 2], x1 and x2 are integers; c.CS: {cs : x1 − x2 = 0;} , and check
two transitions t1 with a constraint cs1 in its predicate as: x1 + x2 = 3; t2

with a constraint cs2 in its predicate as: x1 + x2 ≤ 4. By applying the Interval
Refinement method, both transition t1 and t2 will be judged as executable.
However, t1 is not executable because x1 and x2 are integers and there is no
solution for both cs and cs1 at the same time. To guarantee the correctness
of results, the Simplex method can be used instead of the Interval Refinement
method, as done in [11]. Although the Simplex method is accurate, it is slower
than the Interval Refinement method. Another difference between these two
methods is that, in the Interval Refinement method, the intervals are narrowed;
while in the Simplex method, the intervals will be untouched.

To combine the advantages of both the Interval Refinement and Simplex
methods, we propose a Hybrid method, which is as accurate as the Simplex
method and as efficient as the Interval Refinement method. The proposed Hybrid
method uses both of these two methods judiciously as follows: given the set Ts of
transitions, the current configuration ccurrent, and an observed I/O event e, first
the Interval Refinement method, together with function control portion checking,
is used to decide which transitions in Ts are executable. If no transition in Ts

is evaluated to be executable, the current trace will be determined not com-
patible with E. If more than one transition is evaluated to be executable, the
Simplex method will be applied to check the correctness of the Interval Refine-
ment method in declaring these transitions executable. If only one transition
is evaluated to be executable by the Interval Refinement method, the Sim-
plex method will not be applied because this transition will be evaluated by



the Simplex method implicitly by checking the last configuration of this trace.
That is, at the end of a trace, before the trace is determined to be compatible
with E, the Simplex method is applied to confirm that there exists no incon-
sistency in the last configuration of this trace. For example, consider a trace
trace (c1c2 . . . ck, k ≤ |E | ) in the Trace-Tree Tree. If ck is checked by the Sim-
plex method and no inconsistency is found, trace is guaranteed to be compatible
with a prefix of E (e1e2 . . . ek, k ≤ |E |) because ck contains all the constraints
within the configurations from c1 to ck−1. Therefore, if no inconsistency found in
the last configuration of trace by the Simplex method, the transitions associated
with trace are all executable.

After evaluating all the transitions in Ts, we continue to perform actions by
function action(tc, e, c) on the configurations in C with their corresponding
transitions in Ts. After performing actions, we add the first configuration in C

to the end of trace and continue to check trace starting from this configuration.
Other configurations in C will be considered as the initial configuration of new
branches, which are represented as new traces in the Trace-Tree.

In function Interval Refinement(c.[x̄], c.CS, newCS), the interval arith-
metic operations are applied to narrow the intervals of variables in constraints
[19]. During refinement, if the interval of a variable is empty, an inconsistency
is detected and function Interval Refinement returns FALSE. Otherwise, c.[x̄] is
updated based on the new constraints newCS and newCS is added into the set
c.CS.

In function Simplex(c.[x̄], c.CS, ∅ ), we adopt an open source tool lp solve

which is a free linear programming solver based on the revised Simplex method
and the Branch-and-bound method [11, 12]. If no solution exists, function Sim-

plex returns FALSE. Both c.[x̄] and c.CS are unchanged within function Simplex.
The worst case computational complexities of Interval Refinement and Sim-

plex methods are exponential. [10, 11, 20] show that the average complexities of
both methods in practice are polynomial. However, because the Simplex method
is more complex than the Interval Refinement method, the speed of the Simplex
method is slower than that of the Interval Refinement method. However, the use
of the Simplex method in conjunction with the Interval Refinement method does
not adversely affect the efficiency of the Hybrid method because the frequency
of applying the Simplex method in the Hybrid method is very low; and the In-
terval Refinement method narrows the intervals which helps reduce the cost of
applying the Simplex method.

3.4 Function action

When a transition has been evaluated to be executable, a new configuration
will be constructed to record the status of SUT N after this transition. The
construction of a new configuration depends on the action part, A(x̄,ȳ), in the
transition which consists of a sequence of assignment statements. Given a con-
figuration c in the set of configurations built for all executable transitions, an
observed I/O event e and a transition tc corresponding to c, function action(tc,
e, c) performs the actions associated with tc, and builds a new configuration



Algorithm 3 Algorithm Check Trace(M, trace, E, Tree)

1: Given: an SEFSM M,
2: a trace trace,
3: a sequence E of observed I/O events, and
4: a Trace-Tree Tree,
5: Return: FALSE, or {trace is not a compatible trace of E}
6: TRUE {trace is a compatible trace of E}
7: Begin:
8: ccurrent ← trace.get(0);{get the first configuration}
9: while (ccurrent 6= NULL and ccurrent.# 6= E.#){ if there is an observed I/O

event to be checked}
10: s ← ccurrent.sc;
11: Ts ← all transitions in M starting at s;
12: e ← E.get(ccurrent.# + 1);{ get the observed I/O event e}
13: C ← ∅ ;
14: for each transition t in Ts {evaluate transitions}
15: c ← ccurrent;
16: if (control portion checking(c, t, e) = FALSE)
17: end the for loop; {the control portion is inconsistent}
18: else {the data portion fault detection commences}
19: newCS ← replace(t.P( x̄ , ȳ), e);{eliminate local variables}
20: if (Interval Refinement(c.[x̄], c.CS, newCS) = FALSE)
21: end the for loop; {the data portion is inconsistent}
22: else
23: C ← C ∪ { c } ; {c is modified and needs to be added to C}
24: endfor
25: if (C = ∅ ) return (FALSE); {if no executable transition is found}
26: else
27: if ( |C | > 1 or ccurrent.# + 1 = |E | ) {checking by the Simplex method}
28: for each configuration c in C

29: if (Simplex(c.[ x̄ ], c.CS, ∅ ) = FALSE) C ← C \{ c } ;
30: endfor
31: else
32: continue;
33: if (C = ∅ ) return (FALSE); {if no configuration in C is consistent}
34: else
35: for each configuration c in C

36: c ← action(tc, e, c) ; {perform actions associated with tc which is the
executable transition corresponding to c}

37: if (c = NULL)
38: end the for loop;
39: else
40: if (c is the first configuration in C)
41: add c to trace;
42: ccurrent ← c;
43: else
44: build a new trace branch trace;
45: add c to branch trace; {create a new branch}
46: add branch trace to tree;
47: endfor
48: endwhile
49: return (TRUE); {a trace compatible with E is found}
50: End



cnext which stands for the status of SUT N after tc. The details of algorithm
action are presented as follows: In the first step, we replace the local variables
in the right hand expression (RHE ) of an assignment statement by their values

in e which gives an RHE =
∑k

i=1 aixi. After the replacement, RHE without
local variables is used to update the value of the left hand variable (LHV ) in
the configuration c. If LHV is a local variable, we use the value of RHE in the
assignment statement to replace the existing value of this local variable. If LHV

is a global variable, we first replace the interval of LHV in c.[x̄] by the value
of interval R(RHE)[x̄], then update the constraints containing LHV in c.CS. If

Algorithm 4 Algorithm action(tc, e, c)

1: Given: a transition tc,
2: an observed I/O events e, and
3: the current configuration c
4: Return: new configuration cnext, or {the configuration after transition tc}
5: NULL {construction failed}
6: Begin:
7: local var ← set the values of the set of local variables according to e;
8: cnext ← c;
9: assignments ← tc.A(x̄, ȳ); {put the assignments in tc.A(x̄, ȳ) into a vector}

10: while(assignments is not an empty sequence)
11: a ← remove(a, assignments); {pick the first assignment}
12: replace the local variables in a using local var ; {the first step}
13: if (a.LHV is a local variable) {the second step}
14: q ← find the index of variable a.LHV in local vars;
15: local vars[q ] ← a.RHE ; {replace by the value of RHE}
16: else
17: q ← find the index of variable a.LHV in c.[x̄];
18: [xq] ← R(a.RHE)[x̄]; {update the interval of a.LHV in [x̄]}
19: if (a.LHV appears in a.RHE)
20: for every constraint cs in cnext.CS that contains a.LHV

21: replace the a.LHV in cs by (a.LHV −
∑k

i=1,i6=q
aixi)/aq;

22: endfor
23: else {if a.LHV does not appear in a.RHE}
24: for every constraint cs in cnext.CS that contains a.LHV

25: replace the variable a.LHV in cs with [xq];
26: change a to a new constraint cs′;
27: cnext.CS ← cnext.CS ∪ cs′; {add this new constraint}
28: endfor
29: endwhile
30: return (cnext);
31: End

LHV appears in RHE, for every constraint cs in c.CS that contains LHV, we
replace LHV in cs by (a.LHV −

∑k

i=1,i 6=q aixi)/aq. If LHV does not appear in
RHE, for every constraint cs in c.CS that contains LHV, we replace the occur-



rences of LHV with [xq] and add the assignment to c.CS as a new constraint.
For example, the assignment “x1 := x2 + x3 - 3” can be added as a constraint
“x2 + x3 - x1 = 3”. Note that in [10], in the situation where LHV does not
appear in RHE, all the constraints in c.CS containing LHV will be discarded.
However, those discarded constraints may contain constraints on not only LHV

but also other global variables. Considering this, we keep those constraints and
replace LHV in them by the interval of LHV in [x̄].

3.5 Optimization on Constraints

In algorithm Check Trace and function action, evaluating and storing constraints
are complex and time consuming. In order to reduce the complexity, we optimize
the constraint related operations as follows: First, the values of global variables
are represented by intervals. For a variable xi = [xi, xi], if its lower bound is
equal to its higher bound (i.e. xi = xi), [10] considers the value of variable xi

as a determined value. Whenever the value of a global variable is determined,
[10] replaces this variable in constraints with its determined value. For example,
given the variable x1 = [1, 1] and a constraint cs: x1 + x2 – x3 = [-1, 5], x1 in
cs can be replaced by 1. Therefore, the new constraint after replacement would
be cs: x2 – x3 = [-2, 4]. We adopt this replacement strategy in our approach.

Second, consider the situation in which a new constraint cs contains a single
variable in the expression, for example x1 ≤ 8. It would be unnecessary to check
cs with former constraints in c.CS and keep it in c.CS. Instead, we use cs

to directly narrow the interval of this variable in [x̄]. For example, given the
existing interval of x1 in [x̄] as x1 = [0, 20], and a new constraint cs as x1 ≤ 8,
the narrowed interval is x1 = [0, 8]. If the narrowed interval is not empty, we
use the narrowed interval to replace the existing interval in [x̄]. Otherwise, we
report that an inconsistency is found.

Third, when searching for a compatible trace of E, a transition t in M may
be encountered more than once, i.e. the observed I/O event ei and ek (i 6= k)
in E may correspond to the same transition t in M. In this case, we may have
two constraints cs1: and cs2:cs1 :

∑k

i=1 aixi = I1 and cs2 :
∑k

i=1 bixi = I2 such
that ∀i, 1 ≤ i ≤ k, ai = z × bi where z is a constant. We will call cs1 and
cs2 similar. For example, x1 + x2 = [1, 2] and 3x1 + 3x2 = [0, 9] are similar.
Then, given a new constraint cs, if there is a constraint within ccurrent.CS that
is similar to cs, we can reduce the number of constraints that need to be checked
by the Hybrid method. In order to determine whether there is a constraint cs′

in current CS that is similar to cs, we apply the following algorithm (called
Similarity Checking) before checking cs with function Interval Refinement. If a
constraint cs′ similar to cs is found, we replace the interval of constraint cs′.I
by (cs′.I × z ) ∩ cs.I. Thus, by applying algorithm Similarity Checking, we can
reduce the number of constraints that need to be checked by the Hybrid method.



Algorithm 5 Algorithm Similarity Checking

1: Given: a new constraint cs (
∑k

i=1
aixi = I1), and

2: a set of existing constraints CS

3: Return: FALSE, or {inconsistency detected}
4: TRUE {no inconsistency detected}
5: Begin:
6: for each constraint cs′ in CS {cs′:

∑k

i=1
bixi = I2}

7: if (cs and cs′ are similar)
8: z ← ai/bi;
9: cs.I ← (cs′.I × z ) ∩ cs.I ;

10: if (cs.I = ∅ ) return (FALSE); {cs is inconsistent with cs′}
11: else
12: cs′.I ← cs.I ;return (TRUE); {cs is consistent with cs′}
13: endfor
14: return (TRUE); {no inconsistency is found by cs}
15: End

4 Experiments

We made an experimental comparison of Interval Refinement, Simplex and Hy-
brid methods for EFSM-based passive fault detection on the ATM system of
Figure 1. Within the SEFSM ATM, there are five global variables, i.e. x̄ = (at-
tempts, pin, lang, op, cb); seven states, i.e. S0 = {s0, s1, . . . , s6}; and fifteen
transitions. Local variables are defined within transitions. Each global variable
is assigned an interval standing for its initial values. S0 is determined by the
tester according to the specific application at hand. In this experiment, S0 is
chosen to be equal to S.

In the experiment, we considered two cases. In Case I, called correct imple-

mentation, there is at least one trace in M that is compatible with E and this
compatible trace is expected to be reported. In this case, we randomly generate
a sequence Es of observed I/O events ( |Es| = 1000) based on the SEFSM ATM

and starting from state s0. Within Es, we randomly select five sequences with
lengths of 20, 50, 100, 200, and 500 observed I/O events.

In Case II, called faulty implementation, there is no trace in M that is com-
patible with E and “faulty” is expected to be reported. First, we create a faulty
specification ATM ′ from ATM by altering the next state, expanding a constraint
in the predicate, or narrowing a constraint in the predicate of a randomly se-
lected transition. Then, we randomly generate a sequence Es of observed I/O
events ( |Es| = 1000) based on the SEFSM ATM ′ and starting from state s0.
Within Es, we randomly select ten sequences containing the altered transition
with length of 30 observed I/O events.

We compared three implementations. The first implementation is the Hy-
brid method; the second implementation replaces the Hybrid method by the
Interval Refinement method so that a transition is checked only by the Interval
Refinement method (the same as in [10]); the third implementation replaces the



Hybrid method by the Simplex method so that a transition is checked only by
the Simplex method (the same as in [11]).

According to the results, in Case I, all three implementations successfully
find the corresponding traces. In Case II with next state fault and expanded
constraint fault, all three implementations report fault correctly. But, the fault
with narrowed constraint cannot be detected by all the three implementations
because an observed I/O event generated by narrowed constraint will certainly
satisfy the original constraint.

Figure 4, left, compares the efficiency of these three implementations in
terms of the average time cost. According to the results, the Interval Refine-
ment method requires the least amount of time; the Hybrid method requires
a little bit more time than the Interval Refinement method; and the Simplex
method is the most expensive in terms of time. As the length of sequence E of
observed I/O events increases, the time consumed for these three methods all
increases.

Moreover, to compare the rate of increase of time costs, along with the in-
crease of |E | , we compute the average rate of time costs between (1) Simplex
method and Interval Refinement method (Simplex/IR); (2) Hybrid method and
Interval Refinement method (Hybrid/IR). In Figure 4, right, we see that the
time costs of the Interval Refinement method and Hybrid method are quite sim-
ilar and, with the increase in the length of E, the difference between these two
methods is not noticeable. We also see that the time cost of the Simplex method
is much more than that of the Interval Refinement method, and as the length of
E increases, the disparity between these two methods also increases.
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Fig. 4. The results of Case I by applying the Hybrid method, Interval Refinement
method, and Simplex method (left) and rates of time cost of three methods (right)

5 Conclusions

In this paper, we have proposed an approach for EFSM-based passive fault de-
tection which provides information about possible starting state and possible



trace at the end of passive fault detection; and utilizes a Hybrid method which
combines the use of both Interval Refinement and Simplex methods for perfor-
mance improvement during passive fault detection. Through experiments, we
show that, compared with using only the Interval Refinement or only the Sim-
plex method, the Hybrid method guarantees the correctness of results with a
reasonable time cost.

In future research, some model checking techniques can be adopted in the
proposed approach for EFSM-based passive fault detection to help exploring the
Trace-Tree. Also, it would be interesting to see how our proposed approach can
help solving the problems of fault location and fault identification.
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