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Abstract—While the problem of Routing and Spectrum Allo-
cation (RSA) has been widely studied, very few studies attempt
to solve realistic sized instances. Indeed, the state of the art
is always below the standard transport capacity of a fiber link
with 384 frequency slots, regardless of what the authors consider,
heuristics or exact methods with a few exceptions. In this paper,
we are interested in reducing the gap between realistic data
sets and testbed instances that are often considered, using exact
methods. Even if exact methods may fail to solve in reasonable
time very large instances, they can, however, output solutions
with a very good and proven accuracy. The novelty of this paper
is to exploit the observations that optimal solutions contain a very
large number of lightpaths associated with shortest paths or k-
shortest paths with a small k. We propose an original efficient
large-scale optimization model and decomposition algorithm to
solve the RSA problem for flexgrid optical networks. It allows
the exact or near optimal solution of much larger instances than
in the literature.

I. INTRODUCTION

To meet the demand of the networks of the future, op-
tical transmission and networking technologies are evolving
towards goals that allow greater efficiency, flexibility and
scalability. Recently, elastic optical networks have been high-
lighted as the promising technology for future high speed
optical networks [1]. An elastic optical network allocates the
spectrum to lightpaths based on the bandwidth demands of
its clients. The spectrum is divided into narrow slots (e.g.,
12.5Ghz or 6.25Ghz) and each optical connection is allocated
a given number of slots. Consequently, the network usage is
greatly improved compared to DWDM (Dense Wavelength
Division Multiplexing) optical networks with fixed bandwidth
channels. In elastic optical networks, transmission parameters
such as—optical data rate, which is fixed in former DWDM
networks, is now tunable. Given that future demands indicate
that high speed optical connections are needed to optimize data
transport, elastic optical networks are now widely accepted as
the next generation high-speed networks.

Many research efforts have been put into designing solution
techniques capable of efficiently solving realistic data sets,
both heuristic and exact methods. A wide range of heuristics
have been proposed. Although heuristics can generally be
designed to provide a solution with reasonable computational
times, or if necessary in real time, they generally share the
disadvantage of having little or no information on the accuracy
of their solutions, or even on their quality. Most exact methods
rely on compact Integer Linear Programming solutions, which
while with a polynomial number of variables and constraints,

are not able to scale beyond 10 nodes with a limited number of
connection requests. Few proposals have been made for large-
scale optimisation models, to be solved with a decomposition
algorithm. Yet, very few authors have been able to solve
exactly medium size instances.

Our proposal is a new large-scale optimization model,
which relies on `-configurations, made of lightpaths such
that their first link is `. The result is a model that can be
efficiently solved in much shorter times than previous large-
scale optimization models. Datasets with fiber optics having
a standard transport capacity of 384 frequency slots can be
solved exactly or nearly exactly (accuracy less than ε < 10−2)
in minutes for networks with up to 24 nodes..

The paper is organized as follows. We provide a formal
statement of the Routing and Spectrum Allocation problem,
together with a definition of the notations, in Section III.
The original new nested decomposition model is proposed in
Section IV. Solution scheme is developed in Section V. Nu-
merical experiments are described in Section VI. Conclusions
are drawn in the last section.

II. LITERATURE REVIEW

The literature is rich with solution techniques that range
from heuristics to exact algorithms. Example of heuristics are
the studies of, e.g., Goścień, Walkowiak and Klinkowski [2],
Alaskar et al. [3], Abkenar and Rahbar [4]. For instance,
Alaskar et al. [3] considered heuristics of the type priority
allocation algorithms with the objective of minimizing the total
spectrum amount needed to serve the demand. They were able
to solve data instances of up 182 requests in a network of 14
nodes, 20 bidirectional links and 100 frequency slots.

One of the early ILP formulations was proposed in
Christodoulopoulos et al. [5] and was only capable of solving
very small data sets. Some other compact Integer Linear
Programs (ILPs) were next proposed, but all share the lack
of scalability.

The next generation of ILP models were large-scale op-
timization models, which require the use of a decomposi-
tion algorithm to solve them. In Ruiz et al. [6] and [7],
decomposition models were proposed using column generation
algorithms for their solution. The authors considered two ob-
jectives: minimizing the number of blocked demands (primary
objective) and the amount of unserved bit-rate (secondary
objective). They were able to solve data instances with up
to 64 requests in a network of 21 nodes, 37 links and only
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96 frequency slots. In Klinkowski et al. [8], a clique cut
generation procedure was developed and combined with a
column generation procedure in order to improve the quality
of the generated columns. The goal was to minimize the total
amount of unserved bit rate, and data sets of 160 requests
in the Spain network (21 nodes and 35 links) with again
only 96 frequency slots were solved. A MILP formulation
was proposed in Klinkowski et al. [9] which was solved
using a branch-and-price algorithm that was enhanced with
a simulated annealing-based heuristic. The objective was to
minimize the number of used frequency slots, and they were
able to solve data instances up to 60 requests in a network of
12 nodes and 20 links. Then, in Klinkowski et al. [10], they
enhanced the algorithm with relaxations and cuts, and were
able to solve data instances up to 200 requests and a network
of 28 nodes and 41 links. Jaumard et al. [11] proposed a
decomposition model based on lightpath configurations (a set
of requests provisioned using a set of slots with the same
lowest index frequency slot), solved using column generation.
The objective was to maximize the throughput, and data
instances of up to 180 requests in the Spain network (21 nodes
and 35 links). Enoch et al. [12] recently improved the results
of [11], using the same decomposition, however with reduced
computational times and better accuracy.

III. RSA PROVISIONING: PROBLEM STATEMENT

An Elastic Optical Network (EON) can be represented by a
directed graph G = (V,L), where V is the set of nodes and L
is the set of optical fiber links. The frequency spectrum of the
links is divided into a set of slices (S), also called frequency
slots, indexed by s.

The network traffic (demand) is represented by a set of
requests, K. Each request k ∈ K has: (i) a source node vs ∈ V
and a destination node vd ∈ V , such that (vs, vd) ∈ SD,
where SD is the set of source-destination node pairs with
some traffic; (ii) a required number of slots denoted by dk.
Provisioning a request k means: (i) Selecting a path from the
source to the destination node of k ; (ii) Assigning frequency
slots on every link of that path so as to satisfy the continuity
and contiguity constraints, which are next described.
Continuity constraints require that a request is assigned the
same frequency slots on all its path links from source to
destination.
On the other hand, Contiguity constraints require that the
assigned frequency slots are contiguous (adjacent to each
other) in the spectrum.

An illustration of a request provisioning is depicted in
Figure 1 with a link transport capacity of 24 frequency
slots and the provisioning of 5 requests. While the objective
function varies from one study to the next (see the papers
cited in the literature review), we choose here to maximize the
throughput as expressed by the weighted number of granted
requests, with weights equal to the demand, i.e., the required
number of frequency slots.
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Fig. 1. An illustrative example

In the sequel, we define a lightpath by the combination of
a path and a set of assigned slots satisfying the continuity and
contiguity constraints.

IV. MATHEMATICAL MODEL

We propose here an original nested decomposition model
based on the concept of link-lightpath configurations, which
are next defined in Section IV-A. We expose the details of the
mathematical model in Section IV-B.

A. Link-Lightpath Configuration

A Link-Lightpath configuration (or LConfig`? for short) is a
set of lightpaths going through the same given link `?. Denote
by Γ the overall set of configurations, indexed by γ.

A LConfig`? γ is characterized by a link `? and a set of
lightpaths all originating from the source node of link `?,
with `? being the first link of their routes. As a consequence,
a LConfig`? is characterized by one link `? and two set of
parameters:

- aγ`s = 1 if slot s is used on link ` in LConfig`? γ, 0
otherwise.

- aγk = 1 if demand k is granted in LConfig`? γ, 0
otherwise.

We depict in Figure 2 two examples of LConfig`? going
through link `? = (v6, v2).

B. Mathematical Model

The next proposed mathematical model has two sets of vari-
ables. The first set of variables corresponds to decision vari-
ables zγ , whose values depend on whether or not LConfig`?
is selected. The second set of variables also corresponds to
decision variables xk, whose values depend on whether or not
request k is granted.

The mathematical model is written as follows:

max
∑
k∈K

dkxk (Throughput) (1)

subject to:
∑
γ∈Γ`?

zγ ≤ 1 `? ∈ L (2)∑
γ∈Γ

aγ`szγ ≤ 1 ` ∈ L, s ∈ S (3)
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(b) Configuration 2.

Fig. 2. Two Configuration Examples

xk ≤
∑
γ∈Γ

aγkzγ k ∈ K (4)

zγ ∈ {0, 1} γ ∈ Γ (5)
xk ∈ {0, 1} k ∈ K. (6)

Constraints (2) enforce the selection of at most one LConfig`?
for each link `? ∈ L. Constraints (3) make sure that if a
configuration is chosen, then all the frequency slots used in that
configuration are not re-used in another selected configuration.
Constraints (4) allow the identification of the connection
requests that are granted and provisioned. Constraints (5) and
(6) define the domains of the variables.

Note that, without loss of generality, we could assume
0 ≤ xk ≤ 1, k ∈ K. Considering the maximization objective
and constraints (4), even if we assume xk ∈ [0, 1], xk can only
take values 0 or 1 in the optimal solution. It has therefore
the advantage of reducing the integer explicit requirements,
without impacting the integer requirements of the optimal
solution

V. SOLUTION SCHEME

The mathematical model proposed in the previous section
has an exponential number of variables, and therefore is not
scalable if solved using classical ILP (Integer Linear Pro-
gramming) tools. Indeed, we need to use column generation
techniques in order to manage a solution process that only
requires an implicit enumeration of the LConfig`? (interested
readers may refer to Chvatal [13]).

A. Column Generation and Integer Solution

Column generation method allows the exact solution of
the linear relaxation of model (2)-(6), i.e., where constraints
zγ ∈ {0, 1} are replaced by zγ ≥ 0, for γ ∈ Γ. It consists in
solving alternatively a restricted master problem (the model of
Section IV-B with a very limited number of columns/variables)
and the pricing problem (generation of a new LConfig`? )
until the optimality condition is satisfied (i.e., no LConfig`?
with a negative reduced cost). In other words, when a new
LConfig`? is generated, it is added to the current restricted
master problem only if its addition implies an improvement
of the optimal value of the current restricted master problem.
This condition, indeed an optimality condition, can be easily

checked with the sign of the reduced cost, denoted by RCOST,
see (16) for its expression (the reader is referred to [13] if not
familiar with linear programming), of variables zγ .

Once the optimal solution of the LP (Linear Programming)
relaxation (OBJ?LP) has been reached, we solve exactly the last
restricted master problem, i.e., the restricted master problem
of the last iteration in the column generation solution process,
using a branch-and-bound method, leading then to an ε-
optimal ILP solution (OBJLB

ILP), where

ε =
OBJ?LP − OBJLB

ILP

OBJLB
ILP

,

where the optimal value of the linear relaxation (OBJ?LP)
provides an upper bound on the optimal value of the ILP (z?ILP).
Branch-and-price methods can be used in order to find optimal
solutions, if the accuracy (ε) is not satisfactory, see, e.g., [14].

B. Nested Column Generation and Integer Solution

We propose here a nested decomposition solution scheme,
meaning that the pricing problem itself is defined as a de-
composition model in which the pricing problem generates a
lightpath. In such a case, it becomes difficult to solve exactly
the upper level pricing problem (i.e., it requires a branch-
and-price algorithm, see [14]). Consequently, we do not have
anymore the guarantee to solve exactly the linear programming
relaxation of the upper master problem, and therefore need a
way to compute an upper bound in order to assess the quality
of the integer solutions.

We consider a Lagrangian bound, in order to compute an
upper bound on the integer solution of the master problem,
valid for any set of generated columns. At each iteration τ of
the column generation, a Lagrangian relaxation bound LR can
be calculated as follows, using Vanderbeck [15]:

LRτ (x, z, u) =
∑
k∈K

dkxk +
∑
`∈L

u(2)
` (1−

∑
γ∈Γ`?

zγ)

+
∑
`∈L

∑
s∈S

u(3)(1−
∑
γ∈Γ

aγ`szγ)

+
∑
k∈K

u(4)(−xk +
∑
γ∈Γ

aγkzγ) (7)



subject to: ∑
γ∈Γ`

zγ ≤ 1 ` ∈ L (8)

zγ ≥ 0 γ ∈ Γ (9)
xk ≥ 0 k ∈ K, (10)

where u(2)
` , u

(3), and u(4) are the values of the dual variables
associated with constraints (2), (3), and (4).

Let us expand the expression of LRτ (x, z, u):

LRτ (x, z, u) =
∑
k∈K

dkxk +
∑
`∈L

u(2)
` +

∑
`∈L

∑
s∈S

u(3)
`s︸ ︷︷ ︸

ub

(11)

−
∑
`∈L

u(2)
`

∑
γ∈Γ`?

zγ −
∑
`∈L

∑
s∈S

u(3)
`s

∑
γ∈Γ

aγ`szγ

+
∑
k∈K

u(4)
k (−xk +

∑
γ∈Γ

aγkzγ) (12)

LRτ (x, z, u) =
∑
k∈K

(dk − u(4)
k )︸ ︷︷ ︸

RCOST(xk)≤0

xk + ub

+
∑
`∈L

∑
γ∈Γ`

(
−u(2)

` −
∑
s∈S

aγ`su
(3)
`s +

∑
k∈K

u(4)
k a

γ
k

)
︸ ︷︷ ︸

RCOST
LP,τ
γ,`

zγ

≤ ub+
∑
`∈L

∑
γ∈Γ`

RCOSTLP,τ
γ,` . (13)

Moreover,
∑

`∈L:RCOST
LP,τ
γ,` >0

RCOSTLP,τ
γ,` is the summation of all

the reduced cost of the pricing computed at iteration τ
associated with each link ` of the network. In other words,
we only consider non negative RCOSTLP,τ

γ,` , where RCOSTLP,τ
γ,`

is the optimal LP value.

The Lagrangian bound value is chosen by:

LR(x, z, u) = min
τ

LRτ (x, z, u). (14)

The resulting accuracy of the solution, ε, is then computed as
follows:

ε =
min{Offered Load, LR} − OBJLB

ILP

OBJLB
ILP

, (15)

where the offered load is equal to
∑
k∈K

dk.

The solution process is summarized by the flowchart in
Figure 3.

Generation of 
path 

configurations

Generation of  
configurations
con$igℓ∗

Values 
of the 
dual

variables

Op3mality 
condi3on 
sa3sfied?

ε-optimal RSA 
solution

Optimality 
condition 
satisfied?

Generation of new potential configurations

Selection of 
the  best

configurations

No: keep adding LL configura;ons

No: keep adding paths

Yes

Initial set of
lightpath configurations Values 

of the 
dual

variables
of upper level pricing

𝑧̃!"

Fig. 3. Column Generation flowchart

C. Upper Level Pricing Problem

Each upper level pricing problem is dedicated to the search
of a subset of lightpaths going through a specific link, denoted
by `?. It has 5 sets of variables:

- yp = 1 if path p is selected in LConfig`? , 0 otherwise.
- ak = 1 if request k is granted in the configuration under

construction, 0 otherwise.
- a`s = 1 if for link `, slot s is occupied, 0 otherwise.
- aps`? = 1 if slot s is assigned to p on `?, 0 otherwise.
- bps`? = 1 if slot s is the starting slot of p on `?, 0 otherwise.

In addition, there is parameter δp` = 1 if path p goes through
link `, 0 otherwise. We denote by Pk the set of paths for
routing connection request k: we do not need to pre-compute
it, thanks to the nested column generation framework, where
paths are online computed only once as needed.

Observe that:

a`s =
∑
k∈K

∑
p∈Pk

δp` a
p

s˜̀ ` ∈ L : ` 6= ˜̀, s ∈ S.

Maximize the reduced cost, i.e.,

RCOSTγ = −u(2)
`? −

∑
s∈S

∑
`∈L

u(3)
s`

∑
k∈K

∑
p∈Pk

δp` a
p
s`?︸ ︷︷ ︸

a`s

+
∑
k∈K

u(4)
k ak. (16)

subject to: ∑
p∈Pk

yp = ak k ∈ K (17)

aps`? ≤ yp p ∈ Pk, k ∈ K,
s ∈ S (18)∑

p∈Pk

1

np

∑
s∈S

aps`? = akk ∈ K (19)



TABLE I
COMPUTATIONAL COMPARISON ON SPAIN NETWORK

Data Instances
z̃LP OBJLB

ILP LR ε CPU (sec.) from [11] from [12]
Offered Load |SD| |S| OBJLB

ILP CPU (sec.) OBJLB
ILP

1
(Tbps)

3.675 35 50 3.675 3.675 3.875 0 3.6 3.17 50 3.675
4.750 45 60 4.750 4.750 5.750 0 3.1 4.15 86 4.750
6.775 60 75 6.738 6.725 6.825 0.007 8.4 5.75 147 6.775
7.450 64 85 7.450 7.450 9.775 0 5.9 6.00 176 7.450
7.375 70 100 7.375 7.375 7.450 0 11.6 6.17 263 7.375
9.675 80 120 9.675 9.675 9.775 0 45.4 8.15 323 9.675
7.450 35 80 7.050 7.050 9.100 0.057 3.7 6.70 134 7.450
9.750 45 110 9.750 9.750 11.900 0 5.5 8.80 177 9.750

10.700 60 156 10.700 10.700 10.850 0 18.8 9.45 261 10.700
15.500 64 170 15.500 15.500 15.550 0 16.1 12.95 630 15.500
15.100 70 236 15.025 14.950 15.014 0.004 86.8 13.10 1342 15.100
16.850 80 256 16.700 16.600 16.800 0.012 61.3 14.45 1419 16.850

|SD| denotes the number of requests, |S| designates the number of frequency slots

∑
p∈Pk

∑
s∈[1,|S|−np+1]

bp
s˜̀ = ak k ∈ K (20)

np−1∑
i=0

apt+i,`? ≥ npb
p
t`? t ∈ [1, |S| − np + 1],

k ∈ K, p ∈ Pk (21)∑
k∈K

∑
p∈Pk

aps`? ≤ 1 s ∈ S (22)

yp ∈ {0, 1} p ∈ Pk, k ∈ K (23)
ak ∈ {0, 1} k ∈ K (24)
aps`? ∈ {0, 1} p ∈ Pk, k ∈ K,

s ∈ S. (25)
bps`? ∈ {0, 1} p ∈ Pk, k ∈ K,

s ∈ S. (26)

Constraints (17) ensure that we select at most one path
(routing) for request k if it is granted in the configuration
under construction. Constraints (18) force variable yp = 1 if
provisioning of path p uses any slot s on link `?. Constraints
(19) make sure the total number of slots for p matches np.
Constraints (20) ensure a unique starting slot for each request.
Constraints (21) express the contiguity constraints on link `?.
Constraints (22) ensure that each slot is used at most once in
the overall set of connection requests.

The number of variables in the pricing problem can be
further reduced by limiting the set of requests to K`? , with
K`? only made up of requests whose origin is equal to the
node source of `?.

D. Nested Pricing Problem

The lowest level pricing problem consists in computing
weighted paths, and can be formulated as follows. Maximize

the reduced cost:

RCOSTp = −
∑
s∈S

∑
`∈L

u(3)
s` p ∈ Pk, k ∈ K (27)

which is equivalent to solving a weighted shortest path prob-
lem from vks to vkd (source and destination node of request k,
respectively) with weight WEIGHT` =

∑
s∈S

u(3)
s` for link `.

VI. COMPUTATIONAL RESULTS

The model and algorithm described in the previous sections
was implemented on a 3.6-4.0 GHz 4-cores machine with 32
GB of RAM, with the use of CPLEX (version 12.8.0.0) for
solving the (integer) linear programs.

A. Computational Comparisons on Spain Network

In a first set of experiments, we conducted experiments in
order to assess the scalability of our solution process, and the
accuracy of the RSA solutions that were output, in comparison
with previous works. We used the same set of data instances
as [11], i.e., the Spain network with 21 nodes and 35 links
( [6]) and the same demand sets. Results are shown in Table
I, and include a comparison with those of [11].

In Table I we run the algorithms on many instances of the
Spain network and compare it with the previous results of
[11], improved in [12]. The performance of our new model
and algorithm is better in terms of the quality of the solutions
and of computational times.

B. Computational Results on Larger Datasets

We consider here larger instances, both on the Spain net-
work of the previous section, and the USA network [16] with
24 nodes and 86 links. For all the experiments with the USA
network, we used |S| = 380. While computational times are
increasing, they remain reasonable for a planning problem,



TABLE II
COMPUTATIONAL RESULTS WITH LARGER INSTANCES ON SPAIN NETWORK

Data Instances
z̃LP OBJLB

ILP LR ε CPU (sec.)Offered Load |SD| |S|(Tbps)

8.075 100 300 8.075 8.075 8.263 0 82.5
9.625 120 300 9.600 9.600 9.635 0.003 102.7
11.225 140 380 11.225 11.225 11.255 0 147.4
13.300 160 380 13.188 13.150 13.225 0.006 228.1
21.925 100 380 21.925 21.925 21.958 0 89.9
25.600 120 380 25.413 25.275 25.479 0.008 182.7
29.675 140 380 29.525 29.525 29.525 0 405.5
33.675 160 380 32.875 32.875 32.925 0.002 364.8

TABLE III
NUMERICAL EXPERIMENTS ON DIFFERENT TRAFFIC INSTANCES ON USA

NETWORK

Data Instances

OBJLB
ILP LR ε

CPUOffered
|SD|Load (Sec.)(Tbps)

21.925 100 21.925 21.925 0 305.9
25.600 120 25.350 25.875 0.010 138.7
29.675 140 29.675 29.700 0 215.4
33.675 160 33.550 33.725 0.004 242.5
43.075 160 41.650 41.950 0.007 589.3
49.250 180 47.150 47.575 0.009 834.3
54.675 200 53.425 53.635 0.004 1,458.6

i.e., less than 1 hour. Note that the accuracy of the solutions
is always smaller than 1%.

VII. CONCLUSIONS

In this paper we proposed a new decomposition model
for the RSA problem, which can be solved using a nested
column generation technique. The advantage of such a link-
based decomposition is that the number of pricing problems
is significantly less than the number of pricing problems
in a slot-based decomposition as in [11], as the number of
links is less than the number of frequency slots. In addition,
pricing problems are less complex to solve, and therefore
can be solved faster, and in parallel. It therefore offers a
promising solution scheme, with an enhanced scalability in
comparison with the previous RSA decomposition schemes of
the literature.
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