
Blockchain-Based Connectivity Provisioning in
Multiple Transport SDN Domains

Pol Alemany, Ricard Vilalta, Raul Muñoz, Ramon Casellas, Ricardo Martı́nez
Optical Networks and Systems Dept.

Centre Tecnològic de Telecomunicacions de Catalunya (CTTC/CERCA)
Catelldefels (Barcelona), Spain

pol.alemany@cttc.cat

Abstract—Hierarchical Software Define Networking (SDN)
architectures is used to manage the co-existence of multiple
domains by having an element on top. A collaborative relation-
ship between domains, might solve this issue. Blockchain may
become the key element for this change to happen. This paper
presents a Blockchain-based architecture to provide SDN actions
to configure connectivity services in transport domains. The
results presented show that the use of Blockchain is a promising
candidate for inter-domain SDN control.

Index Terms—Software-Defined Networks, Blockchain, T-API

I. INTRODUCTION

Software-Defined Networking (SDN) manages a set of
network resources by using software applications, to differ-
entiate the data plane from the control plane and many other
advantages. Some solutions propose a centralized management
using a hierarchical architecture [1], with a single element
on top that has the End-to-End (E2E) knowledge of the net-
work infrastructure. While this centralisation improves control
actions, it also makes the whole system have an important
weakness as the top element becomes the center of any action.
So, if the element on top becomes unavailable, a central point
of failure situation may appear. But the most important issue
is the fact that this type of centralised architectures cannot be
deployed in multi-operator architectures. To avoid this issues,
a solution is the use of distributed control systems where the
different transport SDN domains work together on the E2E
network control instead of depending on a single top element.

Distributed Ledger Technologies (DLT), with Blockchain
(BL) [2] being its most known example, allows a set of nodes
to become a distributed database by sharing information in a
public and transparent way and accepting the data to be stored
using a consensus mechanism. Furthermore, BL is not only a
distributed data base, it also allows the execution of small
programs (i.e., smart contracts) allowing the peers to work
together without the need of a central element commanding
any action. BL is being used in multiple research SDN paths,
such as security aspects on the flows management [3] or the
recovery of SDN nodes after a failure [4].

This paper presents a BL-based SDN architecture to allow
different transport domains to collaborate among them and
avoid the dependence on an E2E SDN controller on the top.
Compared to the work presented in [6] [7], this paper is

Fig. 1. SDN Transport BL-based Architecture on the ADRENALINE testbed.

based on the idea to have a collaborative SDN architecture,
and with respect to [8], the current work presents how a
set of SDN domains interact among them to compute and
deploy E2E transport connections. This paper presents a set
of experimental results to prove the workflows and the BL
influence in the E2E transport connections services creation.

II. A BLOCKCHAIN TRANSPORT SDN ARCHITECTURE

In order to let SDN controllers join the BL system as easy
as possible, the designed architecture makes use of a new
module that allows an SDN Transport controller to become a
BL peer (i.e., PDL-Transport Manager). Fig.1 shows multiple
SDN domains as peers of a BL system. Each peer (called
PDL-SDN) is composed by the SDN Controller and the PDL-
Transport Manager module. This new module takes assigned
events from the BL requests (called transactions) generated
by other peers, and maps them into ONF Transport API (T-
API) [5] requests for the underlying Transport SDN Controller.
The use of T-API was selected as it allows the deployment
of per-domain Connectivity Services (CS) to configure an
E2E transport connection (from now on E2E CS). A T-API
CS request allows the configuration of transport connections
between a pair of client ports known as Service Interface
Points (SIPs) of an SDN transport domain.

The use of BL brings the following advantages: a) any
request for networking resources is public, transparent and
immutable once done, which makes it highly difficult to
tamper it, b) the avoidance of a hierarchical E2E architecture
and so, there is no central point of failure that may block E2E

978-3-903176-33-1 © 2021 IFIP



Fig. 2. Transport SDN context and topology distribution.

actions, c) when a peer joins the BL network, its information
is dynamically added and the other peers update their vision
of the whole infrastructure, d) as there is no hierarchy and all
the peers are equally important, if a peer becomes unavailable,
the others can still work together and, finally, e) the way the
architecture is designed, only one Transport SDN domain is
able to configure each domain CS as its creation request is
linked to a unique BL address identifier. On the other hand,
the current architecture has some drawbacks: a) a domain
not being available may be included in a path computation
because the domain computing the path does not have up-
dated infrastructure information, b) BL is designed to avoid
unfinished transactions, to do so: makes use of an associated
cost per transaction, which means that any transaction must be
generated with precision and the security to be accomplished,
c) due to the use of costs, the information in a transaction
must be as precise as possible and avoid possible redundancies.
Despite their importance, these drawbacks can be solved by
checking each domain availability once the path is computed
or by applying improving the requests design in order to select
the essential information.
A. SDN Context and Topology distribution

Before any CS can be requested, when a Transport SDN
Controller domain joins the BL network, it must distribute
its SDN T-API context to the other BL peers. The minimum
information in a T-API context is a set of SIPs which are used
by an optical SDN controller to request CSs. Furthermore, a
T-API context may also define the topology of the network
domain with the real or an abstract vision. In both cases the
topology is defined by nodes and links. Nodes include a set
of node ports called Node Edge Points (NEPs), and the links
are defined by a pair of NEPs. So, a SIP is associated to a
NEP at the edge of a network domain.

As presented in Fig.2, the process begins when the Domain
Operations and Business Support Systems (OSS/BSS) speci-
fies (1) to the PDL-transport manager the context to share. The
PDL-transport manager gets (2) the context information and
with the response (3) from the Transport SDN Controller, it
selects (4) the necessary parameters for the BL. Then, it starts
a transaction to distribute the information (5,7,9) and each do-

Fig. 3. CS deployment

main updates their vision of the whole infrastructure (6,8,10).
Finally, the original requester waits for the transactions to be
accepted (11) and the PDL-transport manager to inform about
the correct context distribution (12).

To be aware of the E2E topology, each SDN domain has
a graph generated with the shared information. Each SDN
domain is mapped as a node and the edge NEPs are related
a local SIP and a remote SIP from another transport SDN
domain. For each E2E CS requested, a domain CS list is
computed using domain selection.

B. SDN Connectivity Services deployment
Fig.3 presents the procedure to create a BL-based E2E CS

across transport SDN domains. The process starts when an
E2E CS is requested by a domain OSS/BSS to its PDL-
transport manager (1). A set of domain CSs is computed based
on the graph generated when the transport SDN domains join
the BL network. Currently, to select the domains involved in
the E2E CS, a shortest path algorithm is used. So, starting
from one extreme of the found path and checking one by one
the involved SDN domains, the PDL-transport manager uses
the shared context information to select the right pair of SIPs
(i.e., source and destination) and to request each one of the
domain CSs by distributing their information in the BL. If the
domain CS must be done in the local domain, the request is
forwarded (2) to the local Transport SDN Controller which
configures the domain CS (3) and informs back (4). If, on
the other hand, the domain CS must be done in another SDN
domain, the PDL-transport manager generates a transaction
and distributes it (5,6,7) specifying the peer address in charge.
The specified peer is the only one able to take it and forward
it to its local Transport SDN Controller (8) and notify its
acceptance (10). Meanwhile, the domain CS is configured
(9) and its information sent back (11) to its domain PDL-
transport manager. Then, the updated domain CS information
is distributed through a new transaction (12,13,14) with the
peer address that originally requested the domain CS. Once
the transaction is distributed and accepted (15) and if all the
domain CSs are ready, the PDL-transport manager informs the
OSS/BSS about the complete configuration of the E2E CS.



Fig. 4. HTTP requests to order the distribution of the context and the CSs deployment.

Fig. 5. BL transactions Log.

III. EXPERIMENTAL VALIDATION

The proposed solution has been implemented as presented in
Fig.1 using the ADRENALINE [9] testbed. With four different
SDN domains; an edge, a transport and a core packet-based
domains and an optical-based transport domain. All of them
with an SDN controller managing the incoming domain CSs
requests. Finally, over each domain SDN controller, there
is the PDL-Transport Manager described in section II. To
validate the proposed solution, an experimental evaluation
was done by sharing the context of three different domains
(edge, optical and core) and requesting a bidirectional CS
(i.e., two unidirectional CSs) between the edge and core
domains. Finally, the Blockchain system is implemented using
an Ethereum emulator called Ganache.

Fig.4 and Fig.5 show the HTTP requests and the trans-
actions generated among the BL peers in the set up and
deployment procedures previously described in section II. On
the one hand, regarding the workflow to distribute the context
of each SDN domain, Fig.4-A shows the three HTTP requests
to share the context of each SDN domain. Once each HTTP
request reaches the corresponding PDL-transport manager, a
BL transaction is generated and distributed as demonstrated
in Fig.5-A. On the other hand, regarding the deployment
of CSs, Fig.4-B shows the HTTP request that triggers the
whole process (i.e., step 1 in Fig.3) and the HTTP requests
to create the different CSs (as the step 8 in Fig.3) between
the PDL-transport manager and its associated Transport SDN
Controller. The distribution of the CSs requests across the
BL network is presented with the two pairs of transactions
log in Fig.5-B/C. Each transaction log belongs to the CSs
creation transaction distribution (steps 5/6/7 in Fig.3) and the
CSs update transaction distribution (steps 12/13/14 in Fig.3).

From the multiple tests done, a set of measures were ob-
tained. Table I presents the mean and standard deviation values
for each E2E CS deployment, their total deployment time and

TABLE I
CS DEPLOYMENT TIME VS. RELATED BL TRANSACTIONS TIME.

Time (s)
Networking Deployment Blockchain
CS 1 CS 2 Total Transactions

Mean Value 2.01 2.07 4.08 2.34
Std. Dev. 0.11 0.22 0.19 0.49

the total time associated to the different BL transactions (i.e.,
CS creation and update). A complete E2E CS configuration
requires around 2 s, giving a total mean time value of 4.08
s to create the two unidirectional domain CSs (CS1 and CS2
in Table I). The BL transaction mean time value is of 2.34
s, which adds an increment of a 50 %. Despite this time
increment is significant, compared to possible SDN situations
such as a reconfiguration of optical amplifiers that may take
minutes, it becomes less significant. Based on this, the trade-
off to implement this new architecture might be an increment
of seconds per each CS creation to keep the BL advantages.

IV. CONCLUSIONS
This paper has presented a BL-based architecture to manage

transport SDN E2E CSs across transport networks. Moreover,
the workflows to share SDN contexts and to create per-domain
CSs were described. Finally, a set of experimental results were
discussed presenting the influence of the BL actions on the
whole process to create SDN CSs.

ACKNOWLEDGMENT

Spanish AURORAS (RTI2018-099178-B-I00) and The-
matic Network Go2Edge (RED2018-102585-T), and EC
H2020 TeraFlow (101015857) projects.

REFERENCES

[1] R. Vilalta et al., Hierarchical SDN orchestration for multi-technology
multi-domain networks with hierarchical ABNO, ECOC, 2015.

[2] S.S. Sachin et al., Blockchain for Distributed Systems Security, Wiley-
IEEE Computer Society, 2019.

[3] S. Boukria et al., BCFR: Blockchain-based Controller Against False
Flow Rule Injection in SDN, 2019 IEEE ISCC, 2019.

[4] S. Misra et al., Blockchain-Based Controller Recovery in SDN, IEEE
INFOCOM, 2020.

[5] V. Lopez et al., Transport API: A Solution for SDN in Carriers Networks,
ECOC, 2016.

[6] P. Alemany, et al., Peer-to-Peer Blockchain-based NFV Service Platform
for End-to-End Network Slice Orchestration Across Multiple NFVI
Domains, IEEE 5GWF, 2020.

[7] P. Alemany, et al., Managing Network Slicing Resources Using
Blockchain in a Multi-Domain Software Defined Optical Network Sce-
nario, ECOC, 2020.

[8] P. Alemany, et al., End-to-End Network Slice Stitching using Blockchain-
based Peer-to-Peer Network Slice Managers and Transport SDN Con-
trollers, accepted in OFC, 2021.

[9] R. Muñoz, et al., The ADRENALINE Testbed: An SDN/NFV
Packet/Optical Transport Network and Edge/Core Cloud Platform for
End-to-End 5G and IoT Services , EUCNC, 2017.


