
TPLan- A Notation for Expressing Test Purposes

Stephan Schulz, Anthony Wiles

European Telecommunications
Standards Institute (ETSI)

650 Route de Lucioles
F-06921 Sophia Antipolis Cedex

{Stephan.Schulz, Anthony.Wiles}@etsi.org

Steve Randall

PQM Consultants
4 The Myrtles

Tutshill, Chepstow
 U.K.

Steve.Randall@pmqconsultants.com

Abstract. To this day test purposes are predominately defined in practice using
natural language. This paper describes a more formal approach based on a
notation which has been recently developed and standardized at the European
Telecommunications Standards Institute (ETSI) called TPLan. We introduce
here the motivation and main concepts behind this new notation, and share our
experiences gathered from its application in the development of standardized
test specifications. We also discuss how TPLan can help to make test
development as a whole more efficient – especially in the context of suite based
test specification.

1 Introduction

TPLan has been developed and standardized [1] by the ETSI Technical Committee
Methods for Testing and Specification (TC-MTS). Members of this group include
leading testing experts from industry and academia and it receives support from
ETSI's own Protocol and Testing Competence Centre. For more than a decade MTS
has been involved in the design of languages, methodologies, frameworks, and
guidelines [2,3,4] to help rapporteurs to increase quality and effectiveness of their
specifications. The Test Purpose notation, TPLan, was conceived when investigating
approaches to improving efficiency in the development of test specifications based on
patterns [5]. Here, it was realized that patterns could or should be identified much
earlier than at the time of test case writing, i.e., when identifying test purposes.

Much of the current research on test specification development has focused on the
development and use of either suite-based [2] or model-based [6] testing technologies.
Test purposes have been anchored as a concept in conformance testing methodology
[7] for a long time but, as such, have received little attention in the testing research
community. Formal approaches to test purpose specification [9,10,11,12] have been
proposed but these have yet to be deployed successfully in industry. Graphical
approaches based on Message Sequence Charts (MSC) [13, 14] for specifying test
purposes have had only limited success – arguably due to their limitation in
expressing behaviour only in terms of interactions. In our experience natural language
still dominates the specification of test purposes.

It was our intention with TPLan to make test purpose specification more structured
but not completely formal. Evidence of this approach can be found in the notation
where many of the base keywords have been selected from preferred writing styles
used in ETSI's test purpose specifications. Another design criterion was to keep the
core notation as independent as possible from any specific application area and testing
technology while making it easily extensible. This opens TPLan to a wide range of
applications from, for example, telecommunication to civil engineering. It also allows
it to be used in conjunction with both suite-based and model-based testing.

After an introduction to test purposes and how they fit into test specification
development we will discuss their specification with our notation in section 3 of this
paper in more detail. TPLan has already been used within ETSI to specify more than a
thousand test purposes in the context of test development for the Internet Protocol
version 6 (IPv6) [15] and digital Public Mobile Radio (dPMR) [16]. Section 4
presents first experiences from these projects which have shown that TPLan can help
to enforce uniformity of test purpose specifications and to identify inconsistencies in
standard documents at an early stage before costly test case specification and
validation. We believe, however, that this notation may have even more potential in
the test specification process by reducing development times and increasing
productivity. Section 5 proposes some ideas for more sophisticated tools that may
achieve such additional gains.

2 About Test Purposes

As with any other development activity, better test specifications can be produced
when a structured approach is followed. For more than 15 years ETSI has applied the
methodology prescribed by [7,8] where the development of a complete test
specification is broken down into five discrete steps as shown in Table 1. These steps
can be understood as different levels of abstraction that bridge the large intellectual
gap between a base specification and the final executable test suite. They are not only
an essential framework to the test engineer but also enable a common understanding
of the complete test suite between different target audiences.

Test Specification Step Means of Specification Question answered
Requirement (RQ)
identification

Text, Tables Which requirements are to be
tested?

Test Purpose (TP)
specification

Text, Tables, TPLan What is to be tested?

Test Description (TD) Text, Tables, MSCs,
etc

How is it to be tested?
(informally)

Test Case (TC)
specification

TTCN-3, C, Java, Perl,
Python, MSC, etc

How is it to be tested?
(executable)

Test validation - Is test implemented correctly?

Table 1. Steps in test specification development

Test purposes are derived from the requirements stated in one or more base
specifications that define the implementation. This direct relationship to the
requirements makes it possible to make an early assessment of test coverage of the
specification and to determine the inter-dependencies between different requirements.
Each test purpose usually focuses on one specific requirement. Within ETSI, these
base specifications are most often protocol standards.

Test purposes provide an essential abstraction of a test that specifies what is to be
tested without going into the details of how a test is to be implemented. Test purposes
are not test steps; they specify pass verdict criteria. Test purposes are written using the
language and terminology of the base specification(s) and are independent of any
particular programming language, test system or platform on which corresponding
tests might eventually be executed. They need to be developed, discussed and
stabilized prior to any test case specification.

Test purpose specification results in a rigid assessment of the requirements with
which they are associated and can identify problems in base specifications long before
any test is ever implemented or executed against an Implementation Under Test
(IUT). Not all requirements will lead to test purposes due to the limitations imposed
by the chosen type of testing, e.g., conformance or interoperability testing.

Test purposes serve an important role as a basic documentation tool. They do not
only bridge the gap between original requirements and test case specification but also
between technology experts (who are not necessarily test engineers), managers, and
the test engineers. At ETSI this aspect is very important since test specifications are
often reviewed and approved by standards working groups. These groups need to
understand the requirements which are being tested without having to read detailed
test case specifications. In addition, ETSI is an environment where test purposes and
corresponding test case specifications are developed for a wide variety of
technologies in a distributed (and multi-cultural) environment. Such an environment
clearly has a need for a consistent and uniform approach to test purpose specification,
i.e., a notation which provides a common and recognisable level of understanding.

3 Test purpose specification with TPLan

TPLan has been designed to make test purpose specification more formal without
inhibiting the expressive power of prose. The intent was to enable a consistent and
structured representation of test purposes across a wide range of application domains
and cultural backgrounds while retaining the informal "look and feel" of a natural
language. It is for this reason that the core TPLan syntax and semantics have been
kept small and left open. Of course this flexibility or “freedom of expression”
inevitably results in weaker semantics and limits the checks that a tool can perform
purely on the basis of the TPLan definition itself.

3.1 Test purpose structure

A TPLan test purpose comprises two segments as shown in Figure 1: a header and
a body. The header provides a unique identifier for the test purpose and, optionally,
references to other useful information for the understanding of the test purpose. These
can include the requirement(s) covered by the test purpose, the type of test purpose,
dependencies with other test purposes, and the tested role of the IUT.

The body of a test purpose specifies the specific initial IUT condition required for
the test purpose to be valid and critical verdict criteria for a test - in the form of a
stimulus and response - to ensure that the requirement(s) are met. The structuring of
the test purpose body into the "with", "when" and "then" clauses clearly shows the
roots of this notation in black box testing. A test purpose body is usually written from
the perspective of the IUT, i.e., pre-conditions refer to the required initial state of the
IUT, etc.

The keywords "when" and "then" should not be misunderstood to require a
complete specification of accurate test sequence(s). Stimulus and response in a test
purpose should focus and isolate only the directly relevant parts of information
needed to assess if a requirement is indeed fulfilled by an IUT, for example, message
types and critical information element values. Again, the level of information content
and language used should be identical to the one of the requirement definition in the
base specification.

-- test purpose header
TP id: <string>
< other test purpose headers (optional) >

-- test purpose body
with { <pre-conditions> } -- optional clause

ensure that {

 when { <stimulus> }

 then { <response> }

}

Fig. 1. Basic structure of a TPLan test purpose specification

3.2 Fundamental building blocks

The initial conditions, the stimulus and the response in a test purpose body are
constructed using the concepts which are listed in Table 2.

Concept Definition
Entity A physical or logical actor which applies a stimulus or

receives response, and vice versa.
Event The measurable basis of a stimulus or response which

may be parameterized with Values
Value An abstract identifier representing either

− a literal constant;
− a numeric constant;
− a field or other container

Unit A concrete qualifier to a number which helps to
indicate the relative size or quantity of the number.

Condition An abstract expression of the status or state of the
entity or entities under test.

Word Any other natural language element useful for the
specification of the test purpose body, for example,
− an action
− an article, preposition, adjective, adverb, etc

Table 2. Key TPLan concepts

Instances of these concepts can be created using quoted strings containing free form
text. Some instances for entities and words such as "IUT", "sends" or
"containing" have been pre-defined as keywords in the notation. An example of a
basic TPLan test purpose is shown in Figure 2.

TP id : CW_U01_002
Summary : 'A busy user with information channel control
 but no B-Channel responds to an incoming
 SETUP'
RQ ref : Section 9.5.1
IUT role : user
with { IUT in 'an information channel control state'
 and 'no B-Channel free'
 }

ensure that {

 when { the IUT receives 'a valid and compatible SETUP'
 from the TESTER
 containing 'a channel identification IE'
 indicating 'no B-channel available' }

then { the IUT sends 'ALERTING' to the TESTER }

}

Fig. 2. A complete example of a test purpose

The drawback of quoted strings is, however, that it is impossible to associate much
meaning with them. It is also not possible to check whether quoted strings specify
instances of these concepts in the correct order; for example, that ALERTING in
Figure 2 is really an event.

3.3 User defined extensions

TPLan allows users to extend or customize its vocabulary based on the concepts
introduced in the previous section with keywords which are relevant to their own
specific application domain. This concept makes TPLan much more powerful than
other forms of test purpose specification. Although the notation does not support an
explicit definition of the semantics associated with a word or phrase, such semantics
can often be implied from application domain within which TPLan is being used.

As an example, assume that we define a new word "accepts". When we use this
new word in a TPLan "when" clause, e.g., "when { the IUT accepts 'this
message' }", then TPLan itself does not define or restrict what "accepts"
actually means or how such acceptance is measured in an eventual test case
specification. The word "accepts" could mean any of the following actions:

• the IUT displays a message to the user.
• no error is displayed to the user.
• the IUT will continue interacting normally.
• the IUT does nothing that is externally observable

However, the meaning of "accepts" is likely to be obvious to technology experts
as well as test engineers familiar with the domain or technology. As a result, this word
is a valid abstraction of either one or possibly more interactions with the user or
internal or external entities.

xref CW_U { ETS_300_058_1 } -- ETSI standard reference

def condition information_channel_control_state

def event SETUP { Channel_identification_IE }
def event ALERTING

def value no_B_channel_available

TP id : CW_U01_002
Summary : 'A busy user with information channel
 control but no B-Channel responds to an
 incoming SETUP'
RQ ref : Section 9.5.1
IUT role : user

with { IUT in an information_channel_control_state
 and 'no B-Channel free'
 }

ensure that {

 when { the IUT receives a valid and compatible SETUP
 from the TESTER
 containing a Channel_identification_IE
 indicating no_B_channel_available }

then { the IUT sends ALERTING to the TESTER }

}

Fig. 3. A complete example of a test purpose with user definitions

Users have to declare specific instances of the main concepts shown previously in
Table 2 when they use them in the test purpose definition. Figure 3 illustrates an
example test purpose from the telecommunication domain written for conformance
testing. The user has included a cross-reference to identify the ETSI standard
ETS 300 058-1 as the base specification and then defined one initial condition and
two events representing the different message types.

The definition of the SETUP event shows one parameter. That does not mean that
in practice the message that this event represents only has one parameter. It means
that only this parameter is significant in determining whether the IUT fulfills the
referenced requirement. In test purposes, events are abstract representations of
exchanged or observed information; they are not complete message instances.
Similarly the user defined value in the example is an abstract representation of a
concrete value.

Note also that within TPLan, user defined conditions, events and values are
expressed as identifiers, i.e., they must not contain spaces. In our example we have
chosen underscores to preserve a feel of natural language to the identifiers but this is
only our naming convention. Finally, notice that one initial condition has been
specified for the sake of this example using a quoted string. Quoted strings can still be
useful in cases where, for example, a pre-condition is very complex.

By means of a simple notation, the user is also able to restrict the syntactical
context in which user-defined words can be used. Within a context definition
statement, any word prefixed with a tilde character (~) may only be used in that
context, any word surrounded by square brackets is considered optional and any
unencumbered word can be used in any other syntactical context. As an example, the
following definitions can be made:

 def word requested

 def context is [not] ~requested to

Here, the words "is", "not" and "to" are included in the predefined TPLan
vocabulary. The "context" statement constrains the user-defined keyword
"requested" so that it is only syntactically correct in the contexts "is
requested to" and "is not requested to".

3.3 Arrangement of test purpose definitions

In most cases and for a variety of reasons test purpose specifications need a logical
structuring. To assist users in such structuring TPLan offers two complementary
mechanisms which are grouping and inclusion.

Test purposes can be arranged into logical, hierarchical groups by using the
"Group" and "End Group" statements as shown in Figure 4. These groups as well
as individual test purposes can also be collected together into a single specification
referred to as a Test Suite Structure (TSS) which also contains a header of its own.
In those cases where a number of test purpose writers are involved in a project, it will
be necessary to maintain a single source of vocabulary extensions. For this purpose,
the notation allows a TSS to include other TPLan files by means of a #include

statement as shown in Figure 5. This mechanism uses a simple replacement method
so that the content of the identified file is inserted into the file in place of the
#include statement. Additionally, the inclusion mechanism can be used to
construct a complete TSS from separate group files developed by multiple test
purpose writers.

TSS : COR_IOP –- identifier for all test purposes
Title : 'RFC2460 IPv6 Core Specification'
Version : 1.0.1
Date : 05.10.2006
Author : 'Steve Randall (ETSI TC-MTS)'

Group 1 'Initialization functions'

Group 1.1 'System startup'

Group 1.1.1 'Memory check'
…
<test purpose definitions>
…
End Group 1.1.1

Group 1.1.2 'Media check'
…
<test purpose definitions>
…
End Group 1.1.2

End Group 1.1

End Group 1

…

Fig. 4. Example test purpose structuring using TSS header and grouping

TSS : COR_IOP -- identifier for all test purposes
Title : 'RFC2460 IPv6 Core Specification'
Version : 1.0.1
Date : 05.10.2006
Author : 'Steve Randall (ETSI TC-MTS)'

#include c:\include\SIUnitDefs.tplan
#include c:\include\IOPDefs.tplan
#include c:\include\IPv6Defs.tplan

#include c:\include\IPv6Group1.tplan -- Initialization

#include c:\include\IPv6Group2.tplan -- Outgoing call

#include c:\include\IPv6Group3.tplan -- Incoming call

Fig. 5. TPLan specification constructed from #include statements

4 First experiences

TPLan has been used by ETSI for the specification of test purposes in its IPv6 and
dPMR test development projects. In both cases test purposes have been specified for
two types of testing, conformance and formalized interoperability testing [17].

Two examples, a dPMR conformance and an IPv6 interoperability test purpose, are
shown in Figures 6 and 7. These examples illustrate how TPLan vocabulary can be
customized for these specific application domains and adapted to different types of
testing. Note that required TPLan user definitions have been omitted from the figures.
Also, almost all test purpose header lines are optional. The ones chosen in these
examples provide further information about a test purpose summary, the type of test
purpose, a reference to the catalogued requirement that the test purpose pertains to,
the role or type of equipment being the subject of test, as well as a reference to the test
architecture or configuration in which the IUT or Equipment Under Test (EUT) is
embedded.

TP id : TP_PMR_0406_01
summary : 'Header frame acknowledges connect request'
TP type : conformance
RQ ref : RQ_001_0406
IUT Role : CSF -- Configured Service Function (CSF)
config ref: CF_dPMR_CSF_01 -- CSF Implementation Under
 -- Test (IUT) and TESTER

with { IUT in standby }

ensure that {
 when { IUT receives a Connection_Request }
 then { IUT sends an Acknowledgement_Frame }
}

Fig. 6. Example dPMR conformance test purpose

TP id : TP_COR_8231_01
summary : 'EUT uses at least two of the connected
 routers as its default routers '
TP type : interoperability
RQ ref : RQ_COR_8231
EUT role : Host, Router -- = either Host or Router
config ref: CF_033_I -- 2 Routers and 1 Node as
 -- Qualified Equipment (QE1/2/3) +
 -- Equipment Under Test (EUT)
 -- connected via 2 links
TD ref : TD_COR_8231_01

with { QE1 having 1 unique unicast_address on each link

 and QE2 having 1 unique unicast_address on each link

 and EUT and QE3 able to communicate

 and QE1 'having disabled one of its interfaces' }

ensure that {

 when { (QE1 disables 1 interface
 or QE2 disables 1 interface)
 and EUT is requested to send a packet to QE3 }

 then { EUT sends the packet to QE3 }

}

Fig. 7. Example Ipv6 core interoperability test purpose

Our experiences with the first prototype version of TPLan (which allowed the use
of a non extensible pre-defined set of keywords and quoted strings) were that writers
felt limited in their ability to fully express test purposes. The language used by the
standard document differed too much from the language that could be constructed
from pre-defined TPLan keywords. Consequently, writers frequently requested new
keywords to be added to the notation and made heavy use of quoted strings in test
purpose specification. That, in turn, reduced the ability of project managers to ensure
the quality and consistency of test purposes.

The introduction of user defined extensions to TPLan radically changed this
situation. The ability to define a domain specific vocabulary not only gave writers
more freedom in specifying test purposes but also made it easier to detect the misuse
or misspelling of significant words. We noticed that, independent of the project type,
the user defined vocabulary initially grows quite rapidly during the specification of
first test purposes. After that, however, the need for new definitions levels off quickly.
The test purpose writers also found it useful that user defined keywords could be
explained or clarified with comments at one central place, i.e., their definition.

The extra effort spent in structured writing helped to reveal many problems or
inconsistencies in the base specification prior to any test case specification or
execution. This property of the notation became especially apparent during dPMR test
purpose specification where writers were experts in the technology but novices in
testing. Automated syntax checking with a simple parser [18] gave a first level of
assurance on test purpose quality. A manual check of test purposes was nevertheless
still required to assure their correctness. For a proficient English speaker it was easy
to identify incorrect or badly written test purposes as these were not minor
grammatical or spelling errors, the test purposes just obviously read incorrectly. It is
not clear at this point if an improved syntax checker or further tool support could
eliminate the need for this second grammar check.

5 Improving of test specification efficiency

In this section we want to show how TPLan offers a foundation to build on.
Remember that it has only recently been standardized and is still in its infancy. So far
there is much interest in it but only limited tool support. Based on our early
experience with TPLan we believe that additional tool support could help to further

improve the speed and quality of test purpose as well as test specification
development as a whole.

Sophisticated editor support is probably one of the more important issues. Context
sensitive editors could assist, extend and manage TPLan user definitions and provide
features such as syntax highlighting, keyword completion and other forms of
vocabulary management. This kind of tool would help users to avoid writing incorrect
TPLan test purposes to begin with. More advanced parsers which go beyond simple
syntax checks are needed to help pinpoint incorrect test purposes early on in the
specification process. It may also be possible to extend the analysis of test purposes
by incorporating some of the English grammar checking technologies used by modern
word processing software.

Test purposes that have been checked for correctness can be used as input to other
forms of processing. One of these is the identification of recurring patterns in
preconditions and the interactions between entities. Such patterns can be used in a
variety of ways:

1. the identification of potentially reusable segments of test case specifications

derived from the test purposes;
2. an assessment of test purpose variation;
3. an estimation of the possible complexity of the eventual test case specification;
4. an estimation of the effort likely to be required for implementing the eventual

test specifications.

When used with suite-based test technologies TPLan test purposes can serve as the
basis for test purpose publication or other presentation formats. TPLan test purposes
seem especially attractive for generation of test specification stubs. They contain a
considerable amount of information regarding initial conditions, verdict criteria and
interaction of entities. Nevertheless there are many details which are not specified in
test purposes but which are required for test case specification such as preamble
implementation, complete message values, guarding against unexpected behaviour,
postamble implementation, etc. To make test case generation as complete as possible
we expect it to almost certainly be based on and driven by domain-specific TPLan
vocabulary and semantics as well as other external sources of input. But once a clever
approach is found it will be possible to develop code generators for many different
testing languages since TPLan is independent of a specific test case specification
language.

Another interesting application for future TPLan tools is the automatic validation
of manually written test cases against TPLan test purposes to determine whether or
not a test case implementation fulfils the criteria specified in the associated test
purposes. This could be an interesting idea, e.g., for companies that define test
purposes but subcontract test case specification.

When used in a model-based testing context, TPLan test purposes can be used in
the definition of coverage criteria or testing directives for test generation from formal
executable models. Here, the test purpose would define a path through model
behaviour. Similarly as in the case of test case stub generation, the abstract nature of
test purposes has to be again taken into account in model-based test generation. A

stimuli or response of a test purpose specification may correspond to only one state
transition but also to a path or even multiple paths in the model (see our discussion of
"accepts" in Section 3.3). Secondly, the faithful use of data specified in a test
purpose is non-trivial to handle in test case generation. Data is often not hard-coded
but computed during the execution of models. Therefore, for example, it has to be
ensured that the event parameter values specified in a test purpose are truly sent or
expected by the generated test case.

6 Conclusions

In this paper we have introduced the new notation TPLan which has been developed
and standardized by ETSI for expressing test purposes. TPLan attempts to formalize
the specification of test purposes by requiring a certain structure and composition
based on a set of well defined concepts, i.e., entities, event, value, units, conditions
and words. It is independent of a specific testing technology or application domain. A
key concept in TPLan is that the pre-defined vocabulary can be extended and
customized by users for specific application domains. User definitions make it
possible to add more meaning to test purposes and to customize the notation for a
specific application domain.

This notation has already been used extensively by ETSI in its IPv6 and dPMR test
specification developments. Experiences have been positive in that the quality of test
purpose specifications was easier to monitor and affect. Further study is however still
required to investigate other impacts of TPLan use such as its effect on overall test
specification process. We expect that TPLan will have an even bigger impact on test
specification development once more sophisticated tools for handling test purposes
become available. Most interest seems to be in the generation of test case
specification stubs from test purposes as well as the use of test purposes as a driver
for model-based test generation. Some tools, such as a free simple parser and syntax
highlighter, are already publicly available at [18].

In the future we see that TPLan standardization is likely to be extended. Currently
the creation of TPLan profiles for specific application areas is under discussion, for
example, for communicating systems. Such profiles will essentially just extend the
pre-defined vocabulary and define semantics for the later. In addition, we are
planning to study further existing work on requirements definition languages which
are closely related to definition of test purposes.

Acknowledgments

We would like to thank all experts who took part in TPLan test purpose specification
in the ETSI IPv6 and dPMR projects for their constructive comments and feedback on
the notation itself. In addition, we would like to recognize Dr. Thomas Deiß for his
extensive reviews of TPLan standard drafts.

References

[1] ETSI ES 202 553: “Methods for Testing and Specification (MTS); TPLan: A Notation for
expressing Test Purposes”, European Telecommunications Standards Institute, Sophia
Antipolis, 2007.

[2] C. Willcock et al., An Introduction to TTCN-3, Wiley & Sons, 2005.
[3] S. Moseley, S. Randall, and A. Wiles, “Experience within ETSI of the combined roles of

conformance testing and interoperability testing”, in Proceedings of 3rd Conference on
Standardization and Innovation in Information Technology (SIIT), Delft, The Netherlands,
October 2003, 177-89.

[4] S. Randall, “Descriptive SDL”, Telektronikk, no. 4, Telenor AS, 2000, p. 107-12.
[5] H. Neukirchen, Z.R. Dai, J. Grabowski, “Communication Patterns for Expressing Real-

Time Requirements Using MSC and their Application to Testing”, in Proceedings of 16th
Conference on Testing of Communicating Systems (TestCom 2004), Oxford, UK, March
2004, LNCS 2978, Springer, pp. 144-159.

[6] A. Hartma and K. Nagin, “The AGEDIS tools for model based testing”, in Proceedings of
the 2004 ACM SIGSOFT international Symposium on Software Testing and Analysis
(ISSTA ’04), Boston, MA, ACM Press 2004, pp. 129-32.

[7] ISO/IEC 9646-1: “Information Technology - Open Systems Interconnection -
Conformance Testing Methodology and Framework - Part 1: General concepts”, Geneva,
1994.

[8] ISO/IEC 9646-2: “Information Technology - Open Systems Interconnection -
Conformance Testing Methodology and Framework - Part 2: Abstract Test Suite
Specification”, Geneva, 1994.

[9] C. Jard and T. Jeron, “TGV: theory, principles and algorithms”, in Proceedings of 6th
World Conference on Integrated Design and Process Technology (IDPT 2000), Pasadena,
California, USA, June 2002.

[10] A. Desmoulin and C. Viho, “Formalizing Interoperability for Test Case Generation
Purpose”, in Proceedings of IEEE Nasa ISoLA Workshop on Leveraging Applications of
Formal Methods, Verification, and Validation, Columbia, MD, USA, September 2005.

[11] J. Tretmans, A Formal Approach to Conformance Testing, Ph.D. Thesis, University of
Twente, The Netherlands, 1992.

[12] P. Deussen and S. Tobies, “Formal Test Purposes and The Validity of Test Cases”, in the
Proceedings of the 22nd International Conference on Formal Techniques for Networked
and Distributed Systems (FORTE 2002), Houston, Texas, USA, November 2002, LNCS
2529, Springer.

[13] J. Grabowski, D. Hogrefe, and R. Nahm, “Test Case Generation with Test Purpose
Specification by MSCs”, in SDL'93 - Using Objects (Eds: O. Faergemand, A. Sarma),
North-Holland, October 1993.

[14] Object Management Group: UML 2.0 Testing Profile Specification, 2003.
[15] S. Deering and R. Hinden, “Internet Protocol, Version 6 (IPv6) Specification”, IETF RFC

2460, December 1998.
[16] ETSI TS 102 490 (V1.3.1): “Electromagnetic compatibility and Radio spectrum Matters

(ERM); Peer-to-Peer Digital Private Mobile Radio using FDMA with a channel spacing of
6,25 kHz with e.r.p of up to 500 mW”, European Telecommunications Standards Institute,
Sophia Antipolis, 2006.

[17] ETSI TS 102 237-1 (V4.1.1):” Telecommunications and Internet Protocol Harmonization
Over Networks (TIPHON) Release 4; Interoperability test methods and approaches; Part
1: Generic approach to interoperability testing”, European Telecommunications Standards
Institute, Sophia Antipolis, 2003.

[18] http://www.tplan.info

