
Testing and Model-Checking Techniques for Diagnosis

Maxim Gromov1 and Tim A.C. Willemse2

1 Institute for Computing and Information Sciences (ICIS)
Radboud University Nijmegen – The Netherlands, email:m.gromov@cs.ru.nl

2 Design and Analysis of Systems Group,
Eindhoven University of Technology – The Netherlands, email: t.a.c.willemse@tue.nl

Abstract. Black-box testing is a popular technique for assessing the quality of a
system. However, in case of a test failure, only little information is available to
identify the root-cause of the test failure. In such cases, additional diagnostic tests
may help. We present techniques and a methodology for efficiently conducting di-
agnostic tests based on explicit fault models. For this, we rely on Model-Based
Testingtechniques forLabelled Transition Systems. Our techniques rely on, and
exploit differences in outputs (or inputs) in fault models,respectively. We char-
acterise the underlying concepts for our techniques both interms of mathematics
and in terms of the modalµ-calculus, which is a powerfultemporal logic. The
latter characterisations permit the use of efficient, off-the-shelf model checking
techniques, leading to provably correct algorithms and pseudo decision proce-
dures for diagnostic testing.

1 Introduction

Testing has proved to be a much-used technique for validating a systems behaviour,
but in itself it is a quite labour-intensive job. Formal approaches to testing, collectively
known asModel-Based Testing, have been touted as effective means for reducing the
required effort of testing by allowing for automation of many of its aspects. However,
MBT provides only a partial answer to the validation problem, as in most cases its
automation ceases at the point where a test failure has been detected; pinpointing the
root-cause of the test failure remains a laborious and time-consuming task. Finding this
root-cause is known as thediagnosisproblem, and it is tightly linked to testing.

Formal approaches to the diagnosis problem rely on the use ofmodels of the system-
under-diagnosis, and are often referred to asModel-Based Diagnosistechniques. While
MBD has been studied extensively in the formal domain ofFinite State Machines(see
e.g. [3, 4, 6, 11]), the topic is little studied in the settingof Labelled Transition Systems.
The advantage of many LTS-based theories over FSM-based theories is that the assump-
tions under which they operate are more liberal, which makesthem easier to apply in
practice. In this paper, we advocate an LTS-based MBD approach for non-deterministic,
reactive systems. The techniques that we put forward in thispaper operate under the
liberal LTS-based testing hypothesis ofioco-based testing [13]; our methods rely on
explicit models describing the faulty behaviour, henceforth referred to asfault models.

The problem that we consider consists of identifying “correct” fault models among
a given (but large) set of possible fault models. By “correct”, we understand that no

evidence of a mismatch between the malfunctioning system and the fault model can
be found. This can be asserted by e.g. testing. Note that eventhough this problem is
readily solved by testing the malfunctioning system against each fault model separately,
this is a daunting task which is quite expensive in terms of resources, even when fully
automated. The main contributions of this paper are twofold:

1. inspired by classical FSM-based diagnosis approaches wepresent diagnostic con-
cepts and techniques to make the fault model selection process more effective in an
LTS-based setting. In particular, we adopt and modify the notion of distinguishabil-
ity (see e.g. [11]) from FSMs to fit the framework of LTSs. Secondly, we introduce
a novel notion, calledorthogonalitywhich helps to direct test efforts onto isolated
aspects of fault models. Both notions are studied in the setting of ioco-based testing.

2. we link our diagnostic concepts and techniques tomodel-checkingproblems. This
gives rise to effective and provably correct automation of our approach, and leads
to a better understanding of all involved concepts.

Note that the problem of constructing the set of fault modelsis left outside the scope of
this paper; in general, there are an infinite number of fault models per implementation.
While this is indeed a very challenging problem, for the timebeing, we assume that
these have been obtained by manually modifying e.g. a given specification, based on
modifications of subcomponents of the specifications. Such modifications can be driven
by the observed non-conformance between the specification and the implementation,
but also fault injection is a good strategy.

Related work.In [8], Jéronet al paraphrase the diagnosis problem for discrete event
systems (modelled by LTSs), as the problem of finding whetheran observation of a
system contains forbidden sequences of actions. Their approach takes a description of
the structure of a system as input; the sequences of forbidden actions are specified us-
ing patterns. They subsequently propose algorithms for, a.o., synthesising a diagnoser
which tells whether or not a pattern occurred in the system. Avariation on this approach
is given in [10], in which all actions are unobservable except for special “warning” ac-
tions. The problem that is solved is finding explanations forthe observations of observed
warning actions. Both works view the diagnosis problem as a supervisory problem.

Apart from the above mentioned works in the setting of LTSs, there is ample lit-
erature on diagnosis based on FSMs. Guoet al, in [6] focus on heuristics for fault
diagnosis, which helps to reduce the cost of fault isolationand identification. El-Fakih
et al [4] define a diagnostic algorithm for nets of FSMs, and in [3] these techniques
are extended; the effectiveness of (a minor modification of)that algorithm is assessed
in [5]. Most FSM-based approaches consist of two steps, the first step being the gener-
ation of a number of candidate fault models (often referred to ascandidates), and the
second step being a selection of appropriate candidates. The first step relies on strict
assumptions, which in general are not met in an LTS-based setting.

In [12] the emphasis is on diagnosing non-reactive systems,mostly hardware, al-
though their techniques have also been applied to software.Based on the topology of a
system, explanations for a system’s malfunctioning are computed and ranked according
to likeliness. The techniques underlying the diagnosis arebased on propositional logic
and satisfiability solvers.

Structure of the paper.In Section 2 we repeat theioco-based testing theory and the
modalµ-calculus [2], the latter being our carrier for linking diagnosis to the problem
of model-checking. The basic concepts for diagnosis, and their link to model-checking
problems is established in Section 3. In Section 4, we provide an algorithm and a semi-
decision procedure that implement the techniques and concepts of Section 3.

2 Background

In this section, we briefly recall the testing theoryioco as defined in [13]. Theioco
framework and its associated testing hypotheses serve as the basic setting for our diag-
nosis techniques. Furthermore, we introduce the modalµ-calculus [2], which is a modal
logic that we will use as a tool for characterising our diagnostic techniques.

Definition 1. A Labelled Transition System(LTS) with inputsActI and outputsActU
is a quintuple〈S,ActI ,ActU ,→, s〉, whereS is a non-empty set of states with initial
states ∈ S; ActI andActU are disjoint finite sets representing the set of input actions
and output actions, respectively. We denote their union byAct. As usual,τ /∈ Act
denotes an internal non-observable action, and we writeActτ for Act ∪ {τ}. The
relation→⊆ S ×Actτ × S is the transition relation.

Let L = 〈S,ActI ,ActU ,→, s〉 be a fixed LTS. Lets, s′, . . . range overS. Throughout
this paper, we use the following conventions: for all actions a, we write s

a
−→ s′ iff

(s, a, s′) ∈→, ands 6
a
−→ iff for all s′ ∈ S, nots

a
−→ s′.

Ioco-based testing theory.The notion ofquiescenceis added to an LTS as follows: a
states is quiescent — notationδ(s) — iff s 6

τ
−→ and for alla ∈ ActU , s 6

a
−→. Informally,

a quiescent state is a state that is “stable” (it does not allow for internal activity) and it
refuses to provide outputs. Letδ /∈ Actτ be a fresh label representing the possibility
to observe quiescence;Actδ abbreviatesAct ∪ {δ}. Let σ, σ′, . . . range overAct∗δ ,
actionsa range overActδ, andS′, S′′, . . . ⊆ S. We generalise the transition relation→
to =⇒⊆ S × Act∗δ × S, and writes

σ
=⇒ s′ iff (s, σ, s′) ∈=⇒. We define=⇒ as the

smallest relation satisfying the following four rules:

s
ǫ

=⇒ s

s
σ

=⇒ s′ s′
τ
−→ s′′

s
σ

=⇒ s′′
s

σ
=⇒ s′ s′

a
−→ s′′

s
σ·a

===⇒ s′′
s

σ
=⇒ s′ δ(s′)

s
σ·δ

===⇒ s′

Analogously to→, we writes
σ

=⇒ for s
σ

=⇒ s′ for somes′. For ease of use, we intro-
duce the following functions and operators.

1. [s]σ
def
= {s′ ∈ S | s

σ
=⇒ s′}; generalised:[S′]σ

def
=

⋃

s∈S′ [s]σ;

2. out(s)
def
= {a ∈ ActU | s

a
−→}∪{δ | δ(s)}; generalised:out(S′)

def
=

⋃

s∈S′ out(s),

3. s-traces(s)
def
= {σ ∈ Act∗δ | s

σ
=⇒},

4. traces(s)
def
= s-traces(s) ∩ Act∗,

5. der(s)
def
=

⋃

σ∈Act∗ [s]σ; generalised:der(S′)
def
=

⋃

s∈S′ der(s).

Note 1. Our notation[S′]σ is a deviation from the standardioco-notation, where[S′]σ
is written asS′ after σ. While we are not in favour of changing common notation,
our main motivation for using our notation is brevity in definitions, theorems and algo-
rithms, in support of readability.

Definition 2. We say that:

– L is image finiteif for all σ ∈ Act∗, [s]σ is finite,
– L is deterministicif for all s′ ∈ S and allσ ∈ Act∗, |[s′]σ| ≤ 1,
– L is strongly convergingif there is no infinite sequence ofτ transitions,
– A states ∈ S is input-enabledif for all s′ ∈ der(s) and all a ∈ ActI , we have

s′
a

=⇒ . L is input-enabled ifs is input-enabled.

Throughout this paper, we restrict to image finite, stronglyconverging LTSs. Thetesting
hypothesisfor ioco states thatimplementationscan be modelled usinginput-enabled
LTSs. Note that this does not imply that the theory requires that this LTS is known. The
conformancerelationioco is defined as follows:

Definition 3. Let Li = 〈Si,ActI ,ActU ,→i, si〉 (for i = 1, 2) be two LTSs. Lets1 ∈
S1 ands2 ∈ S2. Thens1 is ioco-conforming tos2 – notations1 ioco s2 – whens1 is
input-enabled and

∀σ ∈ s-traces(s2) : out([s1]σ) ⊆ out([s2]σ)

We sometimes writeL1 ioco L2 instead ofs1 ioco s2.

Note thatproving ioco-conformance is generally not feasible, as there is no guarantee
that we have seen all the behaviours of an implementation (because of non-determinism).
In practice, we settle forconfidencein ioco-conformance, which is obtained by testing
the implementation with a large set of successfully executed test-cases. A sound and
complete algorithm forioco for deriving test-cases from a specification is proved cor-
rect in [13]; it is implemented in e.g. TorX [1] and TGV [7].

Modal µ-calculus The modalµ-calculus is a powerful logic which can be used to
express complex temporal properties over dynamic systems.Next to its modal operators
〈a〉φ and [a]φ, it is equipped with least and greatest fixpoint operators. The grammar
for the modalµ-calculus, given directly in positive form is as follows:

φ ::= tt | ff | X | φ ∧ φ | [a]φ | 〈a〉φ | φ ∨ φ | µX.φ | νX.φ

wherea ∈ Actτ is an action andX is a propositional variable from a set of propo-
sitional variablesX . A formula φ is said to be inPositive Normal Form(PNF) if all
its propositional binding variables are distinct. We only consider formulae in PNF. A
formulaφ is interpreted relative to an LTSL = 〈S,ActI ,ActU ,→, s〉 and aproposi-
tional environmentη : X → 2S that maps propositional variables to sets of states. The

semantics ofφ is given by[[φ]]Lη , which is defined as follows:

[[tt]]Lη = S
[[ff]]Lη = ∅
[[φ1 ∧ φ2]]

L
η = [[φ1]]

L
η ∩ [[φ2]]

L
η

[[φ1 ∨ φ2]]
L
η = [[φ1]]

L
η ∪ [[φ2]]

L
η

[[X]]Lη = η(X)

[[[a]φ]]Lη = {s ∈ S | ∀s′ ∈ S : s
a
−→ s′ ⇒ s′ ∈ [[φ]]Lη }

[[〈a〉φ]]Lη = {s ∈ S | ∃s′ ∈ S : s
a
−→ s′ ∧ s′ ∈ [[φ]]Lη }

[[µX.φ]]Lη =
⋂

{S′ ⊆ S | [[φ]]Lη[S′/X] ⊆ S′}

[[νX.φ]]Lη =
⋃

{S′ ⊆ S | S′ ⊆ [[φ]]Lη[S′/X]}

where we writeη[S′/X] for the environment that coincides withη on all variables
Y 6= X , and maps variableX to valueS′. A states ∈ S satisfies a formulaφ, written
s |=L φ whens ∈ [[φ]]Lη . We writeL |= φ whens |=L φ.

The operator〈a〉φ is used to express that there must exist ana transition from the
current state to a state satisfyingφ. Dually, the operator[a]φ is used to express that
all states that can be reached by executing ana action satisfy propertyφ. Remark that
when ana transition is impossible in a states, the property[a]φ is trivially satisfied in
states. These operators are well-understood and can be found in early logics such as
Hennessy-Milner Logic. In this paper, we use the following additional conventions: for
sets of actionsA we define:

[A]φ
def
=

∧

a∈A[a] φ 〈A〉φ
def
=

∨

a∈A 〈a〉φ

Moreover, for a formulaφ, we denote its dual byφ. Such a dual formula always exists
and is readily obtained by simple transformations and renamings, see e.g. [2].

The major source for the expressive power of the modalµ-calculus is given by the
fixpoint operatorsµ and its dualν. Technically, a least fixpointµX.φ is used to indicate
the smallest solution ofX in formula φ, whereas the greatest fixpointνX.φ is used
for the greatest solution ofX in formulaφ. These fixpoint expressions are generally
understood as allowing one to expressfinite loopingandlooping, respectively.

Example 1.A system that can always perform at least one action is said tobedeadlock-
free (note that we do not require this to be a visible action). Thiscan be expressed in
the modalµ-calculus using a greatest fixpoint:νX. [Actτ]X ∧ 〈Actτ 〉tt. Informally,
the formula expresses that we are interested in the largest set of states (say this would
beX) that satisfies the property that from each reachable states (s ∈ X), at least one
action is enabled, and all enabled actions lead to statess′ (s′ ∈ X) that also have this
property.

For a more detailed account we refer to [2], which provides anexcellent treatment of
the modalµ-calculus.

3 Techniques and Heuristics for Diagnostic Testing

Testing is a much used technique to validate whether an implementation conforms to
its specification. Upon detection of a non-conformance, allthat is available is a trace,

also known as asymptom, that led to this non-conformance. Such a symptom is often
insufficient for locating the root-cause (or causes) of the non-conformance; for this,
often additional tests are required. We refer to these additional tests asdiagnostic tests.

In a Model-Based Testing setting, the basis for conducting diagnostic tests is given
by a set offault models. Each fault model provides a possible, formal explanation of
the behaviour of the implementation; one may consider it a possible specification of
the faulty implementation. Remark that we here appeal to thetesting hypothesis of
ioco, stating that there is an input enabled LTS model for every implementation. The
different fault models describe different fault situations. The diagnostics problem thus
consists of selecting one or more fault model(s) from the given set of fault models that
best explain the behaviour of the implementation.

Formally, the diagnostics problem we are dealing with is thefollowing: given a
specificationS, a non-conforming implementationI and a non-empty set of fault mod-
elsF = {F1, F2, . . . , Fn}. A diagnosisof I is given by the largest setD ⊆ F satisfying
I ioco Fi for all Fi ∈ D. The focus of this paper is on two techniques for obtainingD
efficiently, viz. distinguishability and orthogonality. Note that given the partiality of the
ioco-relation, the fault models inD are –generally– all unrelated.

In Sections 3.1 and 3.2, we introduce the notions of (strong and weak)distinguisha-
bility and (strong and weak)orthogonality, respectively. We provide alternative char-
acterisations of all notions in terms of modal logic, which 1) provides a different per-
spective on the technique and, 2) enables the use of efficientcommonplace tool support.
The discussion on how exactly the theory and results described in this section can be
utilised for diagnostic testing is deferred to Section 4.

3.1 Distinguishability

Given two fault modelsF1 andF2 and an implementationI. Chances are that during
naive testing forI ioco F1 andI ioco F2, there is a large overlap between the test-
cases forF1 andF2, as both try to model to a large extent the same implementation.
This means thatF1 andF2 often agree on the outcome of most test-cases. An effective
technique for avoiding this redundancy is to exploit thedifferencesbetweenF1 andF2.
In particular, when, after conducting an experimentσ on I, F1 andF2 predict different
outputs, this provides the opportunity to remove at least one of the two fault models
from further consideration. When one or more such experiments exist, we say that the
fault models aredistinguishable. Two types of distinguishability are studied: weakly
and strongly distinguishable fault models.

We next formalise the above concepts. At the root of the distinguishability property
is the notion of anintersectionof fault models. Intuitively, the intersection of two fault
models contains exactly those behaviours that are shared among the two fault models.

Definition 4. Let Fi = 〈Si,ActI ,ActU ,→i, si〉, for i = 1, 2 be two LTSs. Assume
∆ /∈ Act is a fresh constant, and denoteActU ∪ {∆} byAct∆U . Likewise,Act∆. The
intersectionofF1 andF2, denotedF1||F2, is again an LTS defined by〈(2S1 \∅)×(2S2 \
∅), ActI ,Act∆U , →, ([s1]ǫ, [s2]ǫ) 〉, where→ is defined by the following rules:

∅ 6= q1 ⊆ S1 ∅ 6= q2 ⊆ S2 a ∈ Act

(q1, q2)
a
−→ ([q1]a, [q2]a)

∅ 6= q1 ⊆ S1 ∅ 6= q2 ⊆ S2

(q1, q2)
∆
−→ ([q1]δ, [q2]δ)

Remark that no transitions lead to, or start in an element(q, ∅) or (∅, q) since these are
no elements of the state-space of the intersection of two LTSs.

The intersection of two LTSs extends the alphabet of output actions of both LTSs with
the symbol∆. This action captures the synchronisation of both LTSs overthe observa-
tions of quiescence, which in theioco-setting is treated as an output of the system. A
“true” quiescent state in the intersection of two LTSs indicates that the output actions
offered by both LTSs are strictly disjoint. In order to facilitate the mapping between
the setsActδ andAct∆, we use arelabelling function. LetR : Act∆ → Actδ be the
following bijective function:

R(a)
def
= a if a 6= ∆ andδ otherwise

We writeR
−1 to denote the inverse ofR. The mappingR and its inverse extend readily

over sets of actions. The extension of the mappingR (and its inverse) over (sets of)
traces, denoted by the mappingR

∗ (resp.R−1∗), is defined in the obvious way.

Property 1. Let F1||F2 be the intersection ofF1 andF2, and lets1 be a state ofF1, s2

be a state ofF2, (q1, q2) be a state ofF1||F2 andσ ∈ Act∗δ . Then:

1. F1||F2 is deterministic,
2. [([s1]σ, [s2]σ)]a 6= ∅ implies([s1]σR(a), [s2]σR(a)) ∈ [([s1]σ, [s2]σ)]a,
3. out(([q1]ǫ, [q2]ǫ)) \ {δ} = R

−1(out([q1]ǫ) ∩ out([q2]ǫ)).

Some of the above properties should not come as a surprise: atthe basis of the in-
tersection operator is theSuspension Automatatransformation of [13], which codes a
non-deterministic specification into a deterministic LTS with explicit suspension tran-
sitions. That transformation is known to retain the exact sameioco testing power as the
original specification, albeit on different domains of specification models.

Strong Distinguishability Recall that the intersectionF1||F2 codes the behaviours that
are shared among the LTSsF1 andF2. This means that in states ofF1||F2 that have no
output transitions, both LTSs disagree on the outputs that should occur, providing the
opportunity to eliminate at least one of the two fault models. We say that such a state is
discriminating. If a tester always has a finite “winning strategy” for steering an imple-
mentation to such a discriminating state, the fault models are strongly distinguishable.
Recall that testing is sometimes portrayed as a (mathematical) game in which the tester
is in control of the inputs and the system is in control of the outputs. We next formalise
the notion of strong distinguishability.

Definition 5. The intersectionF1||F2 = 〈S,ActI ,Act∆U ,→, s〉 is said to beroot-
discriminatingif there exists a natural numberk, such thats ∈ DF1||F2

(k), where
DF1||F2

: N → 2S is inductively defined by:















DF1||F2
(0) = {t ∈ S | out([t]ǫ) = {δ}}

DF1||F2
(n + 1) =

⋂

a∈Act∆
U

{t ∈ S | [t]a ⊆ DF1||F2
(n)}

∪
⋃

a∈ActI
{t ∈ S | ∅ 6= [t]a ⊆ DF1||F2

(n)}

A states ∈ DF1||F2
(k) is referred to as ak-discriminating state. If it is clear from

the context, we drop the subscriptF1||F2 from the mappingDF1||F2
. We say that fault

modelsF1 andF2 arestrongly distinguishableiff F1||F2 is root-discriminating.

Property 2. For all intersectionsF1||F2 and allk ≥ 0, we haveD(k + 1) ⊇ D(k).

Note that a states is allowed to be(k+1)-discriminating if there is a strategy to move
from states to a state which isk-discriminating via some input, even though there are
some outputs that would not lead to ak-discriminating state. This is justified by the fact
that the implementations that we consider are input enabled. This means that they have
to be able to accept inputs at all times, and input may therefore pre-empt possible out-
put of a system. Strong distinguishability is preserved under ioco-conformance which
means that if two fault models are strongly distinguishable, then also the implementa-
tions/refinements they model behave observably differently.

Property 3. LetF1, F2 be fault models, and letI1, I2 be implementations. IfI1 ioco F1

andI2 ioco F2 andF1 andF2 are strongly distinguishable, then so areI1 andI2.

Strong distinguishability can be characterised by means ofa modalµ-calculus formula.
The formal connection is established by the following theorem.

Theorem 1. LetF1, F2 be two fault models. ThenF1 andF2 are strongly distinguish-
able iffF1||F2 |= φsd, where

φsd
def
= µX. [Act∆U]X ∨ 〈ActI〉X

Weak Distinguishability Strong distinguishability as a property is quite powerful,as
it ensures that there is a testing strategy that inevitably leads to a verdict about one of
the two fault models. However, it is often the case that thereis no such fail-safe strategy,
even though reachable discriminating states are present inthe intersection. We therefore
introduce the notion ofweak distinguishability.

Definition 6. Two fault modelsF1, F2 are said to beweakly distinguishableif and only
if der(F1||F2) ∩ D(0) 6= ∅.

The problem of deciding whether two fault models are weakly distinguishable is a stan-
dard reachability property as testified by the following correspondence.

Theorem 2. Let F1, F2 be two fault models. ThenF1 andF2 are weakly distinguish-
able iffF1||F2 |= φwd, where

φwd
def
= µX. 〈Act∆〉X ∨ [Act∆U]ff

Unlike strong distinguishability, weak distinguishability is not preserved underioco.
This is illustrated by the following example:

Example 2.Let F1 andF2 be two fault models and letI be an implementation (see
Fig. 1). Clearly,I ioco F1 andI ioco F2. Moreover,F1 andF2 are weakly distinguish-
able, as illustrated by the trace?b.!e. However,I is clearly not weakly distinguishable
from itself, as distinguishability is irreflexive.

?b

!e
!a

!a

F1

!a
?b

!e
!a

!a

F2

!e
?b

!a

!a

I

?b

?b

Fig. 1. Fault modelsF1 andF2 and implementationI .

3.2 Orthogonality

Whereas distinguishability focuses on the differences in output for two given fault mod-
els, it is equally well possible that there is a difference inthe specified inputs. Note that
this is allowed inioco-testing theory: a specification does not have to be input com-
plete; this partiality with respect to inputs supports a useful form of underspecification.
In practice, a fault hypothesis can often be tested by focusing testing effort on particular
aspects. Exploiting the differences in underspecifications of the fault models gives rise
to a second heuristic, calledorthogonality, which we describe in this section. We start
by extending the intersection operator of Def. 4.

Definition 7. Let Fi = 〈Si,ActI ,ActU ,→i, si〉, for i = 1, 2 be two fault models.
AssumeΘ = {Θa | a ∈ ActI} is a set of fresh constants disjoint fromAct∆. We
denoteAct ∪ Θ byAct∆Θ . The orthogonality-aware intersection ofF1 andF2, denoted
F1||ΘF2, is an LTS defined by〈(2S1 \ ∅) × (2S2 \ ∅),ActΘI ,Act∆U ,→, ([s1]ǫ, [s2]ǫ)〉,
where→ is defined by the two rules of Def. 4 in addition to the following two rules:

∅ 6= q1 ⊆ S1 ∅ 6= q2 ⊆ S2 [q1]a 6= ∅ [q2]a = ∅ a ∈ ActI

(q1, q2)
Θa−−→ (q1, q2)

∅ 6= q1 ⊆ S1 ∅ 6= q2 ⊆ S2 [q2]a 6= ∅ [q1]a = ∅ a ∈ ActI

(q1, q2)
Θa−−→ (q1, q2)

Property 4. Let F1||ΘF2 be the orthogonality-aware intersection ofF1 andF2, and let
(q1, q2) be a state ofF1||ΘF2. Then:

1. F1||ΘF2 is deterministic,

2. For all inputsa ∈ ActI , (q1, q2)
a
−→ implies(q1, q2) 6

Θa−−→.

Note that the reverse of Property 4, item 2 does not hold exactly because of the input in-
completeness of fault models in general. Intuitively, the occurrence of a labelΘa in the
orthogonality-aware intersection models the fact that input a is specified by only one of
the two LTSs and is left unspecified by the other LTS. The presence of such labels in
the orthogonality-aware intersection are therefore pointers to the orthogonality of two
systems. Once an experiment arrives in a state with an orthogonality labelΘa, testing
can focus on one of the two fault models exclusively. Any testfailure that is subse-
quently found is due to the incorrectness of the selected fault model. We next formalise
the notions of strong and weak orthogonality, analogously to distinguishability.

Definition 8. LetF1||ΘF2 = 〈S,ActΘI ,Act∆U ,→, s〉. F1 andF2 are said to bestrongly
orthogonalif there is a natural numberk such thats ∈ OF1||ΘF2

(k), whereOF1||ΘF2
:

N → 2S is inductively defined by:











OF1||ΘF2
(0) = {t ∈ S | ∃a ∈ ActI : t

Θa−−→}
OF1||ΘF2

(n + 1) =
⋂

a∈Act∆
U

{t | [t]a ⊆ OF1||ΘF2
(n) ∧ ∃a′ ∈ ActU : [t]a′ 6= ∅}

∪
⋃

a∈ActI
{t | ∅ 6= [t]a ⊆ OF1||ΘF2

(n) ∨ t Θa−−−→}

The following theorem recasts strong orthogonality as a modal property.

Theorem 3. Fault modelsF1 andF2 are strongly orthogonal iffF1||ΘF2 |= φso, where

φso
def
= µX. (〈Act∆U 〉tt ∧ [Act∆U]X) ∨ 〈ActI〉X ∨ 〈Θ〉tt

Analogously to distinguishability, we define a weak variation of strong orthogonality,
which states that it is possible to reach a state in which an orthogonal labelΘa for some
a is enabled.

Definition 9. Given F1||ΘF2 = 〈S,ActΘI ,Act∆U ,→, s〉. F1 and F2 are said to be
weakly orthogonaliff der(F1||ΘF2) ∩O(0) 6= ∅.

A recast of weak orthogonality into theµ-calculus is as follows.

Theorem 4. Fault modelsF1 andF2 are weakly orthogonal iffF1||ΘF2 |= φwo, where

φwo
def
= µX. 〈Act∆〉X ∨ 〈Θ〉tt

Orthogonality is not preserved underiococonformance, which is illustrated by the fol-
lowing example.

Example 3.Let F1 andF2 be two fault models and letI1 andI2 be two implementa-
tions, depicted in Fig. 2. Clearly,I1 ioco F1 andI2 ioco F2. Moreover,F1 andF2 are
(strongly and weakly) orthogonal, as illustrated by the trace?b.?b which is applicable
for F1, but not applicable forF2. However,I1 andI2 are not orthogonal. Note that by
repeatedly executing experiment?b.?b and subsequently observing output confidence
in the correctness of (aspects of)F1 can increase.

?b

?b
?c

!a

F1

!e

?c

?b

?c

!a

I2

?b

?b ?c

!a

I1

!e

?c

?b

?b

?c

!a

F2

?b, ?c ?b, ?c ?b, ?c
Fig. 2. Fault modelsF1 andF2 and implementationsI1 andI2.

4 Automating Diagnostic Testing

In the previous section we formalised the notions ofdistinguishabilityandorthogonal-
ity, both in terms of set-theory and modal logic. In this section, we rely on the latter
results for defining provably correct algorithms for eliminating fault models and for
isolating behaviours of fault models for further scrutiny.

First, we introduce the basic tools that we rely on for defining our on-the-fly diag-
nostic testing algorithms and semi-decision procedures. Then, in Section 4.2 we define
the algorithms for strong distinguishability and orthogonality, and in Section 4.3, the
semi-decision procedures for weak distinguishability andorthogonality are given.

4.1 Preliminaries

For the remainder of these sections, we assume thatI is an implementation that we wish
to subject to diagnostic testing, andFi = 〈Si,ActI ,ActU ,→i, si〉, for i = 1, 2 are two

given fault models.F1||(Θ)F2 = 〈S,Act
(Θ)
I ,Act∆U ,→, s〉 is the (orthogonality-aware)

intersection ofF1 andF2. From this time forth, we assume to have the following four
methods at our disposal:

1. Apply(a): send input actiona ∈ ActI to an implementation,
2. Observe(): observe some outputa ∈ ActU ∪ {δ} from an implementation,
3. Counterexample(L,φ): returns an arbitrary counterexample forL |= φ if one

exists, and returns⊥ otherwise.
4. Counterexamples(L, φ): returns one among possibly many shortest counterex-

amples forL |= φ if a counterexample exists, and returns⊥ otherwise.

We refer to [9] for an explanation of the computation of counterexamples for the modal
µ-calculus. In our ordeals we assume that⊥ is a special character that we can concate-
nate to sequences of actions.

4.2 Strong Distinguishability and Strong Orthogonality

SupposeF1 andF2 are strongly distinguishable or orthogonal. Algorithm 1 derives and
executes (on-the-fly) an experiment that (see also Theorem 5), depending on the input:

– allows to eliminate at least one fault model from a set of fault models, or
– isolates a fault model for further testing.

Recall thatφ denotes the dual ofφ (see Section 2). Informally, the algorithm works
as follows for strongly distinguishable fault modelsF1 andF2 (likewise for strongly
orthogonal fault models):η is the shortest counterexample forF1 andF2 not being
strongly distinguishable. The algorithm tries to replayη on the implementation, and
recomputes a new counterexample when an output produced by the system-under-test
does not agree with the output specified in the counterexample. When the counterexam-
ple has length0, we can be sure to have reached a discriminating state, and observing
output in this state eliminates at least one of the two considered fault models.

Algorithm 1 Algorithm for exploiting strong distinguishability/orthogonality

Require: P ⊆ S, |P | = 1, η is a shortest counterexample forP |= φ
x
, φx ∈ {φsd, φso}

Ensure: Returns a sequence executed onI .
1: function A1(P, η, φx)
2: if η = ǫ then
3: if φx = φsd then return Observe();
4: else choosea from {y ∈ ActI | [P]Θy 6= ∅}; return a;
5: end if
6: else ⊲ Assumeη ≡ e η′ for some actione and sequenceη′

7: if e ∈ ActI then Apply(e); return e A1([P]e, η
′, φx);

8: elsea := Observe();
9: if a = e then return e A1([P]e, η

′, φx);
10: else ifR−1(a) ∈ out(P) then
11: return a A1([P]a, R∗(Counterexamples([P]a, φ

x
)), φx);

12: else returna;
13: end if
14: end if
15: end if
16: end function

Theorem 5. Let F1 and F2 be strongly orthogonal or strongly distinguishable fault
models. Letφ = φsd whenF1 andF2 are distinguishable and letφ = φso whenF1

and F2 are orthogonal. Then algorithmA1({s}, Counterexamples(F1||ΘF2, φ), φ)
terminates and the sequenceσ ≡ σ′ a it returns satisfies:

1. a ∈ Actδ\ActI impliesout([I]σ′) 6⊆ out([F1]σ′) or out([I]σ′) 6⊆ out([F2]σ′),
2. a ∈ ActI impliesφ = φso and[F1]σ = ∅ or [F2]σ = ∅.

The sequence that is returned by the algorithm can be used straightforwardly for check-
ing which fault model(s) can be eliminated, or which fault model is selected for further
scrutiny (see also Section 4.5). Such “verdicts” are easilyadded to our algorithms, but
are left out for readability.

4.3 Weak distinguishability and Weak Orthogonality

In caseF1 andF2 are not strongly but weakly distinguishable (resp. weakly orthogo-
nal), there is no guarantee that a discriminating (resp. orthogonal) state is reached. By
conducting sufficiently many tests, however, chances are that one of such states is even-
tually reached, unless the experiment has run off to a part ofthe state space in which no
discriminating (resp. orthogonal) states are reachable. Semi-decision procedure 2 con-
ducts experiments on implementationI, and terminates in the following three cases:

1. if a sequence has been executed that led to a discriminating/orthogonal state,
2. if an output was observed that conflicts at least one of the fault models,
3. if discriminating/orthogonal states are no longer reachable.

So long as neither of these cases are met, the procedure does not terminate. The semi-
decision procedure works in roughly the same manner as the algorithm of the previous

section. The main differences are in the termination conditions (and the result it returns),
and, secondly the use of arbitrary counterexamples, as shorter counterexamples are not
necessarily more promising for reaching a discriminating/orthogonal state.

Algorithm 2 Procedure for exploiting weak distinguishability/orthogonality

Require: P ⊆ S, |P | = 1, η is any counterexample forP |= φx, φx∈{φwo, φwd}
Ensure: Returns a sequence executed onI upon termination
1: function A2(P, η, φx)
2: if η = ǫ then
3: if φx = φwd then return Observe();
4: else choosea from {y ∈ ActI | [P]Θy 6= ∅}; return a;
5: end if
6: else ⊲ Assumeη ≡ e η′ for some actione and sequenceη′

7: if e ∈ ActI then Apply(e); return e A2([P]e, η
′, φx);

8: elsea := Observe();
9: if a = e then return e A2([P]e, η

′, φx);
10: else ifR−1(a) ∈ out(P) ∧ Counterexample([P]a, φ

x
) 6= ⊥ then

11: return a A2([P]a, R∗(Counterexample([P]a, φx)), φx);
12: else ifR−1(a) ∈ out(P) ∧ Counterexample([P]a, φ

x
) = ⊥ then

13: return ⊥;
14: else returna;
15: end if
16: end if
17: end if
18: end function

Theorem 6. LetF1 andF2 be weakly orthogonal or weakly distinguishable fault mod-
els. Letφ = φwd whenF1 andF2 are distinguishable and letφ = φwo whenF1 andF2

are orthogonal. If algorithmA2({s}, Counterexample(F1||ΘF2, φ), φ) terminates it
returns a sequenceσ ≡ σ′ a satisfying:

1. a ∈ Actδ\ActI impliesout([I]σ′) 6⊆ out([F1]σ′), or out([I]σ′) 6⊆ out([F2]σ′),
2. a ∈ ActI impliesφ = φwo and[F1]σ = ∅ or [F2]σ = ∅.
3. a = ⊥ implies eitherφ = φwo and der ([s]σ′) ∩ O(0) = ∅, or φ = φso and

der([s]σ′) ∩D(0) = ∅.

The following example illustrates that the semi-decision procedure does not necessarily
terminate.

Example 4.Suppose the intersection of two fault models is given byF1||F2 and the
malfunctioning implementation is given byI (see Fig. 3). Clearly,F1 andF2 are weakly
distinguishable, which means semi-decision procedure 2 isapplicable. A counterex-
ample to non-weak distinguishability is e.g.?b!e?b?b!a, so the procedure might try to
execute this sequence. However, termination is not guaranteed, as the implementation
may never execute action!a, but output!e instead, making the semi-decision procedure
recompute new counterexamples.

∆

?b

!a !e

?b

∆

F1‖F2

?b

!a
!e

?b

I

?b

Fig. 3. No termination guaranteed for semi-decision procedure 2.

4.4 Optimisations

The algorithms for strong distinguishability (resp. strong orthogonality) in the previous
section can be further optimised in a number of ways. First, one can include a minor ad-
dition to the standard model-checking algorithm, marking eachk-discriminating (resp.
k-orthogonal) state in the LTS that is checked with its depthk. While this has a neg-
ligible negative impact on the time complexity of the model checking algorithm, the
state markings allow for replacing the methodCounterexamples() with a constant-
time operation. Secondly, upon reaching a node inD(k) (O(k), respectively), the semi-
decision procedure for weak distinguishability/orthogonality could continue to behave
as algorithm 1. Furthermore, the orthogonality aware intersection is an extension of the
plain intersection. Computing both is therefore unnecessary: only the former is needed;
in that case, the formulae for strong and weak distinguishability need to be altered to
take the extended set of input actions into account.

4.5 Diagnostic Testing Methodology

Distinguishability and orthogonality, and their associated algorithms, help in reducing
the effort that is required for diagnostic testing. Thus far, we presented these techniques
without addressing the issue of when a particular techniqueis worth investigating. In
this section, we discuss a methodology for employing these techniques in diagnostic
testing. For the remainder of this section, we assume a faulty implementationI and a
given set of fault modelsF = {F1, . . . , Fn}.

We propose a stepwise refinement of the diagnostic testing problem using distin-
guishability and orthogonality. The first step in our methodology is to identify the
largest non-symmetric set of pairs of strongly distinguishable fault modelsG. We next
employ the following strategy: so long asG 6= ∅, select a pair(Fi, Fj) ∈ G and pro-
vide this pair as input to algorithm 1. Upon termination of the algorithm, an experiment
σ ≡ σ′a is returned, eliminatingFk from F iff a /∈ out([Fk]σ′) (k = i, j). Moreover,
remove all fault modelsFl for which [Fl]σ′ 6= ∅ anda /∈ out([Fl]σ′) and recomputeG.
A worst case scenario requires at most|G| iterations to reachG = ∅. The process can
be further optimised by ordering fault models w.r.t.ioco-testing power, but it is beyond
the scope of this paper to elaborate on this.

WhenG is empty, no strongly distinguishable pair can be found inF . The set of
fault models can be further reduced using the weak distinguishability and strong or-
thogonality heuristics, in no particular order, as neitherallows for a fail-safe strategy

to a conclusive verdict. As a last resort, weak orthogonality is used before conducting
naive testing using the remaining fault models.

5 Example

As an illustration of some of the techniques that we presented in this paper, we consider
a toy example concerning the prototypical coffee machine. The black-box behaviour of
the coffee-machine is defined by specificationS in Fig. 4, where action?c and!c rep-
resent a coffee request and production,?t and!t represent a tea request and production,
and?m and!m represent a coffee-cream request and production. Among theset of fault

?c

!c ?t

!t
?m!m

?c, ?t, ?m

!c, !t

?c, ?t

!∆ ?c, ?t
!∆, ?Θm

?c, ?t

?Θc, ?Θt, ?Θm

S F1 F2 F1||F2 F1||ΘF2

Fig. 4. SpecificationS and fault modelsF1, F2 andF3 of a coffee machine

models for a misbehaving implementation ofS are fault modelsF1 (modelling e.g. a
broken keypad in the machine) andF2 (modelling e.g. a broken recipe book). Comput-
ing their intersection and their orthogonal-aware intersection, we find thatF1 andF2

are strongly distinguishing and strongly orthogonal. The preferred choice here would
be to run algorithm 1 with arguments setting it to check for strong distinguishability
using e.g.?t as input for the shortest counterexample. Algorithm 1 wouldfirst offer
?t to the implementation (which is accepted by assumption thatimplementations are
input-enabled). Since then the shortest counterexample to non-strong distinguishability
would be the empty stringǫ, the algorithm queries the output of the implementation
and terminates. Any output the implementation produces either violatesF1 or F2, or
both. In case one would insist on using strong orthogonality, algorithm 1 would be used
with the emtpy stringǫ as the shortest counterexample to non-strong orthogonality. The
algorithm would return the sequence?m, indicating that isolated aspects ofF1 can be
tested by experiments starting with input?m.

6 Concluding Remarks

We considered the problem of diagnosis for reactive systems, the problem of finding an
explanation for a detected malfunction of a system. As an input to the diagnosis prob-
lem, we assumed a set of fault models. Each fault model provides a formal explanation
of the behaviour of an implementation in terms of an LTS model. From this set of fault
models, those models that do not correctly describe (aspects of) the implementation
must be eliminated. As may be clear, this can be done naively by testing the implemen-
tation against each fault model separately, but this is quite costly. We have introduced
several methods, based on model-based testing and model checking techniques, to make
this selection process more effective.

Concerning issues for future research, we feel that the techniques that we have
described in this paper can be further improved upon by casting our techniques in a

quantitative framework. By quantifying the differences and overlap between the out-
puts described by two fault models, a more effective strategy may be found. The re-
sulting quantitative approach can be seen as a generalisation of our notion of weak
distinguishability. Such a quantitative approach may verylikely employ techniques de-
veloped in model checking with costs (or rewards). A second issue that we intend to
investigate is the transfer of our results to the setting of real-time, in particular for fault
models given by Timed Automata. In our discussions, we restricted our attention to
the problem of selecting the right fault models from a set of explicit fault models by
assuming this set was obtained manually, thereby side-stepping the problem of obtain-
ing such fault models in the first place. Clearly, identifying techniques for automating
this process is required for a full treatment of diagnosis for LTSs. Lastly, and most im-
portantly, the efficacy of the techniques that we have developed in this paper must be
assessed on real-life case-studies. There is already some compelling evidence of their
effectiveness in [5] where a notion of distinguishability is successfully exploited in the
setting of communicating FSM nets.

AcknowledgementThe authors would like to thank Vlad Rusu, Jan Tretmans and René
de Vries for stimulating discussions and advice on the subjects of diagnosis and testing.

References

1. A. Belinfante, J. Feenstra, R.G. de Vries, J. Tretmans, N.Goga, L. Feijs, S. Mauw, and
L. Heerink. Formal test automation: A simple experiment. InG. Csopaki, S. Dibuz, and
K. Tarnay, editors,Testcom ’99, pages 179–196. Kluwer, 1999.

2. J.C. Bradfield and C.P. Stirling. Modal logics and mu-calculi: an introduction. In J. Bergstra,
A. Ponse, and S. Smolka, editors,Handbook of Process Algebra, chapter 4, pages 293–330.
Elsevier, 2001.

3. K. El-Fakih, S. Prokopenko, N. Yevtushenko, and G. von Bochmann. Fault diagnosis in
extended finite state machines. In D. Hogrefe and A. Wiles, editors, Proc. TestCom 2003,
volume 2644 ofLNCS, pages 197–210. Springer-Verlag, 2003.

4. K. El-Fakih, N. Yevtushenko, and G. von Bochmann. Diagnosing multiple faults in commu-
nicating finite state machines. InProc. FORTE’01, pages 85–100. Kluwer, B.V., 2001.

5. M. Gromov, A. Kolomeetz, and N. Yevtushenko. Synthesis ofdiagnostic tests for fsm nets.
Vestnik of TSU, 9(1):204–209, 2004.

6. Q. Guo, R.M. Hierons, M. Harman, and K. Derderian. Heuristics for fault diagnosis when
testing from finite state machines.Softw. Test. Verif. Reliab., 17:41–57, 2007.

7. C. Jard and T. Jéron. Tgv: theory, principles and algorithms.STTT, 7(4):297–315, 2005.
8. T. Jéron, H. Marchhand, S. Pinchinat, and M.-O. Cordier.Supervision patterns in discrete

event systems diagnosis. InProc. WODES 2006. IEEE, 2006.
9. A. Kick. Generation of Counterexamples and Witnesses for Model Checking. PhD thesis,

Fakultät für Informatik, Universität Karlsruhe, Germany, July 1996.
10. G. Lamperti, M. Zanella, and P. Pogliano. Diagnosis of active systems by automata-based

reasoning techniques.Applied Intelligence, 12(3):217–237, 2000.
11. A. Petrenko and N. Yevtushenko. Testing from partial deterministic fsm specifications.IEEE

Trans. Comput., 54(9):1154–1165, 2005.
12. J. Pietersma, A.J.C. van Gemund, and A. Bos. A model-based approach to sequential fault

diagnosis. InProceedings IEEE AUTOTESTCON 2005, 2005.
13. J. Tretmans. Test generation with inputs, outputs and repetitive quiescence.Software—

Concepts and Tools, 17(3):103–120, 1996.

