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Abstract— This paper studies the optimal User Plane Function 
(UPF) selection problem in 5G environments. UPF functionality is 
performed through programmable optical network nodes. 
Dynamic selection of UPF processing minimizing the overall 
service delay is performed through a novel Evolutionary Game 
Theory model. 
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I. INTRODUCTION  

 5G communication systems rely on an open and flexible 
network paradigm to address the requirements of both telecom 
operators and vertical stakeholders in a cost and energy efficient 
manner. To achieve this, the concepts of hardware 
programmability and network softwarisation are adopted to 
develop suitable interfaces that can be used to a) interconnect a 
variety of wired and wireless network technologies forming a 
common transport network (TN) and, b) decouple Control and 
User plane (CP-UP) functionalities. The former facilitates 
implementation of a variety of 5G-Radio Access Network 
(RAN) deployment options, while CP-UP separation (CUPS) 
allows flexibility in network deployment and operation as well 
as cost efficient traffic management.  

 A big part of the user plane functionality in 5G systems is 
handled by the User Plane Function (UPF), which has to be 
designed to support challenging 5G services with very tight 
performance requirements. It connects with external IP 
networks hiding mobility related aspects from the external 
networks. Moreover, it performs different types of processing of 
the forwarded data, such as packet inspection, redirection of 
traffic and application of different data rate limitations. 5G-
CUPS supporting multiple UPFs enables 5G edge capabilities; 
one of the key 5G advancements compared to 4G. UPF related 
processing can be dynamically deployed and configured 
depending on the applications’ needs. Overall, UPFs act as 
termination points for various interfaces and protocols and are 
also responsible to take several actions (rules) [1] including: (a) 
Mapping of traffic to the appropriate tunnels based on the QoS 
Flow Identifier (QFI) information. This requires UPFs to be able 
to perform Deep Packet Inspection and identify the necessary 
values in the General Packet Radio Service Tunnelling Protocol 
(GTP-U) header, associate QFIs with the appropriate 
Differentiated Services Code Point (DSCP) codes in the external 
IP network and perform the relevant protocol adaptations at line 
rate. (b) Steering of packets to the appropriate output port and 
take the necessary packet forwarding actions. (c) Packet 
counting for charging and policy control purposes. (d) Deep 
packet inspection for security and anomaly detection purposes. 
(e) Buffering and queuing management for traffic service 
differentiation and assurance of end-to-end delays.  

 To perform these actions UPFs should support an extensive 
set of protocols such as, GTP-U, PFCP (Packet Forward Control 
Packet), IP and also assist in the operation of SDAP (Service 
Data Adaptation Protocol) and PDCP (Packet Data 
Convergence Protocol) through mapping of DSCP classified IP 
traffic coming from the external Data Networks (DN). It should 
be also capable of handling legacy and new protocols such as 
enhanced CPRI/Open RAN and Radio over Ethernet (RoE) at 
high-rates. Towards this direction, programmable optical 
networks (e.g. Time Shared Optical Network-TSON [5]) can be 
effectively used to support transport network requirements as 
well as classify and steer traffic. This is performed adopting 
specific interfaces for control plane (N1/2, N4), user plane (N3, 
N6) and UPF handover (N9) communication requirements. For 
example, the Network Interface Cards (NICs) can steer control 
plane protocols packets such as PFCP packets into the Session 
Management Function (SMF) or the control plane part of UPF 
and can steer User Equipment (UE) sessions based on the PDU 
session, the flow, the QoS class etc. through N3 and N6 
interfaces. Programming can be also used to support extended 
header (EH) for 5G user plane traffic.  

 A high-level view of a 5G deployment option adopting 
Fronthaul and Backhaul Transport Nodes (FTN/BTN) and 
multiple UPFs supporting the disaggregated 5G-RAN approach 
is shown in Fig. 1. In this figure the Remote Unit (RU), the 
Distributed Unit (DU) and the Central Unit (CU) can be either 
collocated or located separately adopting either a Mobile Edge 
Computing (MEC) or a Central Cloud (CC) architectural 
approach. Based on the 5G-RAN deployment option and the 
type of service that needs to be provided, UPF nodes can be 
placed closer or further away from the 5G-RAN. In this context, 
as the network dimension grows, a larger number of rules is 
required to support policies, whereas network resources (e.g., 
switch memory) are limited. This may result in increased service 
delay as the number of flows requiring UPF processing increase.  

 To address this problem, we propose a novel scheme based 
on Evolutionary Game Theory (EGT) that allows dynamic 
selection of the optimal UPF elements. So far, a very limited set 
of studies exist addressing the problem of UPF selection [2]. The 
present study formulates the optimal UPF selection problem 
considering a specific optical node implementation [5] and using 
accurate modeling of the delays introduced when this 
programmable optical node is adopted to act as UPF element as 
shown in Fig. 1.  

II. NETWORK DESCRIPTION AND PROBLEM FORMULATION 
A. System Model 

We consider the uplink transmission of a 5G network shown 
in Fig. 1. The UEs initiate the PDU Session Establishment pro-
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Fig. 1: 5G System architecture for access to two (e.g. local and central) data networks [3]

cess by transmitting the relevant request to the Access and 
Mobility Management Function (AMF). The AMF contacts the 
SMF, which in turn checks whether the UE requests are 
compliant with the user subscription. Once subscription 
information has been verified the SMF selects a UPF to serve 
the PDU Session. This is a key decision to be taken as a UPF at 
close proximity to the RAN, may be the optimal choice at first 
sight, since it should result in reduced latency. However, if all 
UEs are associated with this UPF congestion may arise resulting 
in increased latency. To address this challenge, we propose a 
scheme that allows dynamic selection of the UPFs by the UEs. 
In this approach users try to optimize their own performance 
selfishly. The choice adaptation process of the UEs can be 
formulated as an evolutionary game. 

 To formulate this problem, we consider a set of UEs each 
requesting a service of class 𝑔 ∈ 𝐺 where  𝐺 is the total number 
of available service classes. Let also  𝑆௚ = {𝑈𝑃𝐹ଵ

௚
, … , 𝑈𝑃𝐹ே೒

௚
} be 

the set of available strategies in users belonging to 𝑔-group. For 
each group, each UE tunnel needs to be terminated at a specific 
UPF. Assuming that  𝑁௚ denotes the available UPFs for group 
𝑔, then the population of the UEs in group 𝑔 can be described at 
each time instance by vector 𝒙௚(𝑡) = [𝑥ଵ

௚
(𝑡) … 𝑥ே೒

௚
(𝑡)]  where 

𝑥௜
௚

(𝑡)  is the proportion of UEs in group 𝑔  that are currently 
being served by 𝑈𝑃𝐹௜. Each UE belonging to a specific group 
remains associated with a UPF for a time interval, and reviews 
its choice periodically.  When a revision occurs, the UE switches 
from 𝑈𝑃𝐹௜ to another 𝑈𝑃𝐹௝ according to a switching probability 
𝑝௜௝

௚ (𝒙) = 𝑥௝
௚ , that is equal to the population probability 

distribution of strategies, where 𝒙 = [𝒙ଵ(𝑡) … 𝒙௚(𝑡) ] , is the 
population state of the system. If a switch occurs, the UE 
receives a payoff 𝑢௝

௚
(𝒙)  that quantifies its satisfaction level 

associated with the selection of 𝑈𝑃𝐹௝ . The obtained payoff 
affects the arrival rate of the revision opportunities. Assuming 

that the number of reviews of a UE that uses strategy 𝑖 can be 
described by a Poisson process with arrival rate 𝑟௜

௚(𝒙), and all 
UEs' Poisson processes are statistically independent, we can use 
the law of large numbers to approximate the adaptation process 
with the following deterministic dynamic model [4]: 

𝑥̇௜
௚

(𝑡) = ∑ 𝑥௝
௚

(𝑡)𝑟௝
௚

(𝒙)𝑝௝௜
௚

(𝒙)௝௘ ೒ − 𝑥௜
௚

(𝑡)𝑟௜
௚

(𝒙)   (1) 
The UE updates its review rate, by linearly decreasing it to its 
current payoff. This means that the average review rate of a UE 
that uses strategy 𝑖 is: 

𝑟௜
௚(𝑥) = 𝑎 − 𝛽𝑢௝

௚
(𝒙),    𝛽 > 0 𝑎𝑛𝑑

ఈ

ఉ
> 𝑢௝

௚
(𝒙)   (2) 

This results in forcing UEs with higher payoffs to revise their 
UPF choice at lower rates than the rest, leading to the replicator 
dynamics: 

𝑥̇௜
௚

(𝑡) = 𝛽 ቀ𝑢௜
௚

(𝒙) − 𝑢௚തതതത(𝒙)ቁ 𝑥௜
௚      (3) 

According to this equation, a selected strategy will either survive 
or be eliminated in the long run depending on whether its payoff 
is better or worse than the average payoff of all strategies. Since 
the objective of the UEs is to optimize their performance in 
terms of latency, greater payoffs correspond to lower delays.  

 The observed latency can be decomposed into two main 
components. The first component is the propagation delay 
between the UE and the UPF and is proportional to the distance 
between the two entities. Assuming an underlaying optical 
transport network, the propagation delay due to the propagation 
time in the fiber links corresponds to 5 μs per kilometer (km) of 
fiber. The second component is the delay of processing inside 
the UPF and can be modeled by adding the processing and the 
transmission delay, that are constant, and the variable queuing 
delay. Mechanisms for bounding the processing delay within a 
network node can be found both in  literature and in 
standardization. In this analysis, we assumed that the UPF, uses 
the bounded mechanisms described in [3]. 
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Fig.2: (a) Trajectories of proportions of population and (b) convergence of the 

algorithm to the equilibrium (for 𝑀ଵ = 130, 𝑀ଶ = 70,
௔

௕
= 1,

𝑘𝑚𝑒𝑐

𝑘𝑐𝑐
= 10).  In 

the equilibrium 16% of group1 UEs and 32% of group 2 UEs are served by 
their local UPFs, while the remaining are served by the central UPF.  

Considering these we formulate the payoff on a user of group 𝑔 
that selects action 𝑖, when the population state is 𝒙(𝑡), as 

𝑢௜
௚(𝒙) = 1 𝑡௣௥௢௣௜

௚ + 𝑡௎௉ி೔
(𝒙)ൗ       (4) 

where 𝑡௣௥௢௣ is the propagation delay and 𝑡௎௉ி೔
(𝒙) the 𝑈𝑃𝐹௜ delay 

that can be approximated by an exponential function [5]: 
𝑡௎௉ி೔

(𝒙) = 𝑒௞೔ఘೆಶ ∑ ெ೒௫೔
೒ಸ

೒సభ    (5) 
where 𝜌௎ா is the traffic of one UE, 𝑀௚ is the UE-population of 
group 𝑔 and 𝑘௜  is a variable related with 𝑈𝑃𝐹௜  and depends on 
the characteristics of the UPF node implementation (Fig. 1) 
including data rate, number of ports (fibres, wavelengths), 
buffering capability etc. 

B. Application in 5G networks 

 Based on the replicator dynamics of the EGT, we developed 
a scheme to attain the evolutionary equilibrium. The following 
steps summarize the algorithm : (1) Initialization:  Every UE in 
each group chooses a strategy at random and observes its payoff 
𝑢. Then it calculates its review rate 𝜆 according to the formula 
𝜆 = 𝑎 − 𝛽𝑢, where 𝛼, 𝛽 are constants. (2) Revision: A revision 
opportunity may occur to each UE with probability equal to 
𝑝௥௘௩௜௦௜௢௡ = 𝜆 ∙ 𝑑𝑡 , where 𝑑𝑡  is the time interval between two 
loops. If the revision occurs, the UE chooses to imitate at 
random one of the UEs of its group. Then it recalculates 𝜆 
according to the obtained payoff. The same process is applied 
until the difference of each strategy’s payoff compared with the 
average payoff of the population is lower that a limit 𝜀.  

 Note that the strategy adaptation process in the proposed 
EGT-based algorithm does not rely on the knowledge of the 
strategy selection of the other players. For the evolution a UE 
requires a random matching with an opponent, a function that 
can be offered by a central controller (e.g. the SMF). Therefore, 
the amount of information exchange is reduced. The central 
controller will randomly match the UEs and stop the evolution 
process, if all payoffs are equal or differ by a small quantity.  

 The time interval (𝑑𝑡)  between two repetitions must be 
higher than the communication time between the UE, the AMF, 
the SMF and the UPF that is going to carry the PDU session. 
𝑑𝑡 is highly affected by the number of UPFs that are under the 
control of the SMF, since a large number of UPFs may result in 
increased processing delay for the SMF. Taking into 
consideration the timing requirements of the network service 
(𝑡௦௘௥௩௜௖௘), and the number of iterations of the algorithm (𝐿), the 
number of UPFs (𝑁) under the SMF’s control can be evaluated 
so that the following relationship is true: 

𝑁 < 𝐹ିଵ ቀ
௧ೞ೐ೝೡ೔೎೐

௅
ቁ    (6) 

Where 𝐹ିଵ is the inverse function that relates 𝑑𝑡 with 𝑁. 

III. NUMERICAL RESULTS AND DISCUSSION 

 This section presents simulation results to validate our 
theoretical findings and evaluate the proposed algorithm 
performance. In the following we assumed a population of UEs 
that are organized into two groups. The UEs in each group can 
decide whether they want to use a local UPF at the edge of the 
network, that connects to a MEC, or to a UPF four times further 
away (𝑡௣௥௢௣೎೎

𝑡௣௥௢௣೘೐೎
= 4⁄ ), that connects to a central cloud as 

shown in Fig. 1. The UPF in the central cloud can process a 
greater number of requests, compared to the local UPFs, and is 
shared by all groups in the UE population whereas the local UPF 
is dedicated to the population inside a group. The traffic 
generated by each UE is assumed to be 𝜌௎ா = 100 𝑀𝑏𝑝𝑠. The 
limit 𝜀 of the algorithm is set to a payoff difference of 0.01. Fig. 
2 illustrates our  simulation results (full lines) and the theoretical 
results derived through the model of the replicator dynamics 
(doted lines) demonstrating good agreement between theory and 
simulation. More specifically, Fig. 2(a) plots the evolution of 
strategy shares among the population of UEs. It can be observed 
that the system converges after some iterations to the 
equilibrium. In equilibrium all UEs achieve the same delay (Fig. 
2(b)) indicating the fairness of the scheme. The number of total 
iterations of the algorithm is of vital importance for network 
planning. As it was discussed in IIB, the number of iterations in 
combination with the time requirements of the service, can give 
an estimate (Eq. (6)) of the number of UPFs that the SMF can 
control, without compromising the stability of the system. Fig. 
2 shows that less than 100 iterations are needed for the system 
to converge. 
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