Testing and Model-Checking Techniques for Diagnosis

Maxim GromoV and Tim A.C. Willemsé

1 Institute for Computing and Information Sciences (ICIS)
Radboud University Nijmegen — The Netherlands, emrmailgr onov@s. r u. nl
2 Design and Analysis of Systems Group,
Eindhoven University of Technology — The Netherlands, ¢ntaia. c. wi | | ense@ ue. nl

Abstract. Black-box testing is a popular technique for assessing tiaity of a
system. However, in case of a test failure, only little imfi@tion is available to
identify the root-cause of the test failure. In such casaditimnal diagnostic tests
may help. We present techniques and a methodology for effigieonducting di-
agnostic tests based on explicit fault models. For this, el on Model-Based
Testingtechniques fotabelled Transition System®ur techniques rely on, and
exploit differences in outputs (or inputs) in fault modeisspectively. We char-
acterise the underlying concepts for our techniques batirms of mathematics
and in terms of the modal-calculus, which is a powerfukemporal logic The
latter characterisations permit the use of efficient, b#-shelf model checking
techniques, leading to provably correct algorithms andugsedecision proce-
dures for diagnostic testing.

1 Introduction

Testing has proved to be a much-used technique for valiglainystems behaviour,
but in itself it is a quite labour-intensive job. Formal apaches to testing, collectively
known asModel-Based Testindhave been touted as effective means for reducing the
required effort of testing by allowing for automation of nyaof its aspects. However,
MBT provides only a partial answer to the validation probjeas in most cases its
automation ceases at the point where a test failure has leteated; pinpointing the
root-cause of the test failure remains a laborious and tioresuming task. Finding this
root-cause is known as tliliagnosisproblem, and it is tightly linked to testing.

Formal approachesto the diagnosis problemrely on the usedéls of the system-
under-diagnosis, and are often referred tMaslel-Based Diagnostechniques. While
MBD has been studied extensively in the formal domaifkiofte State Machineésee
e.g.[3, 4,6, 11]), the topic is little studied in the settofd-abelled Transition Systems.
The advantage of many LTS-based theories over FSM-baseddhés that the assump-
tions under which they operate are more liberal, which mékes easier to apply in
practice. In this paper, we advocate an LTS-based MBD apgprima non-deterministic,
reactive systems. The techniques that we put forward inpijger operate under the
liberal LTS-based testing hypothesisioto-based testing [13]; our methods rely on
explicit models describing the faulty behaviour, hencfoeferred to asault models

The problem that we consider consists of identifying “cottéault models among
a given (but large) set of possible fault models. By “corieate understand that no

evidence of a mismatch between the malfunctioning systedntlaa fault model can
be found. This can be asserted by e.g. testing. Note thattbeeigh this problem is
readily solved by testing the malfunctioning system agaiash fault model separately,
this is a daunting task which is quite expensive in terms sbueces, even when fully
automated. The main contributions of this paper are twofold

1. inspired by classical FSM-based diagnosis approachgsesent diagnostic con-
cepts and techniques to make the fault model selection gsanere effective in an
LTS-based setting. In particular, we adopt and modify th@nmf distinguishabil-
ity (see e.g. [11]) from FSMs to fit the framework of LTSs. Secgndk introduce
a novel notion, calledrthogonalitywhich helps to direct test efforts onto isolated
aspects of fault models. Both notions are studied in thangedf ioco-based testing.

2. we link our diagnostic concepts and techniquestmel-checkingroblems. This
gives rise to effective and provably correct automationwfapproach, and leads
to a better understanding of all involved concepts.

Note that the problem of constructing the set of fault modgelsft outside the scope of
this paper; in general, there are an infinite number of faokiels per implementation.
While this is indeed a very challenging problem, for the tibeng, we assume that
these have been obtained by manually modifying e.g. a gigenification, based on
modifications of subcomponents of the specifications. Sumttifications can be driven
by the observed non-conformance between the specificatidritee implementation,
but also fault injection is a good strategy.

Related work.In [8], Jéronet al paraphrase the diagnosis problem for discrete event
systems (modelled by LTSs), as the problem of finding wheéimeobservation of a
system contains forbidden sequences of actions. Theioapprtakes a description of
the structure of a system as input; the sequences of fonbidd@&ons are specified us-
ing patterns. They subsequently propose algorithms for, synthesising a diagnoser
which tells whether or not a pattern occurred in the systerarfation on this approach
is given in [10], in which all actions are unobservable exdepspecial “warning” ac-
tions. The problem thatis solved is finding explanationsgtierobservations of observed
warning actions. Both works view the diagnosis problem agu@ssisory problem.

Apart from the above mentioned works in the setting of LT8&sre is ample lit-
erature on diagnosis based on FSMs. @@l in [6] focus on heuristics for fault
diagnosis, which helps to reduce the cost of fault isolaéiod identification. El-Fakih
et al [4] define a diagnostic algorithm for nets of FSMs, and in [8de techniques
are extended; the effectiveness of (a minor modificatiortted) algorithm is assessed
in [5]. Most FSM-based approaches consist of two steps, tstestiep being the gener-
ation of a number of candidate fault models (often refercedgdcandidate} and the
second step being a selection of appropriate candidatesfirEh step relies on strict
assumptions, which in general are not met in an LTS-basétdget

In [12] the emphasis is on diagnosing non-reactive systemastly hardware, al-
though their techniques have also been applied to softBased on the topology of a
system, explanations for a system’s malfunctioning areprted and ranked according
to likeliness. The techniques underlying the diagnosisased on propositional logic
and satisfiability solvers.

Structure of the paperln Section 2 we repeat theco-based testing theory and the
modalp-calculus [2], the latter being our carrier for linking diaasis to the problem
of model-checking. The basic concepts for diagnosis, aeid ink to model-checking
problems is established in Section 3. In Section 4, we paidalgorithm and a semi-
decision procedure that implement the techniques and pts0éSection 3.

2 Background

In this section, we briefly recall the testing theaogo as defined in [13]. Théoco
framework and its associated testing hypotheses serve émlic setting for our diag-
nosis technigues. Furthermore, we introduce the medsaillculus [2], which is a modal
logic that we will use as a tool for characterising our diagfictechniques.

Definition 1. A Labelled Transition Systef TS) with inputsdct; and outputsActy

is a quintuple(S, Act;, Acty, —,S), whereS is a non-empty set of states with initial
states € S; Act; and Acty are disjoint finite sets representing the set of input action
and output actions, respectively. We denote their uniomdby As usual,r ¢ Act
denotes an internal non-observable action, and we wrig, for Act U {7}. The
relation —C S x Act, x S is the transition relation.

Let L = (S, Acts, Acty, —,5) be afixed LTS. Les, s, ... range overS. Throughout
this paper, we use the following conventions: for all actianwe write s = s iff
(s,a,s8') €—, ands 2 iffforall s’ € S, nots % s’

loco-based testing theoryThe notion ofquiescencés added to an LTS as follows: a
states is quiescent — notatiofi(s) — iff s > and for alla € Acty, s 2. Informally,

a quiescent state is a state that is “stable” (it does nowdlho internal activity) and it
refuses to provide outputs. Lét¢ Act, be a fresh label representing the possibility
to observe quiescencelcts abbreviatesdct U {0}. Let 0,0, ... range overAct;,
actionsa range overdcts, ands’, S”, ... C S. We generalise the transition relatien

to =C S x Acti x S, and writes == s’ iff (s,0,s’) e=. We define=> as the
smallest relation satisfying the following four rules:

g T [ea a g
s=s s =4 s=s s =4 s=s" 4(s)

s=>s s==>s" s == " s L8 o
Analogously to—, we write s == for s == s’ for somes’. For ease of use, we intro-
duce the following functions and operators.

def def

[s]le = {s' € S| s==s'}; generalisedS’], = U,cq [5]o
. out(s) ¥ {a € Acty | s S}U{5 | 5(s)}; generalisedout (S’
. s-traces$s) ' {o € Actl | s=Z5},

. tracegs) def s-tracegs) N Act*,

. der(s) ©€ U, 4u- [s]o; generalisedder(5') ' |, g, der(s).

def
= U,es out(s),

a s~ w NP

Note 1. Our notation[S’],, is a deviation from the standaraco-notation, wherés’],

is written asS’ after o. While we are not in favour of changing common notation,
our main motivation for using our notation is brevity in défions, theorems and algo-
rithms, in support of readability.

Definition 2. We say that:
— L isimage finiteif for all o € Act*, [3], is finite,
— L is deterministidf for all s’ € Sandallo € Act*, |[s'],| <1,
— Lis strongly convergindf there is no infinite sequence oftransitions,
— A states € S is input-enabledf for all s’ € der(s) and alla € Act;, we have
s’ =% . Lis input-enabled if is input-enabled.

Throughout this paper, we restrict to image finite, stromgigverging LTSs. Theesting
hypothesidor ioco states thatimplementationgan be modelled usingput-enabled
LTSs. Note that this does not imply that the theory requinesthis LTS is known. The
conformanceelationiocois defined as follows:

Definition 3. LetL; = (S;, Actr, Acty, —;,5;) (for i = 1,2) be two LTSs. Let; €
S1 andss € Ss. Thens; is ioco-conforming tos; — notations; ioco s — whens; is
input-enabled and

Vo € s-tracegsz) : out([s1]s) C out([s2],)
We sometimes write; ioco L, instead ofs; ioco 35s.

Note thatprovingioco-conformance is generally not feasible, as there is no gueea
that we have seen all the behaviours of an implementatiara(ise of non-determinism).
In practice, we settle faronfidencen ioco-conformance, which is obtained by testing
the implementation with a large set of successfully exattest-cases. A sound and
complete algorithm foroco for deriving test-cases from a specification is proved cor-
rectin [13]; itis implemented in e.g. TorX [1] and TGV [7].

Modal p-calculus The modaly-calculus is a powerful logic which can be used to
express complex temporal properties over dynamic systdmg.to its modal operators
(a)¢ and[a]¢, it is equipped with least and greatest fixpoint operatohe grammar
for the modal:-calculus, given directly in positive form is as follows:

$u=tt || X [oAd|[a)o] (a)g] SV | uX.d|vX.é

wherea € Act, is an action andX is a propositional variable from a set of propo-
sitional variablesX. A formula ¢ is said to be inPositive Normal Forn(PNF) if all

its propositional binding variables are distinct. We onbnsider formulae in PNF. A
formula¢ is interpreted relative to an LTS = (S, Act;, Acty, —,s) and aproposi-
tional environment) : X — 2° that maps propositional variables to sets of states. The

semantics o is given by[g], which is defined as follows:

[p1 A ¢2]|§ = [¢1]|§ N [¢2]|§

[01 V ¢al; =[]y Ulal,

[X1; =n(X)

|[[a](b]£ ={8€S|VS,€SZ81>S,:>8/€|[¢],I7'}
|[<a)(b]£ ={seS|3des: sins'/\s'é[qﬁ]]#}
kX.dly =S CSIlels, x C 53

bX.gly =U{S' SIS Clls, x}

where we writen[S’/X] for the environment that coincides withon all variables
Y # X, and maps variabl& to valueS’. A states € S satisfies a formula, written
s =1 ¢ whens € [¢]~. We write L |= ¢ whens =1, ¢.

The operatofa)¢ is used to express that there must existaransition from the
current state to a state satisfyigg Dually, the operatofa)¢ is used to express that
all states that can be reached by executing action satisfy property. Remark that
when an transition is impossible in a state the propertya)¢ is trivially satisfied in
states. These operators are well-understood and can be foundlinlegics such as
Hennessy-Milner Logic. In this paper, we use the followidgitional conventions: for
sets of actionsl we define:

(4] < Acalal 6 (A 'V ea (@)

Moreover, for a formula, we denote its dual by. Such a dual formula always exists
and is readily obtained by simple transformations and rengsnsee e.g. [2].

The major source for the expressive power of the madedlculus is given by the
fixpoint operatorg: and its duab. Technically, a least fixpointX.¢ is used to indicate
the smallest solution oX in formula ¢, whereas the greatest fixpoin¥.¢ is used
for the greatest solution oX in formula ¢. These fixpoint expressions are generally
understood as allowing one to expréisite loopingandlooping, respectively.

Example 1.A system that can always perform at least one action is sdiddeadlock-
free (note that we do not require this to be a visible action). Tais be expressed in
the modalu-calculus using a greatest fixpoimtX. [Act.|X A (Act,)tt. Informally,
the formula expresses that we are interested in the largesf states (say this would
be X) that satisfies the property that from each reachable statec X), at least one
action is enabled, and all enabled actions lead to stdtes$ € X) that also have this

property.
For a more detailed account we refer to [2], which providesxtellent treatment of
the modalu-calculus.

3 Techniques and Heuristics for Diagnostic Testing

Testing is a much used technique to validate whether an mmi¢ation conforms to
its specification. Upon detection of a non-conformancethait is available is a trace,

also known as aymptomthat led to this non-conformance. Such a symptom is often
insufficient for locating the root-cause (or causes) of tba-nonformance; for this,
often additional tests are required. We refer to these iathdit tests asliagnostic tests

In a Model-Based Testing setting, the basis for conductiagribstic tests is given
by a set offault models Each fault model provides a possible, formal explanatibn o
the behaviour of the implementation; one may consider it ssipde specification of
the faulty implementation. Remark that we here appeal totesgng hypothesis of
ioco, stating that there is an input enabled LTS model for evempyl@émentation. The
different fault models describe different fault situagoi he diagnostics problem thus
consists of selecting one or more fault model(s) from themyiset of fault models that
best explain the behaviour of the implementation.

Formally, the diagnostics problem we are dealing with is ftiilowing: given a
specificationS, a non-conforming implementatidnand a non-empty set of fault mod-
elsF = {F, Fs,..., F,}. Adiagnosiof I is given by the largest sé C F satisfying
I ioco F; for all F; € D. The focus of this paper is on two techniques for obtairihg
efficiently, viz. distinguishability and orthogonalitydie that given the partiality of the
ioco-relation, the fault models i are —generally— all unrelated.

In Sections 3.1 and 3.2, we introduce the notions of (strowbveeak)distinguisha-
bility and (strong and wealgrthogonality respectively. We provide alternative char-
acterisations of all notions in terms of modal logic, whighptovides a different per-
spective on the technique and, 2) enables the use of effmdeminonplace tool support.
The discussion on how exactly the theory and results desgtiib this section can be
utilised for diagnostic testing is deferred to Section 4.

3.1 Distinguishability

Given two fault modeld; and F» and an implementatioh. Chances are that during
naive testing forl ioco F; and ioco F3, there is a large overlap between the test-
cases forF; and F;, as both try to model to a large extent the same implementatio
This means thak; andF; often agree on the outcome of most test-cases. An effective
technique for avoiding this redundancy is to exploit thiferencedetweent’ andFs.
In particular, when, after conducting an experimemin 7, £, and F; predict different
outputs, this provides the opportunity to remove at least @fnthe two fault models
from further consideration. When one or more such experisnexist, we say that the
fault models ardistinguishable Two types of distinguishability are studied: weakly
and strongly distinguishable fault models.

We next formalise the above concepts. At the root of therdjsiishability property
is the notion of arintersectionof fault models. Intuitively, the intersection of two fault
models contains exactly those behaviours that are sharedgthe two fault models.

Definition 4. Let F; = (S;, Actr, Acty,—,3:), fori = 1,2 be two LTSs. Assume
A ¢ Act is a fresh constant, and denatirt;; U { A} by Act?. Likewise,Act?. The
intersectiorof F; and F,, denoted, || I, is again an LTS defined 4251 \) x (2%2\
0), Actr, Actd, —, ([31]e, [32]¢)), where— is defined by the following rules:

D#£qp CS1 0#£¢CSy acAct 0#q¢ CS1 0#£qgCS

(q1,42) = ([Q1]a7 [q2]a) (q1,42) 2, ([Q1]57 [Q2]5)

Remark that no transitions lead to, or start in an elemen®) or (0, ¢) since these are
no elements of the state-space of the intersection of twe.LTS

The intersection of two LTSs extends the alphabet of outptiv@as of both LTSs with
the symbolA. This action captures the synchronisation of both LTSs theepbserva-
tions of quiescence, which in theco-setting is treated as an output of the system. A
“true” quiescent state in the intersection of two LTSs iradiés that the output actions
offered by both LTSs are strictly disjoint. In order to féteite the mapping between
the setsActs and Act?, we use aelabellingfunction. LetR : Act® — Acts be the
following bijective function:

R(a) ¥ ¢ if a # A ands otherwise

We write9R~! to denote the inverse 68%. The mappingk and its inverse extend readily
over sets of actions. The extension of the mapphg¢and its inverse) over (sets of)
traces, denoted by the mappij (resp.J3—1*), is defined in the obvious way.

Property 1. Let Fi || F: be the intersection afy; andF;, and lets; be a state of, s2
be a state of, (g1, ¢2) be a state of" ||F; ando € Actj. Then:

1. F1||F; is deterministic,
2. [([s1]o, [s2]0)]a # 0 implieS([sﬂm(a) [s2]oot(a)) € [([51]0, [52]0)]as
3. out(([q1]e, [g2]e)) \ {0} = R~ (out([g1]e) N out([ga]e)).

Some of the above properties should not come as a surpriskee dtasis of the in-

tersection operator is theuspension Automateansformation of [13], which codes a
non-deterministic specification into a deterministic LT8hexplicit suspension tran-
sitions. That transformation is known to retain the exaotes@co testing power as the
original specification, albeit on different domains of dfieation models.

Strong Distinguishability Recall that the intersectiafy || F» codes the behaviours that
are shared among the LT$% and F5. This means that in states 6% || F» that have no
output transitions, both LTSs disagree on the outputs thatld occur, providing the
opportunity to eliminate at least one of the two fault modéle say that such a state is
discriminating If a tester always has a finite “winning strategy” for stagran imple-
mentation to such a discriminating state, the fault modeds@ongly distinguishable
Recall that testing is sometimes portrayed as a (matheateg@me in which the tester
is in control of the inputs and the system is in control of thigaits. We next formalise
the notion of strong distinguishability.

Definition 5. The intersectionf||F>, = (S, Act, Acts, —,3) is said to beroot-
discriminatingif there exists a natural numbék, such thats € Dp, g, (k), where
Dp, i, : N — 2% is inductively defined by:

Drir,(0) ={te S|out([tl) = {0}}

Drjim(n+1) = Nacaca {t €S| [tla € Dryjp(n)}
UlUaeact, {t€S10# [tla S Dryip(n)}

A states € Dp, |, (k) is referred to as a-discriminating state. If it is clear from
the context, we drop the subscript||F; from the mappin@p, ||, We say that fault
modelsF; and F; are strongly distinguishabléf 1 || F; is root-discriminating.

Property 2. For all intersectiong’ || F» and allk > 0, we haveD(k + 1) D D(k).

Note that a state is allowed to bgk+1)-discriminating if there is a strategy to move
from states to a state which ig-discriminating via some input, even though there are
some outputs that would not lead té-aliscriminating state. This is justified by the fact
that the implementations that we consider are input enabled means that they have
to be able to accept inputs at all times, and input may thezede-empt possible out-
put of a system. Strong distinguishability is preservedeanimto-conformance which
means that if two fault models are strongly distinguishattien also the implementa-
tions/refinements they model behave observably diffeyentl

Property 3. Let Fy, F; be fault models, and |€t, I be implementations. If; ioco F;
andl, ioco F, andF; and F; are strongly distinguishable, then so &reand /.

Strong distinguishability can be characterised by meaaswbdal.-calculus formula.
The formal connection is established by the following tkeaor

Theorem 1. Let Fy, F» be two fault models. Theh, and F, are strongly distinguish-
able iff F} || F5 = ¢4, Where

bsa X, [AtB)X V (Act)) X

Weak Distinguishability Strong distinguishability as a property is quite poweréd,
it ensures that there is a testing strategy that inevita#y$ to a verdict about one of
the two fault models. However, it is often the case that tieene such fail-safe strategy,
even though reachable discriminating states are pres#rd intersection. We therefore
introduce the notion ofveak distinguishability

Definition 6. Two fault modeld, F; are said to baveakly distinguishablé and only
if der(F}||F2) N D(0) # 0.

The problem of deciding whether two fault models are wealdjiguishable is a stan-
dard reachability property as testified by the followingrespondence.

Theorem 2. Let Fi, F; be two fault models. Theh; and F, are weakly distinguish-
able iff F1 || F> = ¢wd, Where
def

bwa = pX. (Act®)X V [Actf]ff
Unlike strong distinguishability, weak distinguishatyilis not preserved undéoco.
This is illustrated by the following example:

Example 2.Let I and F; be two fault models and let be an implementation (see
Fig. 1). Clearly,l ioco F; and! ioco F>. Moreover,F} andF; are weakly distinguish-
able, as illustrated by the tra¢é.le. However,I is clearly not weakly distinguishable
from itself, as distinguishability is irreflexive.

?b
Fig. 1. Fault modelsF; and F> and implementatiod.

3.2 Orthogonality

Whereas distinguishability focuses on the differencesiipat for two given fault mod-
els, it is equally well possible that there is a differencthi@ specified inputs. Note that
this is allowed inioco-testing theory: a specification does not have to be input-com
plete; this partiality with respect to inputs supports afulderm of underspecification.
In practice, a fault hypothesis can often be tested by fogusisting effort on particular
aspects. Exploiting the differences in underspecificatmfithe fault models gives rise
to a second heuristic, calledthogonality which we describe in this section. We start
by extending the intersection operator of Def. 4.

Definition 7. Let F; = (S;, Act;, Acty, —4,5;), for i = 1,2 be two fault models.
Assume® = {6, | a € Act;} is a set of fresh constants disjoint frodct?. We
denoteAct U © by Act5. The orthogonality-aware intersection 6f and F, denoted
Fi||eFs, is an LTS defined b§(2% \ 0) x (252 \ 0), Act?, Act?, —, ([51]e, [32])),
where— is defined by the two rules of Def. 4 in addition to the follayviwo rules:

D#nCS1 0#@CS [g)a#0 [la=0 ac Acts
(C]17QQ) &} (q17QQ)

D#@ CS1 0#¢@CS [@la#0 [@]le=0 ac Acty
(a1,42) 2 (q1,42)

Property 4. Let F ||o F> be the orthogonality-aware intersectionfaf and F», and let
(g1, q2) be a state of"; ||o F». Then:

1. F1||eF> is deterministic,
2. Forallinputss € Actr, (q1,q2) = implies (g1, ¢2) 7@»

Note that the reverse of Property 4, item 2 does not hold Bxaetause of the inputin-
completeness of fault models in general. Intuitively, toewrence of a labed,, in the
orthogonality-aware intersection models the fact thatitragis specified by only one of
the two LTSs and is left unspecified by the other LTS. The presef such labels in
the orthogonality-aware intersection are therefore gogto the orthogonality of two
systems. Once an experiment arrives in a state with an arttadity label©,,, testing
can focus on one of the two fault models exclusively. Any fadtire that is subse-
quently found is due to the incorrectness of the selectdtfaadel. We next formalise
the notions of strong and weak orthogonality, analogowstistinguishability.

Definition 8. LetF ||oFs = (S, Act?, Actd, —,3). F1 andF; are said to bestrongly
orthogonaif there is a natural numbek such thats € Op, ||, r, (k), whereOp, | 4, :
N — 29 s inductively defined by:

Omjlom(0) ={teS|Jac Act;: t 2=}
Orjlor(n+1) = ﬂaeActg {t1ltla € Op|jom(n) ATad" € Acty : [tlar # 0}

UUaEActl {t | (Z) 7& [t]a g (9[«"1”@}7‘2 (TL) \/t&)}
The following theorem recasts strong orthogonality as aahprbperty.

Theorem 3. Fault modelsF; and F;, are strongly orthogonal iff?; | e 2 | ¢s0, Where
b0 L UX. ((ActP)tt A [ActA]X) V (Act) X V (O)tt

Analogously to distinguishability, we define a weak vadatbf strong orthogonality,
which states that it is possible to reach a state in which tiogonal labeb,, for some
a is enabled.

Definition 9. Given Fy||eF> = (S, Act?,Actﬁ,e,E). F, and I, are said to be
weakly orthogonaiff der(F}||e F>) N O(0) # 0.

A recast of weak orthogonality into thecalculus is as follows.

Theorem 4. Fault modelsF; and F;, are weakly orthogonal iff ||e Fo = ¢, Where
def

¢wo = ,LCX <.ACtA>X \% <@>tt
Orthogonality is not preserved undeco conformance, which is illustrated by the fol-
lowing example.

Example 3.Let F; and F; be two fault models and lel, and > be two implementa-
tions, depicted in Fig. 2. Clearly; ioco F; andl, ioco F»>. Moreover,F; andF; are
(strongly and weakly) orthogonal, as illustrated by thedrz.?b which is applicable
for Fy, but not applicable fo¥,. However,/; and/; are not orthogonal. Note that by
repeatedly executing experimetit?b and subsequently observing output confidence
in the correctness of (aspects &f) can increase.

7, 7c b, 7c ?h, 7c
Fig. 2. Fault modelsF; and F»> and implementationg; and /».

4 Automating Diagnostic Testing

In the previous section we formalised the notionslistinguishabilityandorthogonal-
ity, both in terms of set-theory and modal logic. In this sectiwa rely on the latter
results for defining provably correct algorithms for elimiimg fault models and for
isolating behaviours of fault models for further scrutiny.

First, we introduce the basic tools that we rely on for defironir on-the-fly diag-
nostic testing algorithms and semi-decision proceduresn(Tin Section 4.2 we define
the algorithms for strong distinguishability and orthogbty, and in Section 4.3, the
semi-decision procedures for weak distinguishability arttlogonality are given.

4.1 Preliminaries

For the remainder of these sections, we assumd tisatn implementation that we wish
to subject to diagnostic testing, aftl= (S;, Act;, Acty, —4,5;), fori = 1,2 are two
given fault modelsFi ||y Fh = (S, Act(I@),Actg, —,5) is the (orthogonality-aware)
intersection off} and F5. From this time forth, we assume to have the following four
methods at our disposal:

1. Appl y(a): send input action € Act; to an implementation,

2. oser ve(): observe some outpute Acty U {§} from an implementation,

3. Count er exanpl e(L, ¢) : returns an arbitrary counterexample for= ¢ if one
exists, and returns otherwise.

4. Count er exanpl es(L, ¢) : returns one among possibly many shortest counterex-
amples forL = ¢ if a counterexample exists, and returh®therwise.

We refer to [9] for an explanation of the computation of cauakamples for the modal
p-calculus. In our ordeals we assume thais a special character that we can concate-
nate to sequences of actions.

4.2 Strong Distinguishability and Strong Orthogonality

Supposer; andF;, are strongly distinguishable or orthogonal. Algorithm tivkes and
executes (on-the-fly) an experiment that (see also Theoyedepending on the input:

— allows to eliminate at least one fault model from a set oftfenddels, or
— isolates a fault model for further testing.

Recall thaty denotes the dual ap (see Section 2). Informally, the algorithm works
as follows for strongly distinguishable fault modéls and F5 (likewise for strongly
orthogonal fault models); is the shortest counterexample 6 and F» not being
strongly distinguishable. The algorithm tries to replapn the implementation, and
recomputes a new counterexample when an output producdlsystem-under-test
does not agree with the output specified in the counterexaiien the counterexam-
ple has lengtl), we can be sure to have reached a discriminating state, aihohg
output in this state eliminates at least one of the two canmsidifault models.

Algorithm 1 Algorithm for exploiting strong distinguishability/ortigonality

Require: P C S, |P| = 1, nis a shortest counterexample Brf= 6., ¢ € {Psa, dso}
Ensure: Returns a sequence executed/on
1: function A (P, n, ¢z)

2: if n = ethen

3: if ¢ = ¢psa thenreturn Coserve();

4 else choose from {y € Act; | [Ple, # 0}; return a;

5 end if

6: else > Assumen = e 1’ for some actiore and sequencs’
7 if e € Actr then Appl y(e); retumn e A1 ([Ple, 7, ¢2);

8 elsea := Obser ve();

9 if a = e then return e A1 ([Ple,n’, ¢x);
10: else ifR~' (a) € out(P) then
11: return a Ai ([Pla, R*(Count er exanpl es([Pla, ¢,)), ¢z);
12: else returna;
13: end if
14: end if
15: end if

16: end function

Theorem 5. Let F; and F; be strongly orthogonal or strongly distinguishable fault
models. Letp = ¢4 whenF; and F;, are distinguishable and let = ¢,, whenF}
and F; are orthogonal. Then algorithmi; ({5}, Count er exanpl e (Fi||e F»,) , §)
terminates and the sequenge= ¢’ a it returns satisfies:

1. a € Acts\ Act; impliesout([I],) Z out([Fi],) or out([I],) € out([Fs]s),
2. a € Acty implies¢ = ¢, and[F1], = 0 or [F2], = 0.

The sequence that is returned by the algorithm can be usegtgtorwardly for check-
ing which fault model(s) can be eliminated, or which faultdabis selected for further
scrutiny (see also Section 4.5). Such “verdicts” are easllyed to our algorithms, but
are left out for readability.

4.3 Weak distinguishability and Weak Orthogonality

In caseFy and F; are not strongly but weakly distinguishable (resp. weakthago-
nal), there is no guarantee that a discriminating (respogdnal) state is reached. By
conducting sufficiently many tests, however, chances ateotiie of such states is even-
tually reached, unless the experiment has run off to a paheoétate space in which no
discriminating (resp. orthogonal) states are reachalelmi-8lecision procedure 2 con-
ducts experiments on implementatibrand terminates in the following three cases:

1. if a sequence has been executed that led to a discrimiphatihogonal state,
2. if an output was observed that conflicts at least one ofabk fodels,
3. if discriminating/orthogonal states are no longer redb.

So long as neither of these cases are met, the procedure attesminate. The semi-
decision procedure works in roughly the same manner as gjogiim of the previous

section. The main differences are in the termination céomit(and the result it returns),
and, secondly the use of arbitrary counterexamples, asestomunterexamples are not
necessarily more promising for reaching a discriminatnigpogonal state.

Algorithm 2 Procedure for exploiting weak distinguishability/orttooglity

Require: P C S, |P| = 1, nis any counterexample faP = ¢, ¢+ €{Pwo, Pwd }
Ensure: Returns a sequence executed/arpon termination
1: function A2(P,n, ¢)

2: if n = e then
3: if ¢z = Pwa then return Coser ve();
4 else choose from {y € Act; | [Ple, # 0}; return a;
5 end if
6: else > Assumen = e n’ for some actiore and sequence’
7 if e € Actr then Appl y(e);return e As([Ple, 7', ¢z);
8 elsea := Qbser ve();
9 if a = ethenreturn e A2([Ple, 7, ¢s);
10: else ifR ™' (a) € out(P) A Count er exanpl e([P]a, ¢,) # L then
11: return a Az ([P]a, %" (Count er exanpl e([Pla, ¢,)), d=);
12: else ifR ™! (a) € out(P) A Count er exanpl e([Pla, ¢,) = L then
13: return L;
14: else returna;
15: end if
16: end if
17: end if

18: end function

Theorem 6. Let F; and F» be weakly orthogonal or weakly distinguishable fault mod-
els. Letp = ¢, WhenF; and F; are distinguishable and let = ¢,,, whenF; and F;

are orthogonal. If algorithm4, ({5}, Count er exanpl e(Fi||e 2, ¢) , ¢) terminates it
returns a sequence = ¢’ a satisfying:

1. a € Acts\ Act; impliesout([I],) Z out([Fi]s), or out([I]s) € out([Fa]s),

2. a € Acty implies¢ = ¢, and[F1], = 0 or [F], = 0.

3. a = 1 implies eitherp = ¢, and der([s]o-) N O(0) = B, or ¢ = ¢,, and
der([s],/) ND(0) = 0.

The following example illustrates that the semi-decisioogedure does not necessarily
terminate.

Example 4.Suppose the intersection of two fault models is givenmsy F» and the
malfunctioning implementation is given y(see Fig. 3). Clearlyt}, andF;, are weakly
distinguishable, which means semi-decision proceduredpjdicable. A counterex-
ample to non-weak distinguishability is eth!le?b7bla, so the procedure might try to
execute this sequence. However, termination is not gueedntas the implementation
may never execute actida, but outpute instead, making the semi-decision procedure
recompute new counterexamples.

Fig. 3. No termination guaranteed for semi-decision procedure 2.

4.4 Optimisations

The algorithms for strong distinguishability (resp. sganrthogonality) in the previous
section can be further optimised in a number of ways. First,@an include a minor ad-
dition to the standard model-checking algorithm, markiaghe:-discriminating (resp.
k-orthogonal) state in the LTS that is checked with its ddpthiVhile this has a neg-
ligible negative impact on the time complexity of the modeécking algorithm, the
state markings allow for replacing the meth@elint er exanpl e() with a constant-
time operation. Secondly, upon reaching a nodB(k) (O(k), respectively), the semi-
decision procedure for weak distinguishability/orthoglityy could continue to behave
as algorithm 1. Furthermore, the orthogonality aware s#etion is an extension of the
plain intersection. Computing both is therefore unneagssaly the former is needed,;
in that case, the formulae for strong and weak distinguigibhabeed to be altered to
take the extended set of input actions into account.

4.5 Diagnostic Testing Methodology

Distinguishability and orthogonality, and their assoethlgorithms, help in reducing
the effort that is required for diagnostic testing. Thus\er presented these techniques
without addressing the issue of when a particular technigjueorth investigating. In
this section, we discuss a methodology for employing theskrtiques in diagnostic
testing. For the remainder of this section, we assume ayfauftilementation/ and a
given set of fault model$” = {Fy, ..., F,,}.

We propose a stepwise refinement of the diagnostic testiolgiggn using distin-
guishability and orthogonality. The first step in our metblody is to identify the
largest non-symmetric set of pairs of strongly distingaldle fault modelgs. We next
employ the following strategy: so long &5 # 0, select a paifF;, F;) € G and pro-
vide this pair as input to algorithm 1. Upon termination of tHigorithm, an experiment
o = ¢’ais returned, eliminatind?, from F iff a ¢ out([F}],) (k = 4, j). Moreover,
remove all fault model; for which [F}], # () anda ¢ out([F;],-) and recomputéy.

A worst case scenario requires at msf iterations to reacli? = (). The process can
be further optimised by ordering fault models wioto-testing power, but it is beyond
the scope of this paper to elaborate on this.

WhenG is empty, no strongly distinguishable pair can be found'inThe set of
fault models can be further reduced using the weak distgtglility and strong or-
thogonality heuristics, in no particular order, as neithbows for a fail-safe strategy

to a conclusive verdict. As a last resort, weak orthogopaitused before conducting
naive testing using the remaining fault models.

5 Example

As an illustration of some of the techniques that we preskintéhis paper, we consider
a toy example concerning the prototypical coffee machihe. Black-box behaviour of
the coffee-machine is defined by specificati®m Fig. 4, where actioric and!c rep-
resent a coffee request and productitirand!t represent a tea request and production,
and?m and!m represent a coffee-cream request and production. Amorsgtiod fault

S I F || F FilleF2
le 7t ?C,?t
| IA,?
8?' ?¢,7t, Mm LA 7,7t 14, 70m. ,
B N @ o Ce—o Q_g
! ’m
m\o le, 1t 70,70, 70,

Fig. 4. SpecificationS and fault modeld, F» and F; of a coffee machine

models for a misbehaving implementation$fare fault modeld; (modelling e.g. a
broken keypad in the machine) afd (modelling e.g. a broken recipe book). Comput-
ing their intersection and their orthogonal-aware intetis@, we find that; and F5
are strongly distinguishing and strongly orthogonal. Thefgrred choice here would
be to run algorithm 1 with arguments setting it to check foorsg distinguishability
using e.g.?t as input for the shortest counterexample. Algorithm 1 wdirkt offer

7t to the implementation (which is accepted by assumptionithptementations are
input-enabledl. Since then the shortest counterexample to non-strotigglisshability
would be the empty string, the algorithm queries the output of the implementation
and terminates. Any output the implementation producémeiiolatest’ or F5, or
both. In case one would insist on using strong orthogonaligyorithm 1 would be used
with the emtpy string as the shortest counterexample to non-strong orthoggntie
algorithm would return the sequentm:, indicating that isolated aspects Bf can be
tested by experiments starting with inguit.

6 Concluding Remarks

We considered the problem of diagnosis for reactive systéragproblem of finding an
explanation for a detected malfunction of a system. As antitppthe diagnosis prob-
lem, we assumed a set of fault models. Each fault model pes\adormal explanation
of the behaviour of an implementation in terms of an LTS molEeim this set of fault
models, those models that do not correctly describe (asmdthe implementation
must be eliminated. As may be clear, this can be done naiyetigdiing the implemen-
tation against each fault model separately, but this iseqrostly. We have introduced
several methods, based on model-based testing and mod&imfpeechniques, to make
this selection process more effective.

Concerning issues for future research, we feel that thentgabs that we have
described in this paper can be further improved upon by rogstur techniques in a

quantitative framework. By quantifying the differencesiaverlap between the out-
puts described by two fault models, a more effective stsategy be found. The re-
sulting quantitative approach can be seen as a generatisatiour notion of weak
distinguishability. Such a quantitative approach may Vily employ techniques de-
veloped in model checking with costs (or rewards). A secasdé that we intend to
investigate is the transfer of our results to the settingeaf-time, in particular for fault
models given by Timed Automata. In our discussions, we imstt our attention to
the problem of selecting the right fault models from a setxgflieit fault models by
assuming this set was obtained manually, thereby sidgisigthe problem of obtain-
ing such fault models in the first place. Clearly, identifyitechniques for automating
this process is required for a full treatment of diagnosid fiSs. Lastly, and most im-
portantly, the efficacy of the techniques that we have d@esdn this paper must be
assessed on real-life case-studies. There is already somgetling evidence of their
effectiveness in [5] where a notion of distinguishabilgysuccessfully exploited in the
setting of communicating FSM nets.

AcknowledgementThe authors would like to thank Vlad Rusu, Jan Tretmans amé&Re
de Vries for stimulating discussions and advice on the sibjgf diagnosis and testing.

References

1. A. Belinfante, J. Feenstra, R.G. de Vries, J. TretmansGbha, L. Feijs, S. Mauw, and
L. Heerink. Formal test automation: A simple experiment. AnCsopaki, S. Dibuz, and
K. Tarnay, editorsTestcom '99pages 179-196. Kluwer, 1999.

2. J.C. Bradfield and C.P. Stirling. Modal logics and mu-ghi@n introduction. In J. Bergstra,
A. Ponse, and S. Smolka, editokrsandbook of Process Algehrehapter 4, pages 293-330.
Elsevier, 2001.

3. K. El-Fakih, S. Prokopenko, N. Yevtushenko, and G. vontBeenn. Fault diagnosis in
extended finite state machines. In D. Hogrefe and A. Wilegpexj Proc. TestCom 2003
volume 2644 oLNCS pages 197-210. Springer-Verlag, 2003.

4. K. El-Fakih, N. Yevtushenko, and G. von Bochmann. Diagmpsultiple faults in commu-
nicating finite state machines. Rroc. FORTE’0] pages 85-100. Kluwer, B.V., 2001.

5. M. Gromov, A. Kolomeetz, and N. Yevtushenko. Synthesidiafnostic tests for fsm nets.
Vestnik of TSU9(1):204-209, 2004.

6. Q. Guo, R.M. Hierons, M. Harman, and K. Derderian. Heiasstor fault diagnosis when
testing from finite state machineSoftw. Test. Verif. Reliahl7:41-57, 2007.

7. C.Jard and T. Jéron. Tgv: theory, principles and algori. STTT, 7(4):297-315, 2005.

8. T. Jéron, H. Marchhand, S. Pinchinat, and M.-O. Cord&upervision patterns in discrete
event systems diagnosis. Rroc. WODES 2006EEE, 2006.

9. A. Kick. Generation of Counterexamples and Witnesses for ModelktgecPhD thesis,
Fakultat fur Informatik, Universitat Karlsruhe, GermaJuly 1996.

10. G. Lamperti, M. Zanella, and P. Pogliano. Diagnosis tizfacsystems by automata-based
reasoning techniquespplied Intelligence12(3):217-237, 2000.

11. A.Petrenko and N. Yevtushenko. Testing from partiaddetnistic fsm specificationsEEE
Trans. Comput.54(9):1154-1165, 2005.

12. J. Pietersma, A.J.C. van Gemund, and A. Bos. A modeldbagproach to sequential fault
diagnosis. IlProceedings IEEE AUTOTESTCON 20@8505.

13. J. Tretmans. Test generation with inputs, outputs apdtiteve quiescence.Software—
Concepts and Tog|4.7(3):103-120, 1996.

